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ABSTRACT

The machine learning community is increasingly recognizing the importance of
fostering trust and safety in modern generative AI (GenAI) models. We posit
machine unlearning (MU) as a crucial foundation for developing safe, secure,
and trustworthy GenAI models. Traditional MU methods often rely on stringent
assumptions and require access to real data. This paper introduces Score Forgetting
Distillation (SFD), an innovative MU approach that promotes the forgetting of
undesirable information in diffusion models by aligning the conditional scores of
“unsafe” classes or concepts with those of “safe” ones. To eliminate the need for
real data, our SFD framework incorporates a score-based MU loss into the score
distillation objective of a pretrained diffusion model. This serves as a regularization
term that preserves desired generation capabilities while enabling the production
of synthetic data through a one-step generator. Our experiments on pretrained
label-conditional and text-to-image diffusion models demonstrate that our method
effectively accelerates the forgetting of target classes or concepts during generation,
while preserving the quality of other classes or concepts. This unlearned and
distilled diffusion not only pioneers a novel concept in MU but also accelerates
the generation speed of diffusion models. Our experiments and studies on a
range of diffusion models and datasets confirm that our approach is generalizable,
effective, and advantageous for MU in diffusion models. PyTorch code is available
at https://github.com/tqch/score-forgetting-distillation.

Warning: This paper contains sexually explicit imagery, discussions of pornogra-
phy, racially-charged terminology, and other content that some readers may find
disturbing, distressing, and/or offensive.

(a) Brad Pitt (b) Angelina Jolie

Figure 1: Celebrity forgetting effects of two celebrities, i.e., “Brad Pitt” and “Angelina Jolie.”
Each column represents the images generated from the same text prompt on the top and the same
random seed (initial noise) by SFD checkpoints at 0,5,10,25,50,100 thousands images (#kimgs) seen.
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1 INTRODUCTION

Diffusion models, also known as score-based generative models [69; 71; 31; 16; 39], have emerged
as the leading choice for generative modeling of high-dimensional data. These models are widely
celebrated for their ability to produce high-quality, diverse, and photorealistic images [54; 58; 62;
61; 56; 93]. However, their capacity to memorize and reproduce specific images and concepts
from training datasets raises significant privacy and safety concerns. Moreover, they are susceptible
to poisoning attacks, enabling the generation of targeted images with embedded triggers, posing
substantial security risks [59; 11].

To address these challenges, we introduce Score Forgetting Distillation (SFD), a novel framework
designed to efficiently mitigate the influence of specific characteristics in data points on pre-trained
diffusion models. This framework is a key part of the broader domain of Machine Unlearning (MU),
which has evolved significantly to address core issues in trustworthy machine learning [45; 49; 1].
Originating from compliance needs with data protection regulations such as the “right to be forgotten”
[33], MU has broadened its scope to include applications in diffusion modeling across various domains
like computer vision and content generation [20; 19; 27]. Additionally, MU aims to promote model
fairness [55], refine pre-training methodologies [36; 38], and reduce the generation of inappropriate
content [20]. The development of SFD is aligned with these objectives, providing a strategic approach
to mitigate the potential risks and reduce the high generation costs associated with diffusion models,
thereby advancing the field of trustworthy machine learning.

MU methods are generally categorized into two types: exact MU and approximate MU. Exact MU
entails creating a model that behaves as if sensitive data had never been part of the training set [6; 5].
This process requires the unlearned model to be identical in distribution to a model retrained without
the sensitive data, both in terms of model weights and output behavior. In contrast, approximate
MU does not seek an exact match between the unlearned model and a retrained model. Instead, it
aims to approximate how closely the output distributions of the two models align after the unlearning
process. A prominent strategy in approximate MU utilizes the principles of differential privacy [17].
For instance, Guo et al. [24] introduced a certified removal technique that prevents adversaries from
extracting information about removed training data, offering a theoretical guarantee of data privacy.
However, these approaches typically necessitate retraining the model from scratch, which can be
computationally intensive and require access to the original training dataset. Efficient and stable
unlearning has become crucial in MU. Techniques like the influence functions [80; 35], selective
forgetting [22], weight-based pruning [44], and gradient-based saliency [19] have been explored,
though they often suffer from performance degradation or restrictive assumptions [4]. These methods
are primarily applied to MU for image classification tasks and do not adequately address the rapid
forgetting and unlearning required for data generation tasks.

