
Published as a conference paper at ICLR 2024

PRES: TOWARD SCALABLE MEMORY-BASED DY-
NAMIC GRAPH NEURAL NETWORKS

Junwei Su, Difan Zou† & Chuan Wu†

Department of Computer Science, University of Hong Kong
{jwsu,dzou,cwu}@cs.hku.hk

ABSTRACT

Memory-based Dynamic Graph Neural Networks (MDGNNs) are a family of dy-
namic graph neural networks that leverage a memory module to extract, distill,
and memorize long-term temporal dependencies, leading to superior performance
compared to memory-less counterparts. However, training MDGNNs faces the
challenge of handling entangled temporal and structural dependencies, requir-
ing sequential and chronological processing of data sequences to capture accu-
rate temporal patterns. During the batch training, the temporal data points within
the same batch will be processed in parallel, while their temporal dependencies
are neglected. This issue is referred to as temporal discontinuity and restricts the
effective temporal batch size, limiting data parallelism and reducing MDGNNs’
flexibility in industrial applications. This paper studies the efficient training of
MDGNNs at scale, focusing on the temporal discontinuity in training MDGNNs
with large temporal batch sizes. We first conduct a theoretical study on the impact
of temporal batch size on the convergence of MDGNN training. Based on the
analysis, we propose PRES, an iterative prediction-correction scheme combined
with a memory coherence learning objective to mitigate the effect of temporal
discontinuity, enabling MDGNNs to be trained with significantly larger tempo-
ral batches without sacrificing generalization performance. Experimental results
demonstrate that our approach enables up to a 4 × larger temporal batch (3.4×
speed-up) during MDGNN training.

1 INTRODUCTION

Graph representation learning has become increasingly important due to its ability to leverage both
feature vectors and relational information among entities, providing powerful solutions in various
domains (Wu et al., 2020; Hamilton, 2020). While initial research (Kipf & Welling, 2017; Hamilton
et al., 2018; Veličković et al., 2017) primarily focuses on static graphs, many real-world applica-
tions involve dynamic graphs (also referred to as temporal graph) characterized by continuously
changing relationships, nodes, and attributes. To address this dynamic nature, dynamic graph neural
networks (DGNNs) have emerged as promising deep learning models capable of modelling time-
varying graph structures (Kazemi et al., 2020; Skarding et al., 2021). Unlike their static counter-
parts, DGNNs excel at capturing temporal dependencies and learning spatial representations within
the context of dynamic graphs. Consequently, they play a critical role in applications such as social
media (Zhang et al., 2021), where communication events stream and relationships evolve, and rec-
ommender systems (Kumar et al., 2019), where new products, users, and ratings constantly emerge.

Among DGNNs, Memory-based Dynamic Graph Neural Networks (MDGNNs) have demonstrated
superior performance compared to memory-less counterparts (Poursafaei et al., 2022). An essential
feature of MDGNNs is the integration of a memory module within their architectures. This memory
module acts as a sequential filtering mechanism, iteratively learning and distilling information from
both new and historical graph data (also referred to as events). Consequently, MDGNNs excel
at capturing long-range dependencies and achieving state-of-the-art performance across a diverse
range of dynamic-graph-related tasks (Zhang et al., 2023; Rossi et al., 2021; Xu et al., 2020). The

The implementation is available at: https://github.com/jwsu825/MDGNN_BS
†: corresponding authors

1

https://github.com/jwsu825/MDGNN_BS

Published as a conference paper at ICLR 2024

training and inference processes of MDGNNs involve three key steps. First, the incoming events
are sequentially processed in their temporal order using the MESSAGE module, which extracts and
distils relevant information, generating a set of message vectors. These message vectors are then
employed, in conjunction with the previous memory state, by the MEMORY module to update the
memory states of the vertices involved in the events. Finally, the updated memory vectors, along with
structural information, are fed into the EMBEDDING module to generate dynamic embeddings for
the vertices. Fig. 1 visually depicts this process, illustrating the information flow within MDGNNs.

Mem.at t0

Dynamic
Graph
with

Timestamped Edges eij(t)

Mem.at t1

Sequence of
Events

Offline Data
Return to
Service

t0 t1

Msg.
Emb.at t1

1

2

3

4

Figure 1: Illustration of the MDGNN process. Ar-
rows of the same colour represent simultaneous
operations. (1) Temporal events are sequentially
processed and transformed into messages. (2) Ar-
rived messages update the previous memory. (3)
The updated memory is used to compute embed-
dings. (4) Time-dependent embeddings can be
utilized for downstream tasks within the system.

Because of its effectiveness, there is a re-
cent uptick in both theoretical exploration (ex-
pressive power) (Souza et al., 2022) architec-
tural innovation (Zhang et al., 2023) concerning
MDGNN. However, the presence of the mem-
ory module poses a challenge for MDGNN
training. Capturing accurate temporal patterns
requires sequential and chronological process-
ing of event sequences (Rossi et al., 2021; Zhou
et al., 2022). To achieve training efficiency,
MDGNNs adopt batch processing, where con-
secutive events are partitioned into temporal
batches and each batch of events is fed to the
model concurrently for processing. However,
this can be problematic as the temporal depen-
dency between the data points within the same
batch cannot be maintained. When events in-
volving the same node coexist within a batch,
batch processing only results in one update for
MDGNNs, whereas principally, the MESSAGE and MEMORY should be updated twice based on
the chronological order of the events (see Sec. 3.1 for a detailed discussion and Fig. 2(b) for a visual
illustration). This phenomenon is known as the temporal discontinuity which can lead to information
loss and performance deterioration. Clearly, this issue will become more severe when using a large
batch size, as a greater number of events (which have temporal order) will be included in the same
batch and processed simultaneously. Therefore, in practice, one may need to use a small temporal
batch size in training MDGNNs (Rossi et al., 2021; Kumar et al., 2019; Zhou et al., 2022), restricting
data parallelism and reducing flexibility in practical applications. In contrast, modern deep learning
methods have achieved remarkable success by training models on large amounts of data, leveraging
large batch sizes to exploit the computational power of parallel processing (Goyal et al., 2017; You
et al., 2019; 2020; Rasley et al., 2020). Addressing the batch size bottleneck is crucial to enhance
the practicality of MDGNNs, enabling more efficient training, optimized utilization of computation
resources, and improved performance and applicability across diverse domains.

This paper aims to enhance the efficiency of MDGNN training by investigating the impact of tem-
poral batch size on the training procedure. Our contributions are summarized as follows:

• We provide a formal formulation of the MDGNN training procedure and present, to the best
of our knowledge, the first theoretical result on the influence of temporal batch size on MDGNN
training. Contrary to the prevailing belief that smaller temporal batches always yield better MDGNN
performance, we demonstrate that small temporal batches can introduce significant variance in the
gradient (Theorem 1). Furthermore, leveraging the concept of memory coherence (Def. 3), we
present a novel convergence result (Theorem 2) for MDGNN training, offering insights into the
factors impacting the convergence rate.

•Building upon the aforementioned analysis and drawing inspiration from the similarity between the
memory module and the filtering mechanism in control theory, we propose a novel training frame-
work for MDGNNs, named PRES (PREdict-to-Smooth), which offers provable advantages (Propo-
sition 1). PRES consists of two key components: 1) an iterative prediction-to-correction scheme
that can mitigate the variance induced by temporal discontinuity in large temporal batches, and 2) a
memory smoothing learning objective aiming at improving the convergence rate of MDGNNs.

• To validate our theoretical analysis and the effectiveness of our proposed method, we conduct an
extensive experimental study. The experimental results (Sec. 6.1) demonstrate that our approach

2

Published as a conference paper at ICLR 2024

enables the utilization of up to 4× larger temporal batch (3.4× speed-up) during MDGNN training,
without compromising model generalization performance.

2 RELATED WORK

Due to space limit, here we discuss papers that are most relevant to the problem we study and provide
a more comprehensive review in Appendix G.

Dynamic Graph Representation Learning. Dynamic graph representation learning has garnered
substantial attention in recent years, driven by the imperative to model and analyze evolving relation-
ships and temporal dependencies within dynamic graphs (Skarding et al., 2021; Kazemi et al., 2020).
Dynamic Graph Neural Networks (DGNNs), as dynamic counterparts to GNNs, have emerged as
promising neural models for dynamic graph representation learning (Sankar et al., 2020; Poursafaei
et al., 2022; Xu et al., 2020; Rossi et al., 2021; Wang et al., 2021; Kumar et al., 2019; Trivedi et al.,
2019; Zhang et al., 2023; Pareja et al., 2020; Trivedi et al., 2017). Among DGNNs, MDGNNs have
demonstrated superior inference performance compared to their memory-less counterparts. Con-
sequently, there has been a recent surge in both theoretical exploration (expressive power)(Souza
et al., 2022) and architectural innovation(Rossi et al., 2021; Wang et al., 2021; Kumar et al., 2019;
Trivedi et al., 2019; Zhang et al., 2023) related to MDGNNs. Additionally, there are works dedi-
cated to optimizing both the inference and training efficiency of MDGNNs from a system perspec-
tive, employing techniques such as computation duplication (Wang & Mendis, 2023), CPU-GPU
communication optimization (Zhou et al., 2022), staleness (Sheng et al., 2024) and caching (Wang
et al., 2021). Despite the recognition of the temporal discontinuity problem (which may be referred
to differently) (Zhou et al., 2022; Rossi et al., 2021; Kumar et al., 2019), there are still no theoretical
insights or founded solutions addressing the temporal discontinuity issue (limited temporal batch
size). Our study addresses this gap in MDGNN research by focusing on understanding the impact of
temporal batch size on training MDGNNs, aiming to enhance data parallelism in MDGNN training.
We adopt a more theoretical approach, and our proposed method can be used in conjunction with
the aforementioned prior works to further improve training scalability

Mini-Batch in Stochastic Gradient Descent (SGD). It should be noted that there is another or-
thogonal line of research investigating the effect of mini-batch size in SGD training (Goyal et al.,
2017; Qian & Klabjan, 2020; Lin et al., 2018; Akiba et al., 2017; Gower et al., 2019), including
studies in the context of GNNs (Chen et al., 2018; 2017; Ying et al., 2018; Huang et al., 2018). It
is important to differentiate the concepts of mini-batch in SGD and temporal batch in MDGNNs,
as they serve distinct purposes and bring different challenges. The goal of mini-batches in SGD is
to obtain a good estimation of the full-batch gradient by downsampling the entire dataset into mini-
batches. On the other hand, the temporal batch specifically refers to partitioning consecutive events
data to ensure chronological processing of events. The temporal batch problem studied in this paper
aims to increase the temporal batch size to enhance data parallelism in MDGNN training.

