
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY MATERIAL OF REINFORCEMENT
LEARNING WITH VERIFIABLE YET NOISY REWARDS
UNDER IMPERFECT VERIFIERS

Anonymous authors
Paper under double-blind review

LLM USAGE DISCLOSURE

Large Language Models were used solely for English language polishing (grammar and minor
wording); all technical contributions—including algorithms, proofs, code, experiments, and anal-
yses—were conceived and validated by the authors.

A MORE EXPERIMENTAL RESULTS

In this section, we also report the average Pass@8 results on Qwen2.5-Math-7B to investigate
whether our algorithms can still achieve better performance under more relaxed metrics with up-
scale models. The experiment setups align that of the main paper.

AIME2024

AIME2025

AMC2023

Math500

Minerva MATH

Olympiad Bench
Average

0
10
20
30
40
50
60
70
80
90

Sc
or

e
(%

)

Base
Oracle
Noise

PGBC (Ours)
PGFC (Ours)

Figure 1: Synthetic-Noise Results on Qwen2.5-Math-7B. Base: baseline without RL; Oracle: Train-
ing with clean rewards; Noise: Training with noisy verifier rewards; PGBC: Training with noise
under backward correction; PGFC: Training with noise under forward correction.

Table 1: Real-world noise with appeals on negative samples and forward correction on Qwen2.5-
Math-7B. Rule: rule-based rewards; LV: direct LLM-judge rewards; Adds on: rule-based reward
plus LLM appeals on negative samples (no gradient correction); FCO: forward correction using
online ρ̂1.

Dataset AIME2024 AIME2025 AMC2023 Math500 Minerva MATH Olympiad Bench Average

Base 36.2 23.3 81.9 66.6 11.8 33.9 42.3
Oracle 50.0 28.7 83.4 82.8 29.0 45.8 53.3
LV 41.7 22.1 81.9 69.0 13.2 39.4 44.6
Adds on 47.1 30.4 84.4 80.8 23.5 45.6 52.0
PGFC (Ours) 54.6 30.4 82.8 83.2 29.0 47.6 54.6

As shown in Figure 1 and Table 1, the conclusion in the main paper remains the same: our method
can still obtain the best results with both synthetic and real-world noise.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

B IMPLEMENTATION DETAILS

We describe how to integrate Algorithm 1 (backward, unbiased reward de-biasing) and Algorithm 2
(forward, gradient-scaled) into Group Relative Policy Optimization (GRPO) under both outcome and
process supervision. GRPO samples, for each prompt x, a group of K responses {yi}Ki=1 from the
behavior policy, computes a group-normalized advantage for each sample (or step), and then applies
a PPO-style clipped surrogate with a separate KL regularizer to a reference policy; no value network
is used. Our modifications are confined to the advantage-construction stage, leaving ratio clipping
and KL loss unchanged (details of GRPO in (Shao et al., 2024) and open-source implementations).

Notation (shared). Let πθ be the current policy and πold the behavior policy. Define token-level
ratios ri,t =

πθ(yi,t|x,yi,<t)
πold(yi,t|x,yi,<t)

. GRPO’s PPO-style surrogate at token t uses an advantage Ai,t:

Lgrpo(θ) =
1

K

K∑
i=1

1

|yi|

|yi|∑
t=1

min
(
ri,t Ai,t, clip(ri,t, 1±ε)Ai,t

)
− βKL(πθ∥πref),

where the KL term is added to the loss rather than folded into the reward. Our corrections only
change how Ai,t is formed.

OUTCOME SUPERVISION (ONE SCALAR REWARD PER RESPONSE)

For each i, we observe a binary verifier reward r̃i ∈ {0, 1}.
Algo 1 (Backward) in GRPO. First construct an unbiased per-sample reward

r̂i =
r̃i − ρ̂0

1− ρ̂0 − ρ̂1
.

Compute group statistics on {r̂i}Ki=1:

r̄ =
1

K

K∑
i=1

r̂i, s =

√√√√ 1
K

K∑
i=1

(r̂i − r̄)2 .

Define the group-normalized advantage constant across tokens of the same response,

a(back)
i =

r̂i − r̄

s+ ε
, Ai,t ≡ a(back)

i , ∀t.

This is a drop-in replacement for the usual GRPO outcome-advantage, with the sole change being
that the group mean/variance are computed over de-noised rewards r̂i rather than raw r̃i.