Given the prominence of diffusion models, there is a growing need to develop MU techniques
that specifically cater to these models, ensuring efficient unlearning while maintaining generation
capabilities [20; 19; 27]. Our SFD framework efficiently distills the knowledge from a pre-trained
diffusion model by optimizing two learnable modules—a generator network and a score network—
guided by the frozen pre-trained model itself. The score network is trained to optimize the score
associated with the generator by minimizing a score distillation loss, which aims to match the
conditional scores of the class to forget and the classes to remember with those of the pre-trained
model. The generator network learns to produce examples that are “indistinguishable” by the pre-
trained score network and fake score network in terms of score predictions, utilizing a model-based
cross-class score distillation loss.

This dual functionality facilitates both MU and rapid sampling, effectively bridging the gap in
generation speed between diffusion-based models and one-step counterparts such as GANs and VAEs.
The forgetting process is seamlessly integrated into the model distillation, where we concurrently
optimize the score-matching loss and the forgetting loss. This integrated approach offers a robust
framework for achieving effective unlearning and fast generation, thereby providing a comprehensive
solution for enhancing the efficiency and trustworthiness of diffusion-based generative modeling.

Our approach’s effectiveness is demonstrated through both class and concept forgetting tasks for dif-
fusion models in image generation. The experiments conducted on class-conditional diffusion models
pretrained on CIFAR-10 and STL-10 demonstrate that SFD effectively erases the target class while
preserving the image generation quality for other classes. We also present extensive ablation studies
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Figure 2: Overview of score forgetting distillation (SFD). Some notations are labeled along with
corresponding components. ‘Snowflake’ refers to the frozen (non-trainable), ‘Fire’ refers to the
trainable, and ‘Combine’ refers to combining operation on input losses by arithmetic addition
according to predefined weights.

that support the robustness and efficiency of our method, which achieves competitive performance on
the key metric for class forgetting, namely Unlearning Accuracy (UA), and significantly improves
several metrics for preserving generative quality and efficiency, including Fréchet Inception Distance
(FID), Inception Score (IS), Precision and Recall, and generation speed measured by the number of
function evaluations (NFEs).

Additionally, experiments conducted on Stable Diffusion reveal that SFD successfully erases concepts
associated with specific text inputs. Our method outperforms the baselines in both celebrity forgetting
and NSFW-concept forgetting tasks. Moreover, because our method operates in a completely data-
free manner, it significantly reduces the privacy risks associated with the MU fine-tuning process.
The development of SFD benefits from related works on MU, distribution matching, score matching,
acceleration methods for diffusion sampling, and data-free diffusion distillation. A detailed review of
these topics is provided in Appendix A.

Our key contributions are:

• Introducing SFD, a pioneering data-free approach for MU that utilizes cross-class score distilla-
tion in diffusion models to achieve not only effective forgetting but also fast one-step generation.

• Developing a robust and efficient technique to distill score-based generative models into one-step
generators, incorporating the MU loss as a regularization element within the model-based score
distillation framework to optimize both distillation and forgetting simultaneously.

• Validating the effectiveness of our method with experiments on not only class-conditional
diffusion models based on DDPM and EDM, but also text-to-image diffusion models based
on Stable Diffusion, marking the first instance of accelerated forgetting in machine unlearning
for diffusion models. This achievement demonstrates the potential of our method for broader
applications and sets the stage for future advancements in the field.

2 METHOD

Diffusion models are celebrated for their superior performance in generating high-quality and
diverse samples. However, their robust capabilities also introduce challenges, particularly the risk
of misuse in generating inappropriate content. This concern highlights the ethical implications
and potential negative impacts of their application. Additionally, these models have a significant
drawback: slow sampling speeds. This inefficiency becomes particularly problematic in downstream
tasks that require finetuning on synthetic data generated by these models. When access to real
data is not feasible, the task of preparing a sufficiently large synthetic dataset can already become
computationally prohibitive [86]. This issue is especially acute in the context of MU and image
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generation, where access to real data often raises privacy concerns, making reliance on synthetic
data crucial. Consequently, the slow sampling rate of diffusion models presents a critical bottleneck,
necessitating improvements to enable effective data-free MU operations.

In this section, we introduce SFD, a principled and data-free approach designed to address the MU
problem while simultaneously achieving fast sampling for diffusion models. Building on recent
advancements in data-free diffusion distillation for one-step generation [47; 96], we conceptualize
MU in diffusion models as a problem of MU-regularized score distillation.

