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SUPPLEMENTARY MATERIAL OF REINFORCEMENT
LEARNING WITH VERIFIABLE YET NOISY REWARDS
UNDER IMPERFECT VERIFIERS

Anonymous authors
Paper under double-blind review

LLM USAGE DISCLOSURE

Large Language Models were used solely for English language polishing (grammar and minor
wording); all technical contributions—including algorithms, proofs, code, experiments, and anal-
yses—were conceived and validated by the authors.

A MORE EXPERIMENTAL RESULTS

In this section, we also report the average Pass@8 results on Qwen2.5-Math-7B to investigate
whether our algorithms can still achieve better performance under more relaxed metrics with up-
scale models. The experiment setups align that of the main paper.
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Figure 1: Synthetic-Noise Results on Qwen2.5-Math-7B. Base: baseline without RL; Oracle: Train-
ing with clean rewards; Noise: Training with noisy verifier rewards; PGBC: Training with noise
under backward correction; PGFC: Training with noise under forward correction.

Table 1: Real-world noise with appeals on negative samples and forward correction on Qwen2.5-
Math-7B. Rule: rule-based rewards; LV: direct LLM-judge rewards; Adds on: rule-based reward
plus LLM appeals on negative samples (no gradient correction); FCO: forward correction using
online ρ̂1.

Dataset AIME2024 AIME2025 AMC2023 Math500 Minerva MATH Olympiad Bench Average

Base 36.2 23.3 81.9 66.6 11.8 33.9 42.3
Oracle 50.0 28.7 83.4 82.8 29.0 45.8 53.3
LV 41.7 22.1 81.9 69.0 13.2 39.4 44.6
Adds on 47.1 30.4 84.4 80.8 23.5 45.6 52.0
PGFC (Ours) 54.6 30.4 82.8 83.2 29.0 47.6 54.6

As shown in Figure 1 and Table 1, the conclusion in the main paper remains the same: our method
can still obtain the best results with both synthetic and real-world noise.
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B IMPLEMENTATION DETAILS

We describe how to integrate Algorithm 1 (backward, unbiased reward de-biasing) and Algorithm 2
(forward, gradient-scaled) into Group Relative Policy Optimization (GRPO) under both outcome and
process supervision. GRPO samples, for each prompt x, a group of K responses {yi}Ki=1 from the
behavior policy, computes a group-normalized advantage for each sample (or step), and then applies
a PPO-style clipped surrogate with a separate KL regularizer to a reference policy; no value network
is used. Our modifications are confined to the advantage-construction stage, leaving ratio clipping
and KL loss unchanged (details of GRPO in (Shao et al., 2024) and open-source implementations).

Notation (shared). Let πθ be the current policy and πold the behavior policy. Define token-level
ratios ri,t =

πθ(yi,t|x,yi,<t)
πold(yi,t|x,yi,<t)

. GRPO’s PPO-style surrogate at token t uses an advantage Ai,t:

Lgrpo(θ) =
1

K

K∑
i=1

1

|yi|

|yi|∑
t=1

min
(
ri,t Ai,t, clip(ri,t, 1±ε)Ai,t

)
− βKL(πθ∥πref),

where the KL term is added to the loss rather than folded into the reward. Our corrections only
change how Ai,t is formed.

OUTCOME SUPERVISION (ONE SCALAR REWARD PER RESPONSE)

For each i, we observe a binary verifier reward r̃i ∈ {0, 1}.
Algo 1 (Backward) in GRPO. First construct an unbiased per-sample reward

r̂i =
r̃i − ρ̂0

1− ρ̂0 − ρ̂1
.

Compute group statistics on {r̂i}Ki=1:

r̄ =
1

K

K∑
i=1

r̂i, s =

√√√√ 1
K

K∑
i=1

(r̂i − r̄)2 .

Define the group-normalized advantage constant across tokens of the same response,

a(back)
i =

r̂i − r̄

s+ ε
, Ai,t ≡ a(back)

i , ∀t.