3 PRELIMINARY AND BACKGROUND

Event-based Representation of Dynamic Graphs. In this paper, we utilize event-based repre-
sentation of dynamic graphs, as described in previous works (Skarding et al., 2021; Zhang et al.,
2023). A dynamic graph G in this representation consists of a node set V = {1, ..., N} and an event
set E = {eij(t)}, where i, j ∈ V . The event set E represents a stream of events, where each edge
eij(t) corresponds to an interaction event between node i and node j at timestamp t ≥ 0. Node
features and edge features are denoted by vi(t) and eij(t), respectively. In the case of non-attributed
graphs, we assume vi(t) = 0 and eij(t) = 0, representing zero vectors.

Memory-based Dynamic Graph Neural Network (MDGNN). We adopt an encoder-decoder
formulation of MDGNNs, following the setting in (Rossi et al., 2021; Zhang et al., 2023). The
encoder takes a dynamic graph as input and generates dynamic representations of nodes, while the
decoder utilizes these node representations for various downstream tasks. Given event eij(t), the

3

Published as a conference paper at ICLR 2024

1 2t1

2 3t2

Batch

h1(t1) h2(t1)

h2(t2) h3(t2)emb

m1(t1)

m2(t1)

m2(t2)

m3(t2)

msg

dec p((1,2)|t1)
p((2,3)|t2)

loss

mem

s1(t1)

s2(t2)

s3(t2)

Node Embeddings Edge probabilities

Messages (Updated)
Memory

1
2 3

4

5

Positive

Negative

samp

(a) MDGNNs training

si(𝑡!") si(t1) si(t2)

mi(t1) mi(t2)
sj(𝑡!") sk(𝑡#")

sj(𝑡!")

si(𝑡!")

sk(𝑡!")

mi(t1)

mi(t2) si(t2)

si(t1)

vi

vj
vk

e ij(t1
)

eik(t2)
t1< t2

(b) temporal discontinuity

Figure 2: Fig. 2(a) depicts the training flow of MDGNN. The incoming batch serves as training sam-
ples for updating the model and memory for the subsequent batch. Fig. 2(b) visualizes the temporal
discontinuity that arises from pending events within the same temporal batch and t− indicates the
moments before t. The top section showcases two pending events sharing a common vertex. The
middle section demonstrates the transition of memory states when events are sequentially processed
according to temporal order. The bottom section illustrates the transition when events are processed
in parallel (large batch). The grey colour indicates unobserved or altered memory states and the
dotted line indicates missing transition, resulting in temporal discontinuity.

encoder of MDGNN can be defined as follows:
mi(t) = msg(si(t

−), sj(t
−), eij(t),∆t), mj(t) = msg(sj(t

−), sj(t
−), eij(t),∆t),

si(t) = mem(si(t
−),mi(t)), sj(t) = mem(sj(t

−),mj(t)),

hi(t) = emb(si(t),Ni(t)), hj(t) = emb(sj(t),Nj(t)),

(1)

where si(t−) and sj(t−) are the memory states of nodes i and j just before time t (i.e., at the time
of the previous interaction involving node i or j), mi(t) and mj(t) are the messages generated from
the event eij(t),Ni(t) andNj(t) are the temporal neighbours of nodes i and j up to time t, hi(t) and
hj(t) are the dynamic embeddings of nodes i and j at time t, and msg(.) (e.g., MLP), mem(.)(e.g.,
GRU), and emb(.)(e.g., GCN) are learnable functions, respectively, representing the MESSAGE,
MEMORY, and EMBEDDING modules discussed earlier.

Training MDGNNs. While MDGNNs possess the theoretical capability of capturing continu-
ous dynamics, their training relies on batch processing to account for data discretization and effi-
ciency considerations (Rossi et al., 2021; Zhang et al., 2023). In the training process of MDGNN
on a dynamic graph with an event set E , consecutive events are partitioned into temporal batches
B1, . . . , BK of size b = |E|

K . These temporal batches are sequentially trained to capture the correct
temporal relationships. MDGNNs are commonly trained using the (self-supervised) temporal link
prediction task (Rossi et al., 2021; Zhang et al., 2023; Xu et al., 2020), which involves binary clas-
sification to predict whether an interaction will occur between a given pair of vertices. The event set
E provides positive signals (interactions) for the temporal link prediction task. For each batch Bi,
the negative signals are formed by considering vertex pairs that do not have an event within the time
interval of the batch (Xu et al., 2020; Rossi et al., 2021; Zhang et al., 2023), denoted as B̄i. The com-
plete event batch used for training is represented as Bi = Bi ∪ B̄i. To prevent information leakage
of Bi (can not predict Bi with its own information), MDGNNs adopt a lag-one scheme (Rossi et al.,
2021; Zhang et al., 2023) where the temporal batch Bi−1 is used to update the memory state and
generate embeddings for predicting Bi. The training process in each training epoch with gradient
descent can be formulated as the following iterative process:

L(θ(0)) :=
K∑
i=1

Li(θ
(i−1)), Li(θ

(i−1)) = l(Bi, θ(i−1)), θ(i) = θ(i−1) − η∇Li(θ
(i−1)) (2)

where θ represents the model parameters of the MDGNN, η is the learning rate, L(θ(0)) is the
total loss for the entire epoch with initial parameters θ(0), Li(.) is the loss for batch Bi, and l(.)

4

Published as a conference paper at ICLR 2024

denotes the loss function (e.g., cross-entropy (Zhang et al., 2023; Xu et al., 2020; Rossi et al.,
2021)). Interactions in real-life networks are usually sparse, and it is impractical to process the
complete negative event set. Instead, a subset of negative events is sampled to facilitate training.
We denote the temporal batch with negative sampling as B̂i and its gradient as∇L̂i(θ

(i−1)) (can be
obtained by replacing Bi in equation 2), and the training updates become,

θ(i) = θ(i−1) − η∇L̂i(θ
(i−1)). (3)

We denote∇L̂(θ) as the gradient of the entire epoch with negative sampling, and make the following
assumption on the sampling process of negative events:

Assumption 1. ∇L̂i(θ
(i−1)) is an unbiased estimate of ∇Li(θ

(i−1)) and has bounded variance,
i.e., σ2

min ≤ E[∥∇L̂i(θ
(i−1))−∇Li(θ

(i−1))∥2] ≤ σ2
max.

This assumption ensures that the variance of the gradient estimation remains bounded during the
sampling process. Fig. 2(a) provides a graphical illustration of MDGNN training procedure. Ap-
pendix A contains pseudocode for the training procedure, along with a more detailed description.

3.1 TEMPORAL DISCONTINUITY AND PENDING EVENTS.

Training MDGNNs using temporal batches introduces challenges in accurately capturing temporal
patterns. Specifically, events involving the same vertex within a batch are inherently temporal and
should be processed chronologically to ensure the memory module accurately captures the temporal
patterns, as depicted in the central portion of Fig.2(b). Batch processing, however, only triggers one
update for the MDGNNs, neglecting the temporal dependency of events, as illustrated in the lower
section of Fig.2(b). This phenomenon is termed temporal discontinuity and can lead to information
loss and potential noise in the memory state. To formally define this concept, we introduce the terms
pending events and pending sets as follows:

Definition 1 (Pending Event). An event e is considered pending on another event e′ (denoted as
e′ → e) if e and e′ share at least one common vertex and t′ < t, where t (t′) is the timestamp of
event e (e′).

Definition 2 (Pending Set). Given a temporal batch B and an event e, the pending set P(e,B) =
{e′ → e|e′ ∈ B} of an event e is the collection of its pending events within batch B.

In essence, as the temporal batch size increases, it tends to accommodate a greater number of pend-
ing events within the batch. As a result, training MDGNNs with large temporal batches becomes
a formidable task since concurrently processing numerous pending events can result in the loss of
critical temporal information within the graph. This limitation imposes constraints on the effective
temporal batch size, thereby impeding training parallelization.

4 THEORETICAL ANALYSIS OF MDGNN TRAINING

In this section, we provide a theoretical analysis of MDGNN training, specifically focusing on how
the size of the temporal batch affects the variance and convergent rate of the learning process.

Theorem 1. Let E be a given event set and b be the temporal batch size. For a given MDGNN
parameterized by θ with training procedure of Eq. 3, we have E[∥∇L̂(θ)−∇L(θ)∥2] ≥ |E|

b σ
2
min.

The proof of Theorem 1 can be found in Appendix B. Theorem 1 provides an interesting insight into
MDGNN training: while it is commonly believed that a smaller temporal batch size leads to better
information granularity (less subject to pending events), the variance of the gradient for the entire
epoch can be significant when the temporal batch size is small. This underscores the unexpected
benefit of larger temporal batch sizes, as they exhibit greater robustness to sampling noise.

Next, we examine how the size of the temporal batch affects the convergence of the training process.
We introduce the concept of memory coherence to measure the loss of temporal dependency in
learning dynamics. Specifically, let s(e)i denote the memory state of vertex i after event e (i.e.,
s
(e)
i = si(te)), and we define memory coherence as follows.