2.1 PROBLEM DEFINITION AND NOTATIONS

Before diving into the specific MU problem, we will first establish the essential concepts and
notations in diffusion modeling: A diffusion model corrupts its data x ∼ pdata(x | c) during the
forward diffusion process at time t as zt = atx + σtϵt, where ϵt ∼ N (0, 1), c represents the
given condition such as a label or text, and at and σt are diffusion scheduling parameters. The
goal of pretraining a diffusion model is to obtain an optimal score estimator sϕ(zt, c, t) such that
sϕ(zt, c, t) = ∇zt ln pdata(zt | c). Let xϕ(zt, c, t) be the optimal conditional mean estimator such
that for xϕ(zt, c, t) = E[x | zt, c, t]. Applying Tweedie’s formula [60; 18] in the context of diffusion
modeling [46; 13; 96], the optimal score and conditional mean estimators, sϕ and xϕ, for the training
data are related as follows:

sϕ(zt, c, t) =
atxϕ(zt,c,t)−zt

σ2
t

, xϕ(zt, c, t) =
zt+σ

2
t sϕ(zt,c,t)
at

. (1)

With this optimal score estimator, we can construct a corresponding reverse diffusion process,
enabling us to approximately sample from the data distribution through numerical discretization
along the time horizon [2; 72].

A distilled one-step diffusion model is a one-step generator capable of producing samples from
the generative distribution of a pretrained model in a single step. The generation process for this
one-step generator is defined as gθ(n, c), where n ∼ N (0, I). Denote the generative distribution of x
given class c as Dθ,c, and the optimal score estimator corresponding to the one-step generator gθ as
sψ∗(θ)(zt, c, t). The same as how xϕ and sϕ is related in Eq. 1, we have

sψ∗(θ)(zt, c, t) =
atxψ∗(θ)(zt,c,t)−zt

σ2
t

. (2)

For class forgetting in class-conditional diffusion models, our goal is to unlearn a specific class by
overriding it with another class while minimizing any negative impact on the remaining classes. We
denote the class to forget as cf , the remaining classes (classes other than cf ) as Cr := {cr | cr ̸= cf},
and the class for overriding cf as co ∈ Cr. The distribution of the remaining classes is denoted as Dr
over the set Cr, the sampling distribution of all classes after unlearning as Ds, and the conditional
distribution of samples from class c generated by gθ as Dθ,c := gθ(N (0, I), c). The class forgetting
problem can be solved by aligning the model distribution of x given cf under the generator gθ with
the original data distribution of x given co, and by simultaneously ensuring that the distributions of
x given cr under both the model and the original data are matched. Specifically, our objective is to
forget cf and override it with co by aligning the distributions such that Dθ,cf

d
= pdata(x | co), while

preserving the remaining classes by ensuring Dθ,cr
d
= pdata(x | cr), ∀cr ∈ Cr.

In the problem setting of concept forgetting in text-to-image diffusion models, our goal is to unlearn
the concepts associated with specific keywords, such as “Brad Pitt,” by substituting them with more
generic terms like “a middle aged man,” as illustrated in Figure 1. This process aims to minimize any
negative impact on the generation quality of other concepts, thereby maintaining the overall integrity
and diversity of the images generated under text guidance.

2.2 SCORE FORGETTING DISTILLATION

In the problem of class unlearning, as described in Section 2.1, our goal is to align the conditional
distributions of both the forgetting class and the remaining classes with those that would exist if the
model had been retrained without the data from the forgetting class. By adapting the concept of
data-free score distillation to the MU challenge, we aim to achieve this alignment using our proposed

4



Published as a conference paper at ICLR 2025

data-free MU process, SFD. Our method eliminates the need for access to the original training data
and accelerates synthetic data sampling, effectively enabling the forgetting of a specific class while
preserving the original generative capabilities for the other classes.

Specifically, for two arbitrary classes c1 and c2, we define a Score Forgetting Distillation (SFD)
loss over the forward diffusion process of one-step generated fake data. The following analysis also
applies when c1 and c2 refer to concepts. We denote zt, t, x ∼ Dθ,c as a random sample generated as

zt = atx+ σtϵt, ϵt ∼ N (0, I), t ∼ Unif[tmin, tmax], x = gθ(n, c), n ∼ N (0, I).