Algo 2 (Forward) in GRPO. First form the standard GRPO outcome-advantage from the observed
rewards:

ai =
r̃i − r̃

std({r̃j}) + ε
, Ai,t ≡ ai, ∀t.

Then apply the forward weight determined only by ρ̂1:

wi =

{
ρ̂1 − 1, r̃i = 0,

ρ̂1, r̃i = 1,
Ai,t ← wi ·Ai,t .

Intuitively, the group-normalization is a positive scaling of each sample’s (token-shared) factor, so
multiplying by wi implements the same gradient scaling as in REINFORCE, but expressed at the
advantage level that GRPO’s surrogate consumes. The rest of GRPO (ratio clipping, KL loss) is
unchanged.

PROCESS SUPERVISION (STEP-WISE REWARDS)

Suppose each response yi has step indices indexi(1) < · · · < indexi(Ki) with step-level observed
rewards r̃

(j)
i attached at those indices. GRPO forms step-normalized rewards and turns them into

token advantages by backward accumulation over steps.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algo 1 (Backward) in GRPO-Process. De-noise each step reward:

r̂
(j)
i =

r̃
(j)
i − ρ̂0

1− ρ̂0 − ρ̂1
.

Normalize across the group and steps in the current batch following GRPO’s process recipe:

r̃
(j)
i =

r̂
(j)
i −mean({r̂(m)

ℓ })
std({r̂(m)

ℓ }) + ε
.

Accumulate into token-level advantages (for all tokens t at or before the j-th step boundary):

Ai,t =
∑

indexi(j)≥t

r̃
(j)
i .

This mirrors the standard GRPO-Process pipeline, but with r̃ replaced by r̂.

Algo 2 (Forward) in GRPO-Process. First follow the standard GRPO-Process normalization to
obtain r̃

(j)
i from the observed r̃

(j)
i , then accumulate the token advantages

Ai,t =
∑

indexi(j)≥t

r̃
(j)
i ,

and finally apply forward weights. If the verifier outputs are binary per step, use

w
(j)
i =

{
ρ̂1 − 1, r̃

(j)
i = 0,

ρ̂1, r̃
(j)
i = 1,

Ai,t ←
∑

indexi(j)≥t

(
w

(j)
i r̃

(j)
i

)
.

If only a final binary reward is available, use a single sample-level weight wi for all steps of yi (as
in outcome supervision) after the standard process accumulation.

Practical notes. (i) Where to hook. Implement the corrections exactly at the interface where
GRPO converts rewards to (group-)normalized advantages; no change to sampling, clipping, opti-
mizer, or KL regularization. (ii) Stability. Backward correction can inflate variance when 1−ρ̂0−ρ̂1
is small; GRPO’s group normalization mitigates scale but not variance—use ε and EMA’d statistics
as in practice. (iii) Forward variant. Because group normalization is a positive rescaling, post-
normalization multiplication by w preserves the intended gradient-direction property from the RE-
INFORCE analysis while keeping the rest of GRPO intact. Open-source GRPO implementations
follow this decomposition (reward→advantage, then PPO-style surrogate + KL loss).

C PROOFS AND DERIVATIONS

C.1 PROOF OF PROPOSITION 1

Proof. We compute the expectation of the noisy reward R̃ conditioned on the clean reward R∗,
which is a binary variable. By the definition of expectation:

E[R̃] = 1 · P(R̃ = 1 | R∗) + 0 · P(R̃ = 0 | R∗)

= P(R̃ = 1 | R∗).

We can expand this using the law of total probability, conditioning on the value of R∗ ∈ {0, 1}:

E[R̃ | R∗] = R∗ · P(R̃ = 1 | R∗ = 1) + (1−R∗) · P(R̃ = 1 | R∗ = 0).

From Definition 1, we have P(R̃ = 1 | R∗ = 0) = ρ0 and P(R̃ = 0 | R∗ = 1) = ρ1, which implies
P(R̃ = 1 | R∗ = 1) = 1− ρ1. Substituting these values:

E[R̃] = R∗(1− ρ1) + (1−R∗)ρ0

= R∗ − ρ1R
∗ + ρ0 − ρ0R

∗

= (1− ρ0 − ρ1)R
∗ + ρ0.

This completes the proof.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

C.2 PROOF OF THEOREM 1

Proof. From proposition 1, we have:

E[R̃] = (1− ρ0 − ρ1)R
∗ + ρ0 .