This is a drop-in replacement for the usual GRPO outcome-advantage, with the sole change being
that the group mean/variance are computed over de-noised rewards r̂i rather than raw r̃i.

Algo 2 (Forward) in GRPO. First form the standard GRPO outcome-advantage from the observed
rewards:

ai =
r̃i − r̃

std({r̃j}) + ε
, Ai,t ≡ ai, ∀t.

Then apply the forward weight determined only by ρ̂1:

wi =

{
ρ̂1 − 1, r̃i = 0,

ρ̂1, r̃i = 1,
Ai,t ← wi ·Ai,t .

Intuitively, the group-normalization is a positive scaling of each sample’s (token-shared) factor, so
multiplying by wi implements the same gradient scaling as in REINFORCE, but expressed at the
advantage level that GRPO’s surrogate consumes. The rest of GRPO (ratio clipping, KL loss) is
unchanged.

PROCESS SUPERVISION (STEP-WISE REWARDS)

Suppose each response yi has step indices indexi(1) < · · · < indexi(Ki) with step-level observed
rewards r̃

(j)
i attached at those indices. GRPO forms step-normalized rewards and turns them into

token advantages by backward accumulation over steps.

2
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Algo 1 (Backward) in GRPO-Process. De-noise each step reward:

r̂
(j)
i =

r̃
(j)
i − ρ̂0

1− ρ̂0 − ρ̂1
.

Normalize across the group and steps in the current batch following GRPO’s process recipe:

r̃
(j)
i =

r̂
(j)
i −mean({r̂(m)

ℓ })
std({r̂(m)

ℓ }) + ε
.

Accumulate into token-level advantages (for all tokens t at or before the j-th step boundary):

Ai,t =
∑

indexi(j)≥t

r̃
(j)
i .

This mirrors the standard GRPO-Process pipeline, but with r̃ replaced by r̂.

Algo 2 (Forward) in GRPO-Process. First follow the standard GRPO-Process normalization to
obtain r̃

(j)
i from the observed r̃

(j)
i , then accumulate the token advantages

Ai,t =
∑

indexi(j)≥t

r̃
(j)
i ,

and finally apply forward weights. If the verifier outputs are binary per step, use

w
(j)
i =

{
ρ̂1 − 1, r̃

(j)
i = 0,

ρ̂1, r̃
(j)
i = 1,

Ai,t ←
∑

indexi(j)≥t

(
w

(j)
i r̃

(j)
i

)
.

If only a final binary reward is available, use a single sample-level weight wi for all steps of yi (as
in outcome supervision) after the standard process accumulation.

Practical notes. (i) Where to hook. Implement the corrections exactly at the interface where
GRPO converts rewards to (group-)normalized advantages; no change to sampling, clipping, opti-
mizer, or KL regularization. (ii) Stability. Backward correction can inflate variance when 1−ρ̂0−ρ̂1
is small; GRPO’s group normalization mitigates scale but not variance—use ε and EMA’d statistics
as in practice. (iii) Forward variant. Because group normalization is a positive rescaling, post-
normalization multiplication by w preserves the intended gradient-direction property from the RE-
INFORCE analysis while keeping the rest of GRPO intact. Open-source GRPO implementations
follow this decomposition (reward→advantage, then PPO-style surrogate + KL loss).

C PROOFS AND DERIVATIONS

C.1 PROOF OF PROPOSITION 1

Proof. We compute the expectation of the noisy reward R̃ conditioned on the clean reward R∗,
which is a binary variable. By the definition of expectation:

E[R̃] = 1 · P(R̃ = 1 | R∗) + 0 · P(R̃ = 0 | R∗)

= P(R̃ = 1 | R∗).

We can expand this using the law of total probability, conditioning on the value of R∗ ∈ {0, 1}:

E[R̃ | R∗] = R∗ · P(R̃ = 1 | R∗ = 1) + (1−R∗) · P(R̃ = 1 | R∗ = 0).