Taking the expectation over fake data generated by the distilled one-step generation model gθ under
class c2 and subsequently corrupted through the forward diffusion process, we formulate this loss as:

Lsfd(θ;ϕ, c1, c2) = Ezt,t,x∼Dθ,c2

[
ωt∥sϕ(zt, c1, t)− sψ∗(θ)(zt, c2, t)∥2

]
, (3)

where ωt > 0 is a re-weighting function, and ψ∗(θ) represents the optimal solution to the model-based
explicit SM (MESM) loss, which is a Fisher divergence that can be expressed as

Lmesm(ψ; θ, c) = Ezt,t,x∼Dθ,c
[
γt∥sψ(zt, c)−∇x ln pθ(zt | c)∥22

]
, (4)

where γt > 0 is a re-weighting function. In practice, the lack of the access to ∇x ln pθ(zt | c) makes
Eq. 4 intractable. However, we can alternatively optimize a denoising SM loss [77] as

Ldsm(ψ; θ, c) = Ezt,t,x∼Dθ,c

[
γt
a2t
σ4
t
∥xψ(zt, c)− x∥22

]
, (5)

which admits the same optimal solution as Eq. 4 and provides an estimation of the score of the
generator gθ at different noise levels. This setup allows us to tailor the SFD loss in Eq. 3 specifically for
different class dynamics. When c1 = c2 = c, the SFD loss facilitates class-specific score distillation,
optimizing the score to closely model that of the generator within the same class. Conversely, setting
c1 ̸= c2 configures the SFD loss for score overriding, replacing the score sψ∗(θ) for class c2 with the
score sϕ for class c1. This approach effectively addresses the dual objectives of class forgetting and
targeted score modification, introducing two distinct losses to manage these scenarios:

• Distillation Loss: Enhances fidelity within a class by refining the generator’s score to closely
match the true distribution of the class:

Lsfd(θ;ϕ, cr, cr) = Ezt,t,x∼Dθ,cr
(
ωt∥sϕ(zt, cr, t)− sψ∗(θ)(zt, cr, t)∥2

)
. (6)

• Forgetting Loss: Alters the generator’s score to reflect characteristics of a different class,
facilitating the effective forgetting of the original class attributes:

Lsfd(θ;ϕ, co, cf ) = Ezt,t,x∼Dθ,cf

(
ωt∥sϕ(zt, co, t)− sψ∗(θ)(zt, cf , t)∥2

)
. (7)

To summarize our approach, we now present the entire formulation as follows:

min
θ

Ecr∼CrLsfd(θ;ϕ, cr, cr), s.t. ψ∗(θ) = argmin
ψ

Ec∼CsLdsm(ψ; θ, c), Lsfd(θ;ϕ, co, cf ) ≤ C0.

This formulation corresponds to a bi-level optimization problem [84; 32; 68], subject to an additional
forgetting-based constraint. Solving this problem directly is challenging, so we initially relax the
constraint specified by Lsfd in the above equation by integrating it into the distillation objective as an
additional MU regularization term:

min
θ

Ecr∼CrλLsfd(θ;ϕ, cr, cr) + µLsfd(θ;ϕ, co, cf ), s.t. ψ∗(θ) = argmin
ψ

Ec∼CsLdsm(ψ; θ, c),

where λ and µ are tunable constants that serve as control knobs to balance the distillation of the
remaining classes and the unlearning of the target class. Furthermore, we implement an alternating
update strategy between θ and ψ. This approach mitigates the need to obtain the optimal score estima-
tor ψ∗(θ) for each θ, simplifying the computational process. We outline a practical implementation
of this strategy in Algorithm 1. Specifically, generalizing the derivation in Zhou et al. [96], we have
the following Lemma, whose proof is provided in Appendix D:
Lemma 1. The Score Forgetting Distillation (SFD) loss in Eq. 3 can be equivalently expressed as

Lsfd(θ;ϕ, c1, c2) = Ezt,t,x∼Dθ,c2

[
ωt

a2t
σ4
t
(xϕ(zt, c1, t)− xψ∗(θ)(zt, c2, t))

T (xϕ(zt, c1, t)− x)
]
. (8)

5



Published as a conference paper at ICLR 2025

Table 1: Class forgetting results on CIFAR-10 and STL-10. “SFD” refers to the DDPM model
trained with Score Forgetting Distillation, while “SFD-CFG” refers to the SFD model trained with
classifier-free guidance (as discussed in Section 3.2). UAs that exceed the testing recall rate of the
forgetting class (96.60% for CIFAR-10 and 98.15% for STL-10) are highlighted in yellow.