Taking the full expectation of R̂:

E[R̂] =
E[R̃]− ρ0
1− ρ0 − ρ1

=
((1− ρ0 − ρ1)R

∗ + ρ0)− ρ0
1− ρ0 − ρ1

= R∗ ,

showing unbiasedness.

C.3 PROOF OF PROPOSITION 2

Proof. The proposition states two claims about the conditional expectation of the forward weights.
The weights are defined as:

wR̃ =

{
w0 = ρ1 − 1 if R̃ = 0,

w1 = ρ1 if R̃ = 1.

The noise model provides the conditional probabilities:

Pr(R̃ = 0 | R∗ = 1) = ρ1, Pr(R̃ = 1 | R∗ = 1) = 1− ρ1

Pr(R̃ = 1 | R∗ = 0) = ρ0, Pr(R̃ = 0 | R∗ = 0) = 1− ρ0

Part 1: Proof of E[wR̃ | R∗ = 1] = 0 We compute the expectation of wR̃ conditioned on the true
reward being positive (R∗ = 1):

E[wR̃ | R
∗ = 1] =

∑
k∈{0,1}

wk · Pr(R̃ = k | R∗ = 1)

= w0 · Pr(R̃ = 0 | R∗ = 1) + w1 · Pr(R̃ = 1 | R∗ = 1)

= (ρ1 − 1) · (ρ1) + (ρ1) · (1− ρ1)

= (ρ21 − ρ1) + (ρ1 − ρ21)

= 0.

Part 2: Proof of E[wR̃ | R∗ = 0] = −(1 − ρ0 − ρ1) Next, we compute the expectation of wR̃
conditioned on the true reward being negative (R∗ = 0):

E[wR̃ | R
∗ = 0] =

∑
k∈{0,1}

wk · Pr(R̃ = k | R∗ = 0)

= w0 · Pr(R̃ = 0 | R∗ = 0) + w1 · Pr(R̃ = 1 | R∗ = 0)

= (ρ1 − 1) · (1− ρ0) + (ρ1) · (ρ0)
= (ρ1 − ρ0ρ1 − 1 + ρ0) + ρ0ρ1

= ρ1 + ρ0 − 1

= −(1− ρ0 − ρ1).

This proves both claims of the proposition.

C.4 PROOF OF THEOREM 2

Proof. We want to show that E[∆θ] = (1 − ρ0 − ρ1)∇θJ(θ), where ∆θ = 1
M

∑M
t=1 ht and

ht = wR̃Gt. By linearity of expectation and assuming i.i.d. samples, it suffices to show this for a
single sample’s contribution, E[ht].

We use the law of total expectation, conditioning on the latent true reward R∗ ∈ {0, 1}:
E[ht] = E[wR̃Gt] = E [E[wR̃Gt | R∗]]

= Pr(R∗ = 1)E[wR̃Gt | R∗ = 1] + Pr(R∗ = 0)E[wR̃Gt | R∗ = 0].

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The noise process generating R̃ is independent of the policy’s action generation process (which
produces Gt), conditional on the true reward R∗. Thus, we can separate the expectations:

E[wR̃Gt | R∗] = E[wR̃ | R
∗] · E[Gt | R∗].

Using the results from Proposition 2:

• E[wR̃ | R∗ = 1] = 0.

• E[wR̃ | R∗ = 0] = −(1− ρ0 − ρ1).

Substituting these back into the main expectation formula:

E[wR̃Gt] = Pr(R∗ = 1) · (0) · E[Gt | R∗ = 1] + Pr(R∗ = 0) · (−(1− ρ0 − ρ1)) · E[Gt | R∗ = 0]

= −(1− ρ0 − ρ1) · Pr(R∗ = 0)E[Gt | R∗ = 0]

= −(1− ρ0 − ρ1) · E[1{R∗=0}Gt],

where 1{·} is the indicator function. From two fundamental properties of the score function:

1. The unconditional expectation is zero: E[Gt] = 0 (Williams, 1992; Sutton et al., 1999).

2. The clean policy gradient is ∇θJ(θ) = E[R∗Gt].

From property 1, we have E[Gt] = E[(1{R∗=1} + 1{R∗=0})Gt] = E[R∗Gt] + E[1{R∗=0}Gt] = 0.
This implies that E[1{R∗=0}Gt] = −E[R∗Gt] = −∇θJ(θ).