From Definition 1, we have P(R̃ = 1 | R∗ = 0) = ρ0 and P(R̃ = 0 | R∗ = 1) = ρ1, which implies
P(R̃ = 1 | R∗ = 1) = 1− ρ1. Substituting these values:

E[R̃] = R∗(1− ρ1) + (1−R∗)ρ0

= R∗ − ρ1R
∗ + ρ0 − ρ0R

∗

= (1− ρ0 − ρ1)R
∗ + ρ0.

This completes the proof.

3
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C.2 PROOF OF THEOREM 1

Proof. From proposition 1, we have:

E[R̃] = (1− ρ0 − ρ1)R
∗ + ρ0 .

Taking the full expectation of R̂:

E[R̂] =
E[R̃]− ρ0
1− ρ0 − ρ1

=
((1− ρ0 − ρ1)R

∗ + ρ0)− ρ0
1− ρ0 − ρ1

= R∗ ,

showing unbiasedness.

C.3 PROOF OF PROPOSITION 2

Proof. The proposition states two claims about the conditional expectation of the forward weights.
The weights are defined as:

wR̃ =

{
w0 = ρ1 − 1 if R̃ = 0,

w1 = ρ1 if R̃ = 1.

The noise model provides the conditional probabilities:

Pr(R̃ = 0 | R∗ = 1) = ρ1, Pr(R̃ = 1 | R∗ = 1) = 1− ρ1

Pr(R̃ = 1 | R∗ = 0) = ρ0, Pr(R̃ = 0 | R∗ = 0) = 1− ρ0

Part 1: Proof of E[wR̃ | R∗ = 1] = 0 We compute the expectation of wR̃ conditioned on the true
reward being positive (R∗ = 1):

E[wR̃ | R
∗ = 1] =

∑
k∈{0,1}

wk · Pr(R̃ = k | R∗ = 1)

= w0 · Pr(R̃ = 0 | R∗ = 1) + w1 · Pr(R̃ = 1 | R∗ = 1)

= (ρ1 − 1) · (ρ1) + (ρ1) · (1− ρ1)

= (ρ21 − ρ1) + (ρ1 − ρ21)

= 0.

Part 2: Proof of E[wR̃ | R∗ = 0] = −(1 − ρ0 − ρ1) Next, we compute the expectation of wR̃
conditioned on the true reward being negative (R∗ = 0):

E[wR̃ | R
∗ = 0] =

∑
k∈{0,1}

wk · Pr(R̃ = k | R∗ = 0)

= w0 · Pr(R̃ = 0 | R∗ = 0) + w1 · Pr(R̃ = 1 | R∗ = 0)

= (ρ1 − 1) · (1− ρ0) + (ρ1) · (ρ0)
= (ρ1 − ρ0ρ1 − 1 + ρ0) + ρ0ρ1

= ρ1 + ρ0 − 1

= −(1− ρ0 − ρ1).

This proves both claims of the proposition.

C.4 PROOF OF THEOREM 2

Proof. We want to show that E[∆θ] = (1 − ρ0 − ρ1)∇θJ(θ), where ∆θ = 1
M

∑M
t=1 ht and

ht = wR̃Gt. By linearity of expectation and assuming i.i.d. samples, it suffices to show this for a
single sample’s contribution, E[ht].

We use the law of total expectation, conditioning on the latent true reward R∗ ∈ {0, 1}:
E[ht] = E[wR̃Gt] = E [E[wR̃Gt | R∗]]

= Pr(R∗ = 1)E[wR̃Gt | R∗ = 1] + Pr(R∗ = 0)E[wR̃Gt | R∗ = 0].

4
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The noise process generating R̃ is independent of the policy’s action generation process (which
produces Gt), conditional on the true reward R∗. Thus, we can separate the expectations:

E[wR̃Gt | R∗] = E[wR̃ | R
∗] · E[Gt | R∗].