5

Published as a conference paper at ICLR 2024

Definition 3 (Memory Coherence). The memory coherence of an event eij ∈ Bk is defined as

µeij (Bk) := min
e∈P(eij ,Bk)

〈
∇l(eij , s(e)i , s

(e)
j),∇l(eij , s

(eij)
i , s

(eij)
j)

〉
∥∇l(eij , s

(eij)
i , s

(eij)
j)∥2

(4)

where ∇l(eij , s(e)i , s
(e)
j) is the gradient incurred by event eij with respect to s(e)i and s(e)j (simi-

larly for ∇l(eij , s
(eij)
i , s

(eij)
j). The memory coherence µeij captures the minimum coherence of the

gradients when fresh memory (s(eij)i) and past memory from the pending events (s(e)i) are used.
Intuitively, a positive value of µeij indicates that the directions of these gradients are well aligned.
In other words, the convergence properties are less affected by the pending events. It is worth noting
that the memory coherence µeij can be easily computed empirically during the training process.

Theorem 2. Let E be a given event set, b be the temporal batch size, and K = |E|
b be the number

of temporal batches. Let ∇L(θt) be the gradient of epoch t when all the events are processed in
sequential order (no temporal discontinuity), and ∇L̂(θt) be the gradient when events in temporal
batches are processed in parallel. Suppose the training algorithm is given by,

θ
(i+1)
t = θ

(i)
t − ηt∇L̂i+1(θ

(i)
t), θt+1 = θ

(0)
t+1 = θ

(K)
t , (5)

where∇L̂i+1(θ
(i)
t) is the gradient of batch B̂i+1 when events are processed in parallel and ηt is the

learning rate. Suppose (1) σ be as given in Assumption 1; (2) the loss function is continuously differ-
entiable and bounded below, and the gradient is L-Lipschitz continuous; (3) the memory coherence
is lower bounded by some constant µ. Choosing step size ηt = µ

L
√
Kt

, we have

min
0≤t≤T

E[∥∇L(θt)∥2] ≤

(
2
√
KL(L(θ0)− L(θ∗))

µ2
+
√
Kσ2

max log T

)
1√
T

(6)

where θ∗ is the optimal parameter and θ0 is the initial parameter.

The proof of Theorem 2 can be found in Appendix C. The assumptions regarding the loss function,
as presented in the theorem, adhere to the standard conventions in convergence analysis (Wan et al.,
2022; Chen et al., 2022; Dai et al., 2018). These assumptions can be relaxed with more specific
insights into the neural architecture employed in MDGNNs

The insights provided by Theorem 2 offer valuable guidance for the training process of MDGNNs.
Firstly, it emphasizes the consideration that the choice of the step size ηt should account for both
the temporal batch size (as captured by K), and the memory coherence µ. Secondly, the theorem
sheds light on the pivotal roles played by memory coherence µ and variance σmax, as captured by
Eq. 6, in the convergence behaviour of MDGNNs. Specifically, it underscores the significance of
enhancing memory coherence µ while simultaneously reducing σmax. These insights provide strong
motivation for the development of our proposed method, as elaborated below.

5 PREDICT-TO-SMOOTH (PRES) METHOD

We introduce PRES, our proposed method to improve MDGNN training with large temporal batch
sizes. PRES is based on the theoretical analysis presented in the previous section. It consists of two
main components: 1) an iterative prediction-correction scheme that mitigate the impact of temporal
discontinuity in training MDGNNs (optimizing the second term of Eq. 6), and 2) a memory smooth-
ing objective based on memory coherence (optimizing the first term of Eq. 6). An overview of PRES
is given in Fig. A.2. The pseudo-code for the complete procedure is provided in Appendix A.

5.1 ITERATIVE PREDICTION-CORRECTION SCHEME

To tackle temporal discontinuity, we employ an iterative prediction-correction scheme inspired by
filtering mechanisms used in control systems to adjust noisy measurements. The scheme consists
of two steps: 1) prediction and 2) update. In the prediction step, a prediction model is used to
estimate the current state of the system based on the previous state information. In the update step,

6

Published as a conference paper at ICLR 2024

the estimation from the prediction model is employed to incorporate new measurement information
and improve the state estimation (reducing the noise to the true value). Here, we treat the memory
state with pending events within the temporal batch as a noisy measurement.

Our prediction model is tasked with modelling the change in the memory state si for each
vertex i, represented as δsi . We employ a Gaussian Mixture Model (GMM), P(δsi) =∑ω

j=1 αjN(δsi |µ
(j)
i ,Σ

(j)
i) as the parametric model to estimate the distribution of δsi . ω represents

the number of components in GMM, αj denotes the weights of each components, and µ(j)
i and Σ

(j)
i

are the mean and covariance matrices for the components. We set ω = 2 to model the positive and
negative event types in temporal link prediction. Using this GMM, we predict the newest memory
state si(t2) of vertex i based on its previous memory state si(t1) and the estimated transition:

ŝi(t2) = si(t1) + (t2 − t1)δsi . (7)
To make use of the predicted value, we consider the memory state as a noisy measurement affected
by temporal discontinuity. We then fuse the predicted value and the noisy measurement to obtain a
better estimate of the memory state. The correction step is given by:

s̄(t2) = (1− γ)ŝi(t2) + γsi(t2), (8)
where γ is a learnable variable controlling the fusion of the predicted and the current memory state.

Then, we adopt the common approach, Maximum Likelihood Estimation (MLE), for estimating
and updating the parameters of GMM. Nevertheless, applying MLE naively would require storing
the complete history of each vertex, resulting in substantial memory overhead. To address this, we
utilize the variance formula Var(X) = E[X2]−E[X]2, which allows us to keep track of only a few
key values for parameter updates. For each event of type j, the parameter updates are calculated as
follows:

δ(j)si = s̄(t2)− ŝi(t2), ξ
(j)
i = ξ

(j)
i + δ(j)si , ψ

(j)
i = ψ

(j)
i + (δ(j)si)2,

n
(j)
i = n

(j)
i + 1, µ

(j)
i = ξ

(j)
i /n

(j)
i , Σ

(j)
i = ψ

(j)
i /n

(j)
i − (µ

(j)
i)2,

(9)

where n(j)i , ξ
(j)
i , ψ

(j)
i are trackers for the number of events, the sum of δ(j)si and the sum of (δ(j)si)2.

To summarize, the iterative prediction-correction scheme perceives the memory state impacted by
temporal discontinuity as a noisy measurement. It then aims to utilize historical information of the
memory state and a GMM prediction model to mitigate this noise/variance, akin to the filtering
techniques employed in control systems.

5.2 MEMORY COHERENCE SMOOTHING

Based on the preceding analysis, we have identified memory coherence (µ) as a pivotal determinant
in the convergence rate of MDGNNs when dealing with large temporal batches. To enhance the
statistical efficiency of MDGNN training with larger temporal batches, we propose a novel learning
objective aimed at promoting larger memory coherence. This learning objective is expressed as:

l(Bi)︸ ︷︷ ︸
prediction loss

+β

1−
〈

S(−)(Bi)
∥S(−)(Bi)∥

,
S(Bi)
∥S(Bi)∥

〉
︸ ︷︷ ︸

memory coherence

 , (10)

where S(−)(Bi) and S(Bi) represent the previous and new memory states of vertices within batch
Bi, respectively. The hyperparameter β governs the strength of the regularization effect.

Intuitively, if the memory coherence within batch Bi is low, Eq. 10 incurs a substantial loss. Conse-
quently, this learning objective steers the training process towards parameter values less susceptible
to the influence of pending events, effectively enhancing memory coherence. In accordance with
Theorem 2, this enhancement is expected to yield superior statistical efficiency.

5.3 THEORETICAL DISCUSSION OF PRES

Variance. Let STANDARD represent the standard temporal batch training with Eq. 5, and PRES
denote our proposed framework. We have the following theoretical guarantee for variance reduction.

7

Published as a conference paper at ICLR 2024

10 20 40 60 80 100
Batch Size

85

91

97

AP
(%

)

TGN
JODIE
APAN

(a) WIKI

10 20 40 60 80 100
Batch Size

85

91

97

AP
(%

)

TGN
JODIE
APAN

(b) REDDIT
Figure 3: Performance of baselines under different batch sizes. The x-axis represents the batch size,
while the y-axis represents the average precision (AP). The results are averaged over five trials.

1 5 10 15 20
Batch Size (×100)

90

94

98

AP
(%

)

TGN
TGN-PRES

(a) TGN

1 5 10 15 20
Batch Size (×100)

88

93

98

AP
(%

)

APAN
APAN-PRES

(b) APAN

1 5 10 15 20
Batch Size (×100)

87

91

95

AP
(%

)

JODIE
JODIE-PRES

(c) JODIE
Figure 4: Performance of baseline methods with and without PRES under different batch sizes on
WIKI dataset. The x-axis represents the batch size (multiplied by 100), while the y-axis represents
the average precision (AP). The results are averaged over five trials with β = 0.1 for PRES.

Table 1: Performance comparison of existing MDGNNs with and without PRES. The results are
averaged over five independent trials with β = 0.1 for PRES and 50 epoches. The training efficiency
improvement with PRES is highlighted in bold. (*s) indicates that it takes * seconds for one epoch.

Dataset REDDIT WIKI MOOC LASTFM GDELT
Model AP(%) Speedup AP(%) Speedup AP(%) Speedup AP(%) Speedup AP(%) Speedup

TGN 98.4 ± 0.1 1× (321s) 97.8 ± 0.1 1× (87s) 98.8 ± 0.2 1× (212s) 72.1 ± 1.0 1× (648s) 96.8 ± 0.1 1×(1325s)
TGN-PRES 98.0 ± 0.2 3.4× (94s) 97.5 ± 0.3 3.2× (27s) 97.5 ± 0.1 3.0× (71s) 71.2 ± 1.5 2.8× (231s) 96.0 ± 0.1 2.7× (491s)

JODIE 96.6 ± 0.1 1× (271s) 94.7 ± 0.1 1× (62s) 98.0 ± 0.1 1× (152s) 75.2 ± 1.5 1× (452s) 95.1 ± 0.1 1× (1123s)
JODIE-PRES 95.8 ± 0.2 3.1× (87s) 94.4 ± 0.1 2.4× (26s) 98.1 ± 0.2 2.6× (58s) 73.2 ± 1.6 1.9× (237s) 94.3 ± 0.1 2.8× (401s)

APAN 98.6 ± 0.1 1× (281s) 99.0 ± 0.1 1× (71s) 98.5 ± 0.1 1× (173s) 69.8 ± 1.6 1× (521s) 96.7 ± 0.2 1× (1215s)
APAN-PRES 98.2 ± 0.1 2.2× (127s) 98.5 ± 0.1 2.9× (24s) 98.0 ± 0.1 2.0× (86s) 67.9 ± 1.9 1.8× (289s) 96.0 ± 0.3 2.4× (506s)

Proposition 1 (Informal). If the memory transition with temporal discontinuity can be approximated
by a linear state-space model with Gaussian noise, PRES can achieve a smaller noise/variance
compared to STANDARD.