Finally, we substitute this back into our expression for the expected update direction:

E[ht] = E[wR̃Gt]

= −(1− ρ0 − ρ1) · E[1{R∗=0}Gt]

= −(1− ρ0 − ρ1) · (−∇θJ(θ))

= (1− ρ0 − ρ1)∇θJ(θ).

Therefore, the expectation of the full update is E[∆θ] = 1
M

∑
E[ht] = (1− ρ0 − ρ1)∇θJ(θ). This

completes the proof.

D PROMPT TEMPLATES AND TRAINING/EVALUATION DETAILS

This section records the exact prompt formats and the concrete hyperparameters we used for all ex-
periments in Reinforcement Learning with Verifiable yet Noisy Rewards under Unreliable Verifiers.
We mirror the level of detail used in recent RLVR appendices and report settings sufficient for full
reproducibility from our released code.

D.1 PROMPT TEMPLATES

Training (generation) prompt. For each math problem x (a plain-text question), the user message
is built by concatenating the raw question with a short instruction that elicits chain-of-thought and
enforces a verifiable answer format.

<user>
{QUESTION}

Let’s think step by step and enclose the reasoning process within <
think> and </think> tags.

The final result in the answer MUST BE within \boxed{}.
</user>

During data preprocessing, we write chat-style JSON with a single user turn as shown above and
attach the rule-based ground-truth answer for reward checking.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Evaluation (validation/test) prompt. We use the same prompt template as training for validation
and test-time generation so that the rule-based verifier can parse the boxed answer consistently.

Verifier I/O. The rule-based checker operates on the model’s final string and extracts the last
\boxed{...} expression; it then applies numeric/rational parsing and equality tests to pro-
duce a binary reward R̃ ∈ {0, 1}. When the LLM verifier is enabled, it receives the pair
(problem,model solution) and returns a binary correctness decision used only to estimate the false
negative rate ρ1 over a sliding window. The LLM verifier does not replace the rule-based reward.

D.2 DATA PREPROCESSING

We load the preview split of the math-reasoning corpus and map each example to a chat-style record
as above, keeping the reference (ground-truth) answer for programmatic checking.

D.3 TRAINING CONFIGURATION

Unless otherwise stated, all runs use GRPO (outcome supervision) with the following constants.

Training (GRPO)

Train batch size 128
Rollouts per question (group size) 8
Max prompt length (tokens) 512
Max response length (tokens) 3072
Sampling temperature (rollouts) 1.0
Advantage estimator Group-normalized (GRPO)
KL regularization Enabled
KL coefficient β 0.001
Entropy coefficient 0.0
Optimizer AdamW
Learning rate 3e-6
Total epochs 1

Table 2: Core training settings.

Model/backbone. We load the base model from local cache (HuggingFace layout), enable FSDP2
for actor/ref, and use shared-memory weights with remove-padding for efficient vLLM rollouts. The
KL is computed w.r.t. a frozen reference initialized from the same base.

D.4 DATASETS

Training.

• DeepScaleR (PraMamba, 2025): the math-reasoning corpus used for RLVR rollouts and
policy updates.

Evaluation. We evaluate with the standard official/problem releases for each benchmark and apply
the same rule-based programmatic checking protocol throughout.

• MATH500 (Lightman et al., 2023): a verifiable subset of math reasoning problems for
reliable evaluation.

• AIME 2024 (HuggingFaceH4, 2024): the 2024 American Invitational Mathematics Exam-
ination set.

• AIME 2025 (OpenCompass, 2025): the 2025 AIME set.
• AMC 2023 (math-ai, 2025): problems from the 2023 American Mathematics Competi-

tions.
• Minerva Math (Lewkowycz et al., 2022): the Minerva math evaluation suite.
• OlympiadBench (He et al., 2024): olympiad-level mathematics benchmark.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

E FALSE POSITIVE (FP) AND FALSE NEGATIVE (FN) EXAMPLES

We provide FP and FN examples using Qwen2.5-Math-7B base model on MATH 500.