Using the results from Proposition 2:

• E[wR̃ | R∗ = 1] = 0.

• E[wR̃ | R∗ = 0] = −(1− ρ0 − ρ1).

Substituting these back into the main expectation formula:

E[wR̃Gt] = Pr(R∗ = 1) · (0) · E[Gt | R∗ = 1] + Pr(R∗ = 0) · (−(1− ρ0 − ρ1)) · E[Gt | R∗ = 0]

= −(1− ρ0 − ρ1) · Pr(R∗ = 0)E[Gt | R∗ = 0]

= −(1− ρ0 − ρ1) · E[1{R∗=0}Gt],

where 1{·} is the indicator function. From two fundamental properties of the score function:

1. The unconditional expectation is zero: E[Gt] = 0 (Williams, 1992; Sutton et al., 1999).

2. The clean policy gradient is ∇θJ(θ) = E[R∗Gt].

From property 1, we have E[Gt] = E[(1{R∗=1} + 1{R∗=0})Gt] = E[R∗Gt] + E[1{R∗=0}Gt] = 0.
This implies that E[1{R∗=0}Gt] = −E[R∗Gt] = −∇θJ(θ).

Finally, we substitute this back into our expression for the expected update direction:

E[ht] = E[wR̃Gt]

= −(1− ρ0 − ρ1) · E[1{R∗=0}Gt]

= −(1− ρ0 − ρ1) · (−∇θJ(θ))

= (1− ρ0 − ρ1)∇θJ(θ).

Therefore, the expectation of the full update is E[∆θ] = 1
M

∑
E[ht] = (1− ρ0 − ρ1)∇θJ(θ). This

completes the proof.

D PROMPT TEMPLATES AND TRAINING/EVALUATION DETAILS

This section records the exact prompt formats and the concrete hyperparameters we used for all ex-
periments in Reinforcement Learning with Verifiable yet Noisy Rewards under Unreliable Verifiers.
We mirror the level of detail used in recent RLVR appendices and report settings sufficient for full
reproducibility from our released code.

D.1 PROMPT TEMPLATES

Training (generation) prompt. For each math problem x (a plain-text question), the user message
is built by concatenating the raw question with a short instruction that elicits chain-of-thought and
enforces a verifiable answer format.

<user>
{QUESTION}

Let’s think step by step and enclose the reasoning process within <
think> and </think> tags.

The final result in the answer MUST BE within \boxed{}.
</user>

During data preprocessing, we write chat-style JSON with a single user turn as shown above and
attach the rule-based ground-truth answer for reward checking.

5
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Evaluation (validation/test) prompt. We use the same prompt template as training for validation
and test-time generation so that the rule-based verifier can parse the boxed answer consistently.

Verifier I/O. The rule-based checker operates on the model’s final string and extracts the last
\boxed{...} expression; it then applies numeric/rational parsing and equality tests to pro-
duce a binary reward R̃ ∈ {0, 1}. When the LLM verifier is enabled, it receives the pair
(problem,model solution) and returns a binary correctness decision used only to estimate the false
negative rate ρ1 over a sliding window. The LLM verifier does not replace the rule-based reward.

D.2 DATA PREPROCESSING

We load the preview split of the math-reasoning corpus and map each example to a chat-style record
as above, keeping the reference (ground-truth) answer for programmatic checking.

D.3 TRAINING CONFIGURATION

Unless otherwise stated, all runs use GRPO (outcome supervision) with the following constants.

Training (GRPO)

Train batch size 128
Rollouts per question (group size) 8
Max prompt length (tokens) 512
Max response length (tokens) 3072
Sampling temperature (rollouts) 1.0
Advantage estimator Group-normalized (GRPO)
KL regularization Enabled
KL coefficient β 0.001
Entropy coefficient 0.0
Optimizer AdamW
Learning rate 3e-6
Total epochs 1

Table 2: Core training settings.