The formal version of Proposition 1, along with its proof is provided in Appendix D. Proposi-
tion 1 provides a validation to PRES. It states PRES can effectively mitigate the variance induced
by temporal discontinuity, enabling the training of MDGNN with larger temporal batches. This
enhancement, in turn, bolsters the training efficiency without compromising overall performance.

Complexity. The computational complexity of PRES is O(|B|), with |B| representing the batch
size. As for storage complexity, which arises from the trackers employed in Eq. 9, it scales at the
order of O(|V|), where |V| denotes the vertex count. In cases where stringent memory constraints
are in place, one can adopt a pragmatic approach by selecting a subset of vertices to serve as an
anchor set. This set, in turn, facilitates an efficient heuristic for handling the remaining vertices. For
a more in-depth exploration of this strategy, please refer to the appendix.

6 EXPERIMENT

We present an experimental study to validate our theoretical results and evaluate the effectiveness
of our proposed method, PRES. Due to space limit, we present a subset of results in the main paper
and provide a more comprehensive description of the datasets, experimental setup, testbed, and
remaining results (such as ablation study and GPU memory utilization) in the Appendix E.

Datasets and Baselines. We use four public dynamic graph benchmark datasets (Kumar et al.,
2019), REDDIT, WIKI, MOOC, LASTFM and GDELT. Details of these datasets are described in
the appendix. We use three state-of-the-art memory-based MDGNNs models: JODIE (Kumar et al.,

8

Published as a conference paper at ICLR 2024

2019), TGN (Rossi et al., 2021) and APAN (Wang et al., 2021), and adopt the implementation of
these baselines from (Zhou et al., 2022; Rossi et al., 2021). We closely follow the settings of (Zhou
et al., 2022) for hyperparameters and the chronological split of datasets, as described in more detail
in the appendix. We mainly use average precision as the evaluation metric.

6.1 EXPERIMENTAL RESULTS

Table 2: Performance of MDGNNs w/w.o. PRES
on node classification task. ROC-AUC (%)

REDDIT WIKI MOOC

TGN 65.6 ± 0.8 86.8 ± 1.5 57.8 ± 2.3
TGN-PRES 65.0 ± 1.2 84.7 ± 1.8 56.9 ± 3.3

JODIE 60.6 ± 3.1 85.2 ± 1.5 66.5 ± 2.0
JODIE-PRES 60.9 ± 3.5 85.0 ± 1.4 66.0 ± 1.7

APAN 64.3 ± 1.4 90.0 ± 1.7 63.5 ± 2.6
APAN-PRES 64.5 ± 1.2 88.6 ± 2.1 65.5 ± 3.6

Performance vs. Batch Size. We first ex-
amine the relationship between temporal batch
size and the performance of baseline methods
w./w.o. PRES. Fig. 3 provides insights into this
relationship by illustrating the performance of
the baselines in the small batch size regime.
These results align with Theorem 1, demon-
strating that contrary to common belief, smaller
temporal batch sizes can lead to larger variance
in the training process, and poorer performance
(even non-convergence). Fig. 4 further com-

pares the baseline methods w./w.o. PRES. The results indicate that 1) the performance of baselines
indeed decreases as batch size increases and 2) baselines trained with PRES are less susceptible to
performance degradation due to increased batch size, validating the effectiveness of PRES.

0 100 200
Iteration

82

90

98

AP
(%

)

TGN
TGN-PRES

Figure 5: Statistical efficiency of
baseline method w./w.o PERS. x-
axis is the training iteration and y-
axis is the average precision. β =
0.1 is used in PRES.

Overall Training Efficiency Improvement. The next ex-
periment demonstrates the potential speed-up and efficiency
improvement that baseline methods can achieve when trained
with PRES. Table 1 and Table 2 provide comprehensive com-
parisons of the performance of baseline methods with and
without PRES. The results clearly illustrate that our approach
enables a significant increase in data-parallel processing by
using larger temporal batch sizes, without sacrificing overall
performance in terms of both link prediction and node clas-
sification tasks. These findings highlight the effectiveness of
our method in significantly scaling up MDGNN training while
maintaining comparable performance.

Effectiveness of Memory Smoothing. Next, we show the
effectiveness of the memory smoothing objective. Fig. 5

demonstrates that incorporating the memory coherence-based objective indeed leads to better statis-
tical efficiency of MDGNN training, validating the effectiveness of our approach.

7 CONCLUSION

This paper studies the effect of temporal batch size on MDGNN training. We present a novel the-
oretical analysis of how the size of the temporal batch affects the learning procedure of MDGNNs.
Contrary to the common belief, we show a surprising advantage of training MDGNNs in large tem-
poral batches (more robust to noise). In addition, we present the first convergence result of MDGNN
training, illustrating the effecting factors. Based on the analysis and the filtering mechanism, we pro-
pose a novel MDGNN training framework, PRES, that can mitigate the temporal discontinuity issue
and improve the convergence of MDGNN training with large temporal batch sizes. The scalability
enhancements brought about by PRES hold broader implications for both researchers and practi-
tioners, as they extend the applicability of MDGNNs to a broader spectrum of real-world scenarios
featuring large-scale dynamic graphs.

Limitations and Future Work. In this study, our analysis centres on the MDGNN family. How-
ever, it is worth noting that the memory module has demonstrated effectiveness in capturing the
dynamics of time series data, which exhibits (different) temporal dependencies. An intriguing av-
enue for future research would be to expand our analysis and methods to encompass the realm of
time series analysis.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers and area chairs for their helpful comments. JS and
CW are supported by grants from Hong Kong RGC under the contracts HKU 17207621, 17203522
and C7004-22G (CRF). DZ is supported by NSFC 62306252.

REFERENCES

Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely large minibatch sgd: Training resnet-
50 on imagenet in 15 minutes. arXiv preprint arXiv:1711.04325, 2017.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. arXiv preprint arXiv:1710.10568, 2017.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Xinshi Chen, Yan Zhu, Haowen Xu, Mengyang Liu, Liang Xiong, Muhan Zhang, and Le Song.
Efficient dynamic graph representation learning at scale. arXiv preprint arXiv:2112.07768, 2021.

Yangrui Chen, Cong Xie, Meng Ma, Juncheng Gu, Yanghua Peng, Haibin Lin, Chuan Wu, and
Yibo Zhu. Sapipe: Staleness-aware pipeline for data parallel dnn training. In Advances in Neural
Information Processing Systems, 2022.

Wei Dai, Yi Zhou, Nanqing Dong, Hao Zhang, and Eric P. Xing. Toward understanding the impact
of staleness in distributed machine learning, 2018.

Swapnil Gandhi and Anand Padmanabha Iyer. P3: Distributed deep graph learning at scale. In
OSDI, pp. 551–568, 2021.

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtárik. Sgd: General analysis and improved rates. In International conference on machine
learning, pp. 5200–5209. PMLR, 2019.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence and
Machine Learning, 14(3):1–159, 2020.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs, 2018.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. arXiv preprint arXiv:1809.05343, 2018.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Representation learning for dynamic graphs: A survey. The Journal of Machine
Learning Research, 21(1):2648–2720, 2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works, 2017.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

10

Published as a conference paper at ICLR 2024

Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-batches,
use local sgd. arXiv preprint arXiv:1808.07217, 2018.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-
shi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional
networks for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 5363–5370, 2020.

Jingshu Peng, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and Jiannong Cao. Sancus: sta
le n ess-aware c omm u nication-avoiding full-graph decentralized training in large-scale graph
neural networks. Proceedings of the VLDB Endowment, 15(9):1937–1950, 2022.

Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, , and Reihaneh Rabbany. Towards better
evaluation for dynamic link prediction. In Neural Information Processing Systems (NeurIPS)
Datasets and Benchmarks, 2022.

Xin Qian and Diego Klabjan. The impact of the mini-batch size on the variance of gradients in
stochastic gradient descent. arXiv preprint arXiv:2004.13146, 2020.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 3505–3506, 2020.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal Graph Networks for Deep Learning on Dynamic Graphs. In Proceedings of
International Conference on Learning Representations, 2021.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural rep-
resentation learning on dynamic graphs via self-attention networks. In Proceedings of the 13th
international conference on web search and data mining, pp. 519–527, 2020.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162:83–112, 2017.

Guangming Sheng, Junwei Su, Chao Huang, and Chuan Wu. Mspipe: Efficient temporal gnn train-
ing via staleness-aware pipeline, 2024.

Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. Foundations and modeling of dynamic
networks using dynamic graph neural networks: A survey. IEEE Access, 9:79143–79168, 2021.

Amauri Souza, Diego Mesquita, Samuel Kaski, and Vikas Garg. Provably expressive temporal graph
networks. Advances in Neural Information Processing Systems, 35:32257–32269, 2022.

Junwei Su, Difan Zou, Zijun Zhang, and Chuan Wu. Towards robust graph incremental learning on
evolving graphs. In International Conference on Machine Learning, pp. 32728–32748. PMLR,
2023.

Junwei Su, Shan Wu, and Jinhui Li. Mtrgl:effective temporal correlation discerning through multi-
modal temporal relational graph learning, 2024.

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-evolve: Deep temporal reasoning
for dynamic knowledge graphs. In international conference on machine learning, pp. 3462–3471.
PMLR, 2017.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning rep-
resentations over dynamic graphs. In International conference on learning representations, 2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Borui Wan, Juntao Zhao, and Chuan Wu. Adaptive message quantization and parallelization for
distributed full-graph gnn training. Proceedings of Machine Learning and Systems, 5, 2023.