FP
{

"idx": 16,
"question": "Compute: $1-2+3-4+5- \\dots +99-100$.",
"model_prediction": "{}",
"model_response": "Compute: $1+2-3-4+5+6-7-8+ \\dots +97+98-99-100$
. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}.
\\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\
boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\boxed{{}}. \\",
"ground_truth": "-50",
"rule_based": false,
"llm_verifier": true,
"llm_verifier_score": 1.0,
"llm_verifier_raw_value": "1.0",
"math_verify": false,
"math_verify_score": 0.0

},

FN
{

"idx": 92,
"question": "A pirate searches seven islands for buried treasure.
If each island has a $\\frac{1}{5}$ chance of having treasure, what
is the probability that exactly 4 of the islands have treasure?",
"answer": "\\frac{448}{15625}",
"model_prediction": "0.028672",
"model_response": "To solve this problem, we can use the binomial
probability formula. The probability of having exactly k successes
in n independent Bernoulli trials (each with success probability

p) is given by:\n\n\\[P(X = k) = \\binom{n}{k} pˆk (1-p)ˆ{n-k}
\\]\n\nHere, $n = 7$ (the number of islands), $k = 4$ (the number of
islands with treasure), and $p = \\frac{1}{5}$ (the probability

that a single island has treasure).\n\nThe binomial coefficient $\\
binom{n}{k}$ is the number of ways to choose k successes out of
n trials, and it is calculated as:\n\n\\[\\binom{n}{k} = \\frac{n
!}{k!(n-k)!} \\]\n\nSo, the probability that exactly 4 of the 7
islands have treasure is:\n\n\\[P(X = 4) = \\binom{7}{4} \\left(\\
frac{1}{5}\\right)ˆ4 \\left(\\frac{4}{5}\\right)ˆ{3} \\]\n\nLet’s
calculate this using Python.\n‘‘‘python\nimport math\n\n# Number of
islands\nn = 7\n# Number of islands with treasure\nk = 4\n#
Probability of a single island having treasure\np = 1/5\n\n#
Binomial coefficient\nbinom_coeff = math.comb(n, k)\n\n# Probability
calculation\nprobability = binom_coeff * (p**k) * ((1-p)**(n-k))\

nprint(probability)\n‘‘‘\n‘‘‘output\n0.02867200000000001\n‘‘‘\nThe
probability that exactly 4 of the 7 islands have treasure is \\(\\
boxed{0.028672}\\).",
"ground_truth": "\\frac{448}{15625}",
"rule_based": false,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

"llm_verifier": false,
"llm_verifier_score": 0.0,
"llm_verifier_raw_value": "0.0",
"math_verify": true,
"math_verify_score": 1.0

}

REFERENCES

Chaoqun He, Renjie Luo, Yuzhuo Bai, et al. Olympiadbench: A challenging benchmark for pro-
moting agi with olympiad-level bilingual multimodal scientific problems. In Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics (ACL), 2024. URL
https://aclanthology.org/2024.acl-long.211.pdf.

HuggingFaceH4. Aime 2024 (dataset card). Hugging Face, 2024. URL https://
huggingface.co/datasets/HuggingFaceH4/aime_2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu,
Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning prob-
lems with language models. In Advances in Neural Information Processing Systems (NeurIPS),
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

math-ai. Amc 2023 (dataset card). Hugging Face, 2025. URL https://huggingface.co/
datasets/math-ai/amc23.

OpenCompass. Aime 2025 (dataset card). Hugging Face, 2025. URL https://huggingface.
co/datasets/opencompass/AIME2025.

PraMamba. Deepscaler. GitHub repository, 2025. URL https://github.com/PraMamba/
DeepScaleR.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y.K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of math-
ematical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024. URL
https://arxiv.org/abs/2402.03300.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256, 1992.

8

https://aclanthology.org/2024.acl-long.211.pdf
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://proceedings.neurips.cc/paper_files/paper/2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf
https://huggingface.co/datasets/math-ai/amc23
https://huggingface.co/datasets/math-ai/amc23
https://huggingface.co/datasets/opencompass/AIME2025
https://huggingface.co/datasets/opencompass/AIME2025
https://github.com/PraMamba/DeepScaleR
https://github.com/PraMamba/DeepScaleR
https://arxiv.org/abs/2402.03300

	More Experimental Results
	Implementation Details
	Proofs and Derivations
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Proposition 2
	Proof of Theorem 2

	Prompt Templates and Training/Evaluation Details
	Prompt Templates
	Data Preprocessing
	Training Configuration
	Datasets

	False Positive (FP) and False Negative (FN) Examples