Model/backbone. We load the base model from local cache (HuggingFace layout), enable FSDP2
for actor/ref, and use shared-memory weights with remove-padding for efficient vLLM rollouts. The
KL is computed w.r.t. a frozen reference initialized from the same base.

D.4 DATASETS

Training.

• DeepScaleR (PraMamba, 2025): the math-reasoning corpus used for RLVR rollouts and
policy updates.

Evaluation. We evaluate with the standard official/problem releases for each benchmark and apply
the same rule-based programmatic checking protocol throughout.

• MATH500 (Lightman et al., 2023): a verifiable subset of math reasoning problems for
reliable evaluation.

• AIME 2024 (HuggingFaceH4, 2024): the 2024 American Invitational Mathematics Exam-
ination set.

• AIME 2025 (OpenCompass, 2025): the 2025 AIME set.
• AMC 2023 (math-ai, 2025): problems from the 2023 American Mathematics Competi-

tions.
• Minerva Math (Lewkowycz et al., 2022): the Minerva math evaluation suite.
• OlympiadBench (He et al., 2024): olympiad-level mathematics benchmark.

6
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E FALSE POSITIVE (FP) AND FALSE NEGATIVE (FN) EXAMPLES

We provide FP and FN examples using Qwen2.5-Math-7B base model on MATH 500.

FP
{

"idx": 16,
"question": "Compute: $1-2+3-4+5- \\dots +99-100$.",
"model_prediction": "{}",
"model_response": "Compute: $1+2-3-4+5+6-7-8+ \\dots +97+98-99-100$
. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}.
\\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\",
"ground_truth": "-50",
"rule_based": false,
"llm_verifier": true,
"llm_verifier_score": 1.0,
"llm_verifier_raw_value": "1.0",
"math_verify": false,
"math_verify_score": 0.0

},

FN
{

"idx": 92,
"question": "A pirate searches seven islands for buried treasure.
If each island has a $\\frac{1}{5}$ chance of having treasure, what
is the probability that exactly 4 of the islands have treasure?",
"answer": "\\frac{448}{15625}",
"model_prediction": "0.028672",
"model_response": "To solve this problem, we can use the binomial
probability formula. The probability of having exactly $k$ successes
in $n$ independent Bernoulli trials (each with success probability

$p$) is given by:\n\n\\[ P(X = k) = \\binom{n}{k} pˆk (1-p)ˆ{n-k}
\\]\n\nHere, $n = 7$ (the number of islands), $k = 4$ (the number of
islands with treasure), and $p = \\frac{1}{5}$ (the probability

that a single island has treasure).\n\nThe binomial coefficient $\\
binom{n}{k}$ is the number of ways to choose $k$ successes out of
$n$ trials, and it is calculated as:\n\n\\[ \\binom{n}{k} = \\frac{n
!}{k!(n-k)!} \\]\n\nSo, the probability that exactly 4 of the 7
islands have treasure is:\n\n\\[ P(X = 4) = \\binom{7}{4} \\left(\\
frac{1}{5}\\right)ˆ4 \\left(\\frac{4}{5}\\right)ˆ{3} \\]\n\nLet’s
calculate this using Python.\n‘‘‘python\nimport math\n\n# Number of
islands\nn = 7\n# Number of islands with treasure\nk = 4\n#
Probability of a single island having treasure\np = 1/5\n\n#
Binomial coefficient\nbinom_coeff = math.comb(n, k)\n\n# Probability
calculation\nprobability = binom_coeff * (p**k) * ((1-p)**(n-k))\

nprint(probability)\n‘‘‘\n‘‘‘output\n0.02867200000000001\n‘‘‘\nThe
probability that exactly 4 of the 7 islands have treasure is \\(\\
boxed{0.028672}\\).",
"ground_truth": "\\frac{448}{15625}",
"rule_based": false,

7
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"llm_verifier": false,
"llm_verifier_score": 0.0,
"llm_verifier_raw_value": "0.0",
"math_verify": true,
"math_verify_score": 1.0

}
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