11

Published as a conference paper at ICLR 2024

Cheng Wan, Youjie Li, Cameron R Wolfe, Anastasios Kyrillidis, Nam Sung Kim, and Yingyan
Lin. Pipegcn: Efficient full-graph training of graph convolutional networks with pipelined feature
communication. arXiv preprint arXiv:2203.10428, 2022.

Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping
Cui, Yupu Yang, Bowen Sun, et al. Apan: Asynchronous propagation attention network for
real-time temporal graph embedding. In Proceedings of the 2021 international conference on
management of data, pp. 2628–2638, 2021.

Yufeng Wang and Charith Mendis. Tgopt: Redundancy-aware optimizations for temporal graph
attention networks. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming, pp. 354–368, 2023.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcma-
han, Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? In International
Conference on Machine Learning, pp. 10334–10343. PMLR, 2020.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive represen-
tation learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, Jul 2018. doi: 10.1145/3219819.3219890. URL http://dx.doi.org/10.1145/
3219819.3219890.

Yang You, Jonathan Hseu, Chris Ying, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large-
batch training for lstm and beyond. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–16, 2019.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes, 2020.

Yao Zhang, Yun Xiong, Dongsheng Li, Caihua Shan, Kan Ren, and Yangyong Zhu. Cope: modeling
continuous propagation and evolution on interaction graph. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management, pp. 2627–2636, 2021.

Yao Zhang, Yun Xiong, Yongxiang Liao, Yiheng Sun, Yucheng Jin, Xuehao Zheng, and Yangyong
Zhu. Tiger: Temporal interaction graph embedding with restarts, 2023.

Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and George Karypis.
Tgl: A general framework for temporal gnn training on billion-scale graphs. arXiv preprint
arXiv:2203.14883, 2022.

Hongkuan Zhou, Da Zheng, Xiang Song, George Karypis, and Viktor Prasanna. Disttgl: Distributed
memory-based temporal graph neural network training. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, pp. 1–12, 2023.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
importance sampling for training deep and large graph convolutional networks. Advances in
neural information processing systems, 32, 2019.

12

http://dx.doi.org/10.1145/3219819.3219890
http://dx.doi.org/10.1145/3219819.3219890

Published as a conference paper at ICLR 2024

1 2t1

2 3t2

Batch

h1(t1) h2(t1)

h2(t2) h3(t2)emb

m1(t1)

m2(t1)

m2(t2)

m3(t2)

msg

dec p((1,2)|t1)
p((2,3)|t2)

loss

mem

s1(t1)

s2(t2)

s3(t2)

Node Embeddings Edge probabilities

Messages (Updated)
Memory

1
2 3

4

5

Positive

Negative

samp

Figure 6: Illustration of MDGNN Training Procedure. Fig. A.1 depicts the training flow of
MDGNN. The incoming batch serves as training samples for updating the model and updating the
memory for the subsequent batch.

A ALGORTIHM AND FURTHER DISCUSSION

A.1 TRAINING PROCEDURE OF MDGNNS

The training procedure of an MDGNN involves capturing temporal dynamics and learning repre-
sentations of nodes in a dynamic graph. MDGNNs leverage the concept of memory to model the
evolving state of nodes over time. The training process typically follows an encoder-decoder frame-
work. In the encoder, the MDGNN takes a dynamic graph as input and generates dynamic repre-
sentations of nodes. This is achieved by incorporating memory modules that store and update the
past states of nodes based on their interactions and temporal neighbours. The encoder also includes
message-passing mechanisms to propagate information through the graph. The decoder utilizes the
node representations generated by the encoder to perform downstream tasks, such as temporal link
prediction or node classification. MDGNNs are commonly trained using a self-supervised temporal
link prediction task, where the decoder predicts the likelihood of an edge between two nodes based
on their representations.

The training procedure of a memory-based dynamic graph neural network (MDGNN) involves
several steps. First, the dataset is divided into training, validation, and test sets using a chrono-
logical split. More concretely, suppose a given event set from time interval [0, T], chronologi-
cal split partition the dataset into [0, Ttrain] (training set), [Ttrain, Tvalidation] (validation set), and
[Tvalidation, Ttest] (test set). From now on, we focus on the training set and drop the subscript. The
training set is then further divided into temporal batches, where each batch consists of consecutive
events in the dynamic graph. In addition, negative events are sampled from the rest of the graph to
provide the negative signal. During training, MDGNNs often adopt a lag-one procedure. This means
that the model uses the information from the previous batch to update its memory state and generate
node embeddings for the current batch. This lag-one scheme helps maintain temporal consistency
and ensures that the memory-based model captures the correct temporal patterns. Fig. A.1 provides
a graphical illustration of the training flow of a batch. Fig. A.1 provides a graphical illustration of
the training flow between epochs. The pseudo-code of the training procedure with cross-entropy is
summarized in Algorithm 2.

13

Published as a conference paper at ICLR 2024

t-Batch 1 t-Batch 2 t-Batch K..

1 2 K

0 T

Epoch 1

t-Batch 1 t-Batch 2 t-Batch K..

1 2 K

0 T

Epoch 2

Figure 7: Illustration of MDGNN Training Procedure. Fig. A.1 depicts the training flow of MDGNN
for two epoches. The incoming batch serves as training samples for updating the model and updating
the memory for the subsequent batch. The model parameter is carried through the second epoch.

Algorithm 1 Standard Training Procedure for Memory-based DGNN
Initialization: S0 ← 0 {Initialize the memory vectors to be zero}
for t=1 to T do

for Bi ∈ B2, ..., BK do
B−

i ← Sample negative events
B̄i = B−

i

⋃
Bi

B̄i−1 ← Temporal batch from last iteration
Mi = msg(Si−1, B̄i−1)
Si = mem(Si−1,Mi)
Hi = emb(Si,Ni), {where Ni is the (Temporal) neighbourhood of vertex }
Compute the loss (e.g., binary cross-entropy) and run the training procedure (e.g., backprop-
agation)

L(Hi, Bi)

end for
end for

14

Published as a conference paper at ICLR 2024

t1< t2 �s2(t2) dec
p((1,2)|t1)

p((2,3)|t2)
loss

Edge probabilities

5 6

1

2

1 2t1

2 3t2

Batch

s2(t2)
1 2

3

3

4

Predict �s2(t2)s2(t1−)

h2(t2)emb

m2(t1)

m2(t2)

Update

Figure 8: An illustration of MDGNN training with PRES. A prediction model is inserted into the
training procedure to adjust the memory state for the intra-batch dependency. Arrows marked with
the same number indicate transitions happening at the same stage.

A.2 PRES

PRES consists of two main components: 1) an iterative prediction-correction scheme that incorpo-
rates approximation inference into training MDGNNs, and 2) a novel memory smoothing objective
based on memory coherence. An overview of PRES is given in Fig. A.2. The pseudo-code for the
complete procedure is summarized in Algorithm 2

Algorithm 2 PRES
Initialization: S0 ← 0
for t=1 to T do
ξ, ψ, n← 0
for Bi ∈ B1, ..., BK do
B−

i ← Sample negative events
B̄i = B−

i

⋃
Bi

B̄i−1 ← Temporal batch from last iteration
Sprev(B̄i−1)← Si−1(B̄i−1) {Store the previous memory state of the vertices to be updated}
Mi = msg(Si−1, B̄i−1)
Si = mem(Si−1,Mi)
Hi = emb(Si, Ai)

Ŝi ← predict memory state with the prediction model Eq. 7.
S̄i = γSi + (1− γ)Ŝi

Compute the loss and run the training procedure (e.g., backpropagation)

L(Bi) + [1− ⟨ Sprev(B̄i−1)

∥Sprev(B̄i−1)∥
,
S̄i

∥S̄i∥
⟩]

δSi = S̄i − Si

update ξ, ψ, n with Eq. 9
end for

end for

15

Published as a conference paper at ICLR 2024

B PROOF OF THEOREM 1

In this appendix, we provide a proof of Theorem 1.

Proof. First, recall that for a given event set of size M and partition size of κ, the training procedure
of MDGNN is given by

L(θ(0)) :=
K∑
i=1

Li(θ
(i−1)),

Li(θ
(i−1)) = l(Bi, θ(i−1))

(11)

where K = M
κ , θ represents the model parameters of the MDGNN, L(θ(0)) is the total loss for

the entire epoch with initial parameters θ(0), Li(.) is the loss for batch Bi, and l(.) denotes the loss
function. Here, we consider the standard setting where negative event sampling is used to facilitate
training. We denote the gradient with sampled negative events as ∇L̂i(θ

(i−1)), and ∇L̂i(θ
(i−1)) is

used for update instead.

With the above set-up and by definition of variance, we can write Var[∇L(θ(0))] as follows,

Var[∇L(θ(0))] = E[(
K∑
i=1

∇L̂i(θ
(i−1))−

K∑
i=1

E(∇L̂i(θ
(i−1)))2] (12)

By Assumption 1, we assume that the negative sampling is unbiased and have that ∇L̂i(θ
(i−1)) is

an unbiased estimate of∇Li(θ
(i)). Then, we can arrange the terms in the above equations and get,

Var[∇L(θ(0))] = E[(
K∑
i=1

∇L̂i(θ
(i−1))−

K∑
i=1

E(∇L̂i(θ
(i−1)))2]

= E[(
K∑
i=1

∇L̂i(θ
(i−1))−

K∑
i=1

∇Li(θ
(i−1))2]

= E[(
K∑
i=1

[∇L̂i(θ
(i−1))−∇Li(θ

(i−1)])2]

= (

K∑
i=1

E[∇L̂i(θ
(i−1))−∇Li(θ

(i−1)])2

(13)

Again, by Assumption 1, we have that ∇L̂i(θ
(i−1)) and ∇Li(θ

(i−1)) has bounded difference with-
out lower bound of c. This leads to,

Var[∇L(θ(0))] = (

K∑
i=1

E[∇L̂i(θ
(i−1))−∇Li(θ

(i−1)])2

≥ Kc

(14)

Substitute in K = M
κ , we have

E[∥∇L̂(θ)−∇L(θ)∥2] = Var[∇L(θ(0))] ≥ Kc

≥ M

κ
c.

(15)

16

Published as a conference paper at ICLR 2024

C APPENDIX:PROOF OF THEOREM 2

In this appendix, we provide proof of Theorem 2. The key challenge of the proof for Theorem 2 is
to keep track of the notations and the evolution of the parameters induced by batches and epochs.

Next, we provide the proof of Theorem 2.

Proof. Suppose B1, ...,BK are the K batch. Let’s recall that the gradient of an epoch is given as
follows,

L(θ(0)) :=
K∑
i=1

Li(θ
(i−1)),

Li(θ
(i−1)) = L(Bi, θ(i−1)).

(16)

Let’s start with considering the progression within an epoch, and let θ(i−1)
t , denote the model pa-

rameter of epoch t after being trained on batch Bi−1.

We denote the gradient with sampled negative events as ∇L̂i(θ
(i−1)), and ∇L̂i(θ

(i−1)) is used for
update instead,i.e, the update rule is given by,

θ
(i)
t = θ

(i−1)
t − ηt∇L̂i(θ

(i−1)), (17)

or equivalently,
θ
(i)
t − θ

(i−1)
t = −ηt∇L̂i(θ

(i−1)), (18)
By the L-Lipschitz property of the objective function∇L, we have the following inequality,

L(θ(i+1)
t) ≤ L(θ(i)t) + ⟨θ(i+1)

t − θ(i)t ,∇L(θ(i)t)⟩+ L

2
∥θ(i+1)

t − θ(i)t ∥2 (19)

Substitute in θ(i)t − θ
(i−1)
t = −ηt∇L̂i(θ

(i−1)), we have that,

L(θ(i+1)
t) ≤ L(θ(i)t) + ⟨θ(i+1)

t − θ(i)t ,∇L(θ(i)t)⟩+ L

2
∥θ(i+1)

t − θ(i)t ∥2

= L(θ(i)t)− ηt⟨∇L̂(θ(i)t),∇L(θ(i)t)⟩+ Lη2t
2
∥∇L̂(θ(i)t)∥2

(20)

By the premise of the memory coherence in the theorem and Assumption 1, we have that the inner
product of the gradient with and without pending events is bounded by µ, and that the negative
sampling is unbiased and has upper bounded variance. Therefore, taking the expectation of each
term and substituting the assumption into the expression, we arrive the following inequality,

E[L(θ(i+1)
t)] ≤ E[L(θ(i)t)− ηt⟨∇L̂(θ(i)t),∇L(θ(i)t)⟩+ Lη2t

2
∥∇L̂(θ(i)t)∥2]

≤ L(θ(i)t)− ηtµE[∥∇L(θ(i)t)∥2] + Lη2t
2

(E[∥∇L(θ(i)t)∥2] + σ2)

= L(θ(i)t) + (−ηtµ+
Lη2t
2

)E[∥∇L(θ(i)t)∥2] + Lη2t
2
σ2

(21)

Rearrange the equation above, we get that

(ηtµ−
Lη2t
2

)E[∥∇L(θ(i)t)∥2] ≤ L(θ(i)t)− L(θ(i+1)
t) +

Lη2t
2
σ2 (22)

Telescope sum over the entire epoch, namely all the batches, i = 1, ...,K, we have,

K∑
i=1

(ηtµ−
Lη2t
2

)E[∥∇L(θ(i−1)
t)∥2] ≤ L(θ(0)t)− L(θ(K)

t) +

K∑
i=1

Lη2t
2
σ2, (23)

17

Published as a conference paper at ICLR 2024

By definition, we have that L(θ(K)
t) = L(θ(0)t+1). The above equation is equivalent to the following,

K∑
i=1

(ηtµ−
Lη2t
2

)E[∥∇L(θ(i−1)
t)∥2] ≤ L(θ(0)t)− L(θt+1) +

K∑
i=1

Lη2t
2
σ2, (24)

Since we are making the learning rate independent of batch number i, we can rearrange the equation
above as follows,

(ηtµ−
Lη2t
2

)

K∑
i=1

E[∥∇L(θ(i−1)
t)∥2] ≤ L(θ(0)t)− L(θt+1) +K

Lη2t
2
σ2, (25)

Now telescope sum over the epochs, namely, t = 1, ..., T , we have,

T∑
t=1

(ηtµ−
Lη2t
2

)

K∑
i=1

E[∥∇L(θ(i−1)
t)∥2] ≤ L(θ(0)0)− L(θT) +

T∑
t=1

K
Lη2t
2
σ2, (26)

By set up, we have that
∑K

i=1 E[∥∇L(θ
(i−1)
t)∥2] = ∇L(θ(0)t). Then, we can obtain an equivalent

expression for the above equation as follows.
T∑

t=1

(ηtµ−
Lη2t
2

)E[∥∇L(θ(0)t)∥2] ≤ L(θ(0)0)− L(θT) +Kσ2L

2

T∑
t=1

η2t , (27)

Note that the choice of stepsize guarantees that

ηtµ−
Lsη2t
2

> 0

for all t. Thus, we can divide both side by
∑T

t=1(ηtµ −
Lη2

t

2). Rearrange the terms and taking the
minimum among t = 1, ..., T for ∥∇L(θ(0)t)∥2, we obtain the following expression,

min
1≤t≤T

E[∥∇L(θ(0)t)∥2] ≤ L(θ(0)0)− L(θT)∑T
t=1(ηtµ−

Lη2
t

2)
+

Kσ2 L
2

∑T
t=1 η

2
t∑T

t=1(ηtµ−
Lη2

t

2)
, (28)

By the choice of ηt, we have that ηtµ− Lη2
t

2 > ηtµ
2 , and this leads to,

min
1≤t≤T

E[∥∇L(θ(0)t)∥2] ≤ (L(θ(0)0)− L(θT))∑T
t=1 ηtµ/2

+
Kσ2 L

2

∑T
t=1 η

2
t∑T

t=1 ηtµ/2
,

≤ 2(L(θ(0)0)− L(θT))∑T
t=1 ηtµ

+
2Kσ2L

∑T
t=1 η

2
t∑T

t=1 ηtµ
,

(29)

Since θ∗ is the optimal parameter, by definition we have that,
L(θ∗) ≤ L(θT).

Substitute this in the equation, we have,

min
1≤t≤T

E[∥∇L(θ(0)t)∥2] ≤ 2(L(θ(0)0)− L(θT))∑T
t=1 ηtµ

+
2Kσ2L

∑T
t=1 η

2
t∑T

t=1 ηtµ
,

≤ 2(L(θ(0)0)− L(θ∗))∑T
t=1 ηtµ

+
2Kσ2L

∑T
t=1 η

2
t∑T

t=1 ηtµ
,

(30)

Finally, substitute in the stepsize ηt = µ

L
√
Kt

, we get that

min
0≤t≤T

E[∥∇L(θt)∥2] ≤ (
2
√
KL(L(θ0)− L(θ∗)

µ2
+
√
Kσ2 log T)

1√
T

(31)

18

Published as a conference paper at ICLR 2024

D PROOF OF PRES THEORETICAL GUARANTEE

In this appendix, we provide proofs for the theoretical guarantees of PRES, namely, Proposition 1.

Next, we present the formal version of Propostion 1. It should be noted that the notations used
here are slightly different from the notations used in the main paper. We denote that si(t) to be the
memory state of vertex i at time t when processing events sequentially (i.e., there is no intra-batch
dependency). We denote ŝi(t) to be the memory state of vertex i at time t when pending events are
processed in parallel. We denote si(t−) to be the memory state of vertex i from the last update, and
similarly for ŝi(t−).
We assume the difference between these two is given by a zero-mean Gaussian noise, i.e.,

si(t) = ŝi(t) +N (0, σ1). (32)

where N (0, σ1) is the zero-mean Gaussian noise with variance σ1. In other words, we have that

δsi = si(t)− ŝi(t) = N (0, σ1).

Furthermore, we assume that the state transition for memory state without intra-batch dependency
loss is given by the following linear state-space model with Gaussian noise,

si(t) = si(t
−) + (t− t−)N (µ, σ2) (33)

Recall that the prediction model we used is,

ṡi(t) = si(t
−) + (t− t−)δ̂si (34)

and the final state estimation is given by,

s̄i(t) = γŝi(t) + (1− γ)ṡi(t) (35)

Proposition 2. Under the set-up above, we have that

E[∥s̄i(t)− si(t)∥] ≤ E[∥ŝi(t)− si(t)∥].

Proposition 2 states that the difference between the memory state estimated with our proposed model
and the memory state without intra-batch dependency is smaller than the one with the standard
batch processing. This means that our proposed method can mitigate the effect brought by batch
processing, as it would be closer to the “true” memory state and therefore has a smaller variance as
claimed in Proposition 1. Now, we show that Proposition 2 is true.

Proof. First, substitute in
s̄i(t) = γŝi(t) + (1− γ)(ṡi(t)),

in
∥s̄i(t)− si(t)∥,

we have that

∥s̄i(t)− si(t)∥ = ∥γŝi(t) + (1− γ)(ṡi(t))− si(t)∥
= ∥γŝi(t)− si(t) + (1− γ)(ṡi(t))∥

(36)

Notice that if γ = 1, then we have

∥s̄i(t)− si(t)∥ = ∥γŝi(t)− si(t) + (1− γ)(ṡi(t))∥
= ∥ŝi(t)− si(t)∥

(37)

As γ is a learnable parameter between [0, 1], this guarantees that ∥s̄i(t) − si(t)∥ no worse than
∥ŝi(t)− si(t)∥. Next, we show that there is indeed a possible improvement. To do so, we substitute

si(t) = γsi(t) + (1− γ)si(t)

into the equation above, and we get

∥s̄i(t)− si(t)∥ = ∥γŝi(t)− [γsi(t) + (1− γ)si(t)] + (1− γ)(ṡi(t))∥ (38)

19

Published as a conference paper at ICLR 2024

Rearranging the terms, we get,

∥s̄i(t)− si(t)∥ = ∥γ(ŝi(t)− si(t−)) + (1− γ)(ṡi(t)− si(t))∥ (39)

As γ is a learnable parameter between [0, 1], as long as we show that

(ṡi(t)− si(t)) 7→ 0,

then we have,

∥s̄i(t)− si(t)∥ = ∥γ(ŝi(t)− si(t−)) + (1− γ)(ṡi(t)− si(t))∥
= ∥γ(ŝi(t)− si(t−))∥
≤ ∥ŝi(t)− si(t−)∥

(40)

To show (ṡi(t)− si(t)) 7→ 0, we substitute the modelling assumption and we have,

ṡi(t)− si(t) = si(t
−) + (t− t−)N (µ, σ2)− si(t−) + (t− t−)δ̂si

= (t− t−)[N (µ, σ2)− δ̂si]
(41)

As the number of samples increase, we have that E[δ̂si] 7→ N (µ, σ2) and therefore,

E(ṡi(t)− si(t))] 7→ 0.

Therefore, we arrive that,

E[∥s̄i(t)− si(t)∥] ≤ E[∥ŝi(t)− si(t)∥].

E EXPERIMENT DETAILS

E.1 HARDWARE AND SOFTWARE

All the experiments of this paper are conducted on the following machine

CPU: two Intel Xeon Gold 6230 2.1G, 20C/40T, 10.4GT/s, 27.5M Cache, Turbo, HT (125W)
DDR4-2933

GPU: four NVIDIA Tesla V100 SXM2 32G GPU Accelerator for NV Link

Memory: 256GB (8 x 32GB) RDIMM, 3200MT/s, Dual Rank

OS: Ubuntu 18.04LTS

E.2 DATASET

E.2.1 DESCRIPTION

We use the following public datasets provided by the authors of JODIE Kumar et al. (2019). (1)
Wikipedia dataset contains edits of Wikipedia pages by users. (2) Reddit dataset consists of users’
posts on subreddits. In these two datasets, edges are with 172-d feature vectors, and user nodes are
with dynamic labels indicating if they get banned after some events. (3) MOOC dataset consists
of actions done by students on online courses, and nodes with dynamic labels indicating if students
drop out of courses. (4) LastFM dataset consists of events that users listen to songs. MOOC and
LastFM datasets are non-attributed. The statistics of the datasets are summarized in Table 3.

E.2.2 LISCENCE

All the datasets used in this paper are from publicly available sources (public paper) without a license
attached by the authors.

E.3 HYPER-PARAMETERS

For the hyper-parameters of each experiment, we follow closely the ones used in TGL Zhou et al.
(2022). The only parameter, we control in the experiment is the temporal batch size used for training.

20

Published as a conference paper at ICLR 2024

Table 3: Detailed statistic of the datasets.
Datasets Wikipedia Reddit MOOC LastFM GDELT

vertices 9,227 10,984 7,144 1,980 16,682
edges 157,474 672,447 411,749 1,293,103 1,912,909

edge features 172 172 0 0 186

10 20 40 60 80 100
Batch Size

85

91

97

AP
(%

)

TGN
JODIE
APAN

(a) WIKI

10 20 40 60 80 100
Batch Size

85

91

97

AP
(%

)

TGN
JODIE
APAN

(b) REDDIT

10 20 40 60 80 100
Batch Size

85

91

97

AP
(%

)

TGN
JODIE
APAN

(c) MOOC

10 20 40 60 80 100
Batch Size

54

62

70

AP
(%

)

TGN
JODIE
APAN

(d) LASTFM

Figure 9: Performance of baseline methods with and without PRES under different batch sizes. The
x-axis represents the batch size, while the y-axis represents the average precision (AP). The results
are averaged over five trials.

F ADDITIONAL RESULTS

In this section, we present additional experimental results.

F.1 BATCHSIZE AND PERFORMANCE

In this subsection, we provide the additional results on the remaining dataset for the relation between
batch size and the performance of MDGNNs. The results are reported in Fig. 9. In this experiment,
we fix the default hype parameter provided by TGL and change the temporal batch size used in each
dataset.

F.2 EFFECTIVENESS OF PRES

In this subsection, we provide the additional results on the remaining dataset for the effectiveness of
PRES. The results are reported in Fig. 10, Fig. 11, Fig. 12 and Fig. 13. Similar to the last experiment,
we fix the default hype parameter provided by TGL and change the temporal batch size used in each
dataset, and compare the performance when training with and without PRES.

F.3 TRAINING EFFICIENCY IMPROVEMENT

In this subsection, we provide the additional results on the remaining dataset for the effectiveness
of PRES. The results are reported in Fig. 14. Similar to the last experiment, we fix the default hype
parameter provided by TGL as well as the batch size and compare the statistical efficiency when
training with and without PRES.

21

Published as a conference paper at ICLR 2024

1 5 10 15 20
Batch Size (×100)

90

94

98

AP
(%

)
TGN
TGN-PRES

(a) TGN

1 5 10 15 20
Batch Size (×100)

88

93

98

AP
(%

)

APAN
APAN-PRES

(b) APAN

1 5 10 15 20
Batch Size (×100)

87

91

95
AP

(%
)

JODIE
JODIE-PRES

(c) JODIE

Figure 10: Performance of baseline methods with and without PRES under different batch sizes on
WIKI dataset. The x-axis represents the batch size (multiplied by 100), while the y-axis represents
the average precision (AP). The results are averaged over five trials with β = 0.1 for PRES.

F.4 ADDITIONAL EXPERIMENT TO SHOW COMPARISON WITH OTHER EFFICIENT METHODS
FROM OTHER DOMAINS

In this section, we provide additional experimental results to illustrate the relation between relative
speedup and the affected performance from the other domains as a comparison.

The studies of efficient method (even at the cost of suboptimal settings for accuracy) is exemplified
(but not limited) to the following major lines of research:

1. use of staleness: which sacrifices the “freshness of information” in the training process to
accelerate computation or communication in training

2. use of quantization in both training and inference: which sacrifice the precision of the
weight of the model to accelerate computation

3. simpler model architecture: use simple estimation method to accelerate the efficiency of
the model

We have sampled the following methods from each category to create a comparison between the gain
in efficiency and the effect on accuracy: 1) staleness: PipeGCN Wan et al. (2022), SAPipe Chen et al.
(2022), Sancus Peng et al. (2022), 2) quantization: AdaQP Wan et al. (2023), 3)simpler architecture:
FastGCN Chen et al. (2018).

The values for each method are obtained in the following ways:

• For SAPipe and FastGCN, the values are estimated or taken from the papers. The value
of SAPipe is taken from Chen et al. (2022). The underlying tasks for these values are

22

Published as a conference paper at ICLR 2024

1 5 10 15 20
Batch Size (×100)

90

94

98

AP
(%

)
TGN
TGN-PRES

(a) TGN

1 5 10 15 20
Batch Size (×100)

90

94

98

AP
(%

)

APAN
APAN-PRES

(b) APAN

1 5 10 15 20
Batch Size (×100)

90

94

98
AP

(%
)

APAN
APAN-PRES

(c) JODIE

Figure 11: Performance of baseline methods with and without PRES under different batch sizes
on REDDIT dataset. The x-axis represents the batch size (multiplied by 100), while the y-axis
represents the average precision (AP). The results are averaged over five trials with β = 0.1 for
PRES.

image classification tasks and language translation tasks. The value of FastGCN is taken
from Chen et al. (2018) and the underlying task is node classification.

• For Sancus, AdaQP, and PipeGCN, the values are obtained from running the open-source
code:

1. Sancus1: node classification with GCN the public OGB-product dataset
2. AdaQP2: node classification with GCN on the public OGB-product dataset
3. PipeGCN3: node classification with GCN on the public OGB-product dataset

• PRES(our) are the average values computed from Table 1.

F.5 ADDITIONAL EXPERIMENT ON EXTENDED TRAINING SESSION WITH TGN ON WIKI
DATASET

F.6 ADDITIONAL EXPERIMENT ON ABLATION STUDY AND GPU MEMORY UITLIZATION

G RELATED WORK

In this appendix, we provide a more comprehensive review and discussion of related works.

1https://github.com/chenzhao/light-dist-gnn
2https://github.com/raywan-110/AdaQP
3https://github.com/GATECH-EIC/PipeGCN/tree/main

23

Published as a conference paper at ICLR 2024

1 5 10 15 20
Batch Size (×100)

90

94

98

AP
(%

)
TGN
TGN-PRES

(a) TGN

1 5 10 15 20
Batch Size (×100)

90

94

98

AP
(%

)

APAN
APAN-PRES

(b) APAN

1 5 10 15 20
Batch Size (×100)

90

94

98
AP

(%
)

JODIE
JODIE-PRES

(c) JODIE

Figure 12: Performance of baseline methods with and without PRES under different batch sizes on
MOOC dataset. The x-axis represents the batch size (multiplied by 100), while the y-axis represents
the average precision (AP). The results are averaged over five trials with β = 0.1 for PRES.

G.1 DYNAMIC GRAPH REPRESENTATION LEARNING

Dynamic graph representation learning has received significant attention in recent years, driven by
the need to model and analyze evolving relationships and temporal dependencies within dynamic
graphs. Comprehensive surveys Skarding et al. (2021); Kazemi et al. (2020) offer detailed insights
into the existing works. Dynamic Graph Neural Networks (DGNNs), as the dynamic counterparts of
GNNs, have emerged as promising neural models for dynamic graph representation learning (Sankar
et al., 2020; Poursafaei et al., 2022; Xu et al., 2020; Rossi et al., 2021; Wang et al., 2021; Kumar
et al., 2019; Su et al., 2024; Trivedi et al., 2019; Zhang et al., 2023; Pareja et al., 2020; Trivedi et al.,
2017). Among DGNNs, MDGNNs such as (Rossi et al., 2021; Wang et al., 2021; Kumar et al.,
2019; Trivedi et al., 2019; Zhang et al., 2023) have demonstrated superior inference performance
compared to their memory-less counterparts. Most existing works on MDGNNs primarily focus
on designing tailored architectures for specific problems or settings. To the best of our knowledge,
only a few studies have investigated the efficiency of MDGNNs. For example, Wang & Mendis
(2023) leverages computation redundancies to accelerate the inference performance of the temporal
attention mechanism and the time encoder. Wang et al. (2021) introduces a mailbox that stores
neighbour states for each node, accelerating local aggregation operations during online inference.
Zhou et al. (2022); Sheng et al. (2024) provides a system framework for optimizing inter-batch de-
pendency and GPU-CPU communication during MDGNN training. Zhang et al. (2023) proposes a
restarter module that focuses on restarting the model at any time with warm re-initialized memory.
EDGE (Chen et al., 2021) focuses on accelerating event embedding computation by intentionally
neglecting some updates (i.e., using staleness). Therefore, EDGE’s focus and objectives differ from
ours. DistTGL (Zhou et al., 2023) focuses on the dependency arising from distributed training and
addresses efficient scaling concerning the number of GPUs. While these works have addressed the

24

Published as a conference paper at ICLR 2024

1 5 10 15 20
Batch Size (×100)

60

64

68

72

76

A
P

(%
)

TGN
TGN-PRES

(a) TGN

1 5 10 15 20
Batch Size (×100)

55

59

63

67

71

A
P

(%
)

APAN
APAN-PRES

(b) APAN

1 5 10 15 20
Batch Size (×100)

60

64

68

72

76

A
P

(%
)

JODIE
JODIE-PRES

(c) JODIE

Figure 13: Performance of baseline methods with and without PRES under different batch sizes
on LASTFM dataset. The x-axis represents the batch size (multiplied by 100), while the y-axis
represents the average precision (AP). The results are averaged over five trials with β = 0.1 for
PRES.

0 100 200
Iteration

82

90

98

AP
(%

)

APAN
APAN-PRES

(a) APAN

0 100 200
Iteration

82

90

98

AP
(%

)

JODIE
JODIE-PRES

(b) JODIE

Figure 14: Statistical efficiency of baseline method w./w.o PERS. x-axis is the training iteration and
y-axis is the average precision. β = 0.1 is used in PRES.

efficiency of MDGNNs in some aspects, none of them provide theoretical insights or directly ad-
dress the intra-batch dependency problem. In contrast, our study focuses on enlarging the temporal
batch size to enable better data parallelism in MDGNN training. We adopt a more theoretical ap-
proach, and our proposed framework can be used in conjunction with these previous works to further
enhance training efficiency. It should be noted that there exists another line of research concerning
updating the GNN models on dynamic/expanding graphs, referred to as graph continual learning (Su
et al., 2023). The objective of this line of research is orthogonal to dynamic representation learning.

25

Published as a conference paper at ICLR 2024

Figure 15: The visualization of the relative speed and affected accuracy of methods from different
domains. Note that the value of the y-axis is reversed. The points with higher positions in the y-axis
have a smaller accuracy drop. In addition, these methods are from different domains, corresponding
to different underlying tasks and datasets. This figure is only a rough comparison, as rigorously they
are not directly comparable because of different tasks and datasets. However, this figure demon-
strates that the accuracy-speed trade-off of PRES(our) is reasonable

(a) Wiki (b) Mooc

Figure 16: Extended training sessions with TGN on WIKI and MOOC Datasets. Figure 16(a)
presents the results of the TGN model with 500 epochs on the WIKI dataset, and Figure 16(b)
presents the results of the TGN model with 500 epochs on the MOOC dataset. Fig. 16 (a) illus-
trates that with significantly extended training sessions, many of the minor accuracy discrepancies
observed in datasets like Wiki between TGN and TGN-PRES can be alleviated or attributed to
fluctuations arising from distinct fitting processes. Additionally, Fig. 16 (b) demonstrates that the
discrepancy gap on certain datasets, such as MOOC, gradually diminishes as training progresses.

G.2 MINI-BATCH IN STOCHASTIC GRADIENT DESCENT (SGD)

Another line of research investigates the effect of mini-batch size in SGD training (Goyal et al.,
2017; Qian & Klabjan, 2020; Lin et al., 2018; Akiba et al., 2017; Gower et al., 2019; Woodworth
et al., 2020; Bottou et al., 2018; Schmidt et al., 2017). Research on the relation between mini-
batch size and SGD has been an active area of investigation in the field of deep learning. The
choice of mini-batch size plays a crucial role in balancing the computational efficiency, convergence
speed, and generalization performance of neural networks. Larger mini-batches tend to provide more
accurate gradient estimates due to increased sample size, resulting in faster convergence. However,

26

Published as a conference paper at ICLR 2024

0 100 200
Iteration

82

90

98

A
P

(%
)

TGN
TGN-PRES-S
TGN-PRES-V
TGN-PRES

Figure 17: Ablation study of the PRES framework. TGN represents the standard implementation de-
void of any PRES component. TGN-PRES-S is TGN augmented with memory coherence smoothing
only. TGN-PRES-V is TGN implemented solely with the prediction-correction scheme. TGN-PRES
is TGN combined with both memory coherence smoothing and the prediction-correction scheme.
The results validate the distinct operational nature of the two proposed techniques. Memory co-
herence smoothing enhances the convergence rate of the learning process, while the prediction-
correction scheme attenuates the variance introduced by a large temporal batch size. The experiment
was conducted on the WIKI dataset with a batch size of 1000 and a β = 0.1 for the PRES scheme.

0.01 0.05 0.1 0.5 1
beta value

95

97

99

A
cc

ur
ac

y
(%

)

24

36

48
Ite

ra
tio

ns

Figure 18: Ablation study of the β value in PRES framework. Fig. 18 illustrates that increasing β
leads to faster convergence but can have a negative effect on the accuracy. Because of this trade-
off, β can not be too large nor too small. The plot above motivates our choice of β = 0.1 in the
experiments.

27

Published as a conference paper at ICLR 2024

Figure 19: This illustration presents the GPU memory utilization of baseline methods, both with
and without the PRES implementation, under varying batch sizes on the WIKI dataset. The x-axis
denotes the batch size, while the y-axis depicts the GPU memory usage. The findings reveal that the
additional GPU memory required by PRES is not influenced by the batch size, indicating its scala-
bility with increasing batch sizes. Moreover, the red line demonstrates significant underutilization
of the GPU memory in training MDGNNs.

they also require more memory and computational resources. On the other hand, smaller mini-
batches can introduce more noise into the gradient estimates but may provide better generalization
by exploring a more diverse set of examples. Researchers have explored the impact of mini-batch
size on convergence properties, optimization dynamics, and generalization performance, leading
to various recommendations and insights. However, it is important to differentiate the concepts
of mini-batch in SGD and temporal batch in MDGNNs, as they serve distinct purposes and bring
different challenges. The goal of mini-batches in SGD is to obtain a good estimation of the full-batch
gradient by downsampling the entire dataset into mini-batches. On the other hand, the temporal
batch specifically refers to partitioning consecutive graph data to ensure the chronological processing
of events. The temporal batch problem studied in this paper aims to increase the temporal batch size
to enhance data parallelism in MDGNN training.

G.3 SAMPLING IN GNNS

The full-batch training of a typical GCN is employed in Kipf & Welling (2017) which necessities
keeping the whole graph data and intermediate nodes’ representations in the memory. This is the key
bottleneck that hinders the scalability of full-batch GCN training. To overcome this issues, research
on vertices and neighbor sampling in graph neural networks (GNNs) has been a topic of significant
interest in the field of graph representation learning (Chen et al., 2017; Ying et al., 2018; Huang et al.,
2018; Goyal et al., 2017; Qian & Klabjan, 2020; Lin et al., 2018; Akiba et al., 2017; Gandhi & Iyer,
2021; Hamilton et al., 2017; Chen et al., 2018; Zou et al., 2019). GNNs operate on graph-structured
data and aim to capture the relational information among nodes. One crucial aspect is selecting
which nodes to consider during the learning process. Vertices sampling refers to the selection of
a subset of nodes from the graph for computational efficiency, as processing the entire graph can
be computationally expensive for large-scale networks. Different sampling strategies have been
explored, including random sampling, stratified sampling based on node properties or degrees, and
importance sampling based on node importance measures. On the other hand, neighbour sampling
focuses on determining which neighbours of a node to consider during the aggregation step in GNNs.

28

Published as a conference paper at ICLR 2024

It addresses the challenge of scalability by only considering a subset of a node’s neighbours in
each layer, reducing the computational complexity. Various neighbour sampling techniques have
been proposed, such as uniform sampling, adaptive sampling based on node degrees, or sampling
proportional to node attention scores. Researchers have investigated the effects of different sampling
strategies on the expressiveness, efficiency, and generalization capabilities of GNNs, aiming to strike
a balance between computational efficiency and capturing important graph structures. Essentially,
the problem studied in GNN sampling is similar to the study of mini-batch in SGD, which is to
efficiently and effectively estimate the gradient with sampling. Therefore, it is also orthogonal to the
problem we studied here.

29

	INTRODUCTION
	RELATED WORK
	PRELIMINARY AND BACKGROUND
	temporal discontinuity and Pending Events.

	THEORETICAL ANALYSIS OF MDGNN TRAINING
	PREdict-to-Smooth (PRES) Method
	Iterative Prediction-Correction Scheme
	Memory Coherence Smoothing
	Theoretical Discussion of PRES

	EXPERIMENT
	Experimental Results

	CONCLUSION
	Algortihm and Further Discussion
	Training Procedure of MDGNNs
	PRES

	Proof of Theorem 1
	APPENDIX:PROOF OF THEOREM 2
	PROOF OF PRES THEORETICAL GUARANTEE
	Experiment Details
	Hardware and Software
	Dataset
	Description
	Liscence

	Hyper-parameters

	Additional Results
	Batchsize and Performance
	Effectiveness of PRES
	Training Efficiency Improvement
	Additional Experiment to Show Comparison with Other Efficient Methods from Other Domains
	Additional Experiment on Extended Training Session with TGN on Wiki Dataset
	Additional Experiment on Ablation Study and GPU Memory Uitlization

	RELATED WORK
	Dynamic Graph Representation Learning
	Mini-Batch in Stochastic Gradient Descent (SGD)
	Sampling in GNNs