Dataset Model UA (↑) FID (↓) IS (↑) Precision (↑) Recall (↑) NFEs (↓) Data-free

CIFAR-10

Retrain 98.5 7.94 8.34 0.6418 0.5203 1000 ✘
ESD [20] 91.21 12.68 9.78 0.7709 0.3848 2000 ✔
SA [27] 85.80 9.08 - 0.4120 0.7670 2000 ✔

SalUn [19] 99.96 11.25 9.41 0.7806 0.3176 2000 ✘

SFD (Ours) 99.64 5.35 9.51 0.6587 0.5471 1 ✔

STL-10

Retrain 97.54 26.52 8.30 0.5573 0.4526 1000 ✘
ESD [20] 92.01 39.32 10.16 0.5229 0.2898 2000 ✔

SalUn [19] 99.31 20.78 10.89 0.5713 0.5415 2000 ✘

SFD (Ours) 99.02 18.82 10.93 0.5543 0.4054 1 ✔
SFD-CFG (Ours) 99.64 15.32 11.46 0.5983 0.3551 1 ✔

A biased loss for θ can be derived by replacing ψ∗(θ) in either Eq. 3 or Eq. 8 with its SGD-based
approximation ψ, and disregarding the dependency of ψ∗ on θ when computing the gradient of θ.
Empirical experiments by Zhou et al. [96] suggest that in the context of diffusion distillation without
involving unlearning, Eq. 8 can be effective independently, while Eq. 3 may not perform as expected.
This observation leads to a practical approach that involves subtracting Eq. 3 from Eq. 8. This strategy
aims to sidestep detrimental biased gradient directions and potentially compensate for the overlooked
gradient dependency of ψ∗(θ). We implement this approach in practice under the framework of SFD,
defining the loss used in practice as follows:

L̂sfd(θ, ψ;ϕ, c1, c2, α) = (1− α)ωt
a2t
σ4
t
∥xϕ(zt, c1, t)− xψ(zt, c2, t)∥2+ (9)

ωt
a2t
σ4
t
(xϕ(zt, c1, t)− xψ(zt, c2, t))

T (xψ(zt, c2, t)− x), (10)

where α ≥ 0 is some constant that is typically set as 1 or 1.2, zt = atx + σtϵt, x ∼ Dθ,c2 , ϵt ∼
N (0, I), t ∼ Unif[tmin, tmax]. In this paper, we follow Yin et al. [86] and Zhou et al. [96] to set
ωt =

σ4
t

a2t

C
∥xϕ(zt,t,c)−x∥1,sg

, where C is the data dimension and “sg” stands for stop gradient.

Similar to Eqs. 6 and 7, we have the following:

Distillation Loss: L̂sfd(θ, ψ;ϕ, cr, cr, α), where zt, t, x ∼ Dθ,cr (11)

Forgetting Loss: L̂sfd(θ, ψ;ϕ, co, cf , α), where zt, t, x ∼ Dθ,cf (12)

where timestep t is omitted for brevity. Intuitively speaking, our algorithm first trains the approximate
score estimator sψ to mimic the score of the generator gθ at different time points t of the forward
diffusion process, and then uses both the pre-trained score estimator and the fake score estimator
across these time points to instruct the generator itself. The alternate updating approach largely
reduces the computational cost of obtaining an optimal score estimator for the generator while
effectively passing an informative learning signal to the generator and helping the generation quality
improve rapidly over time. It is worth noting that the whole training process require neither real data
nor fake data synthesized by reversing the full diffusion process, and a pre-trained score network
of a diffusion model is sufficient to provide proper supervision on distillation as well as machine
unlearning. In other words, our method is data-free.

3 EXPERIMENTS

In our experiments, we thoroughly evaluate our method for class forgetting in diffusion models
pretrained on two datasets, CIFAR-10 and STL-10, which have been commonly used for evaluating
MU in previous studies. We provide the details of them in Appendix B. We also assess our method
for concept forgetting tasks, such as celebrity forgetting and “nudity” forgetting, in text-to-image
diffusion models.

Forgetting setups We explore class forgetting in class-conditional image generation tasks using
DDPM [31], and investigate concept forgetting in text-to-image generation tasks using Stable Diffu-
sion (SD) [61]. Class forgetting aims to prevent class-conditional diffusion models from generating
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images of a specified class, while concept forgetting seeks to remove the model’s ability to generate
images containing specific concepts, such as celebrities or inappropriate content. Class-conditional
and text-to-image sampling are achieved by inputting class labels and text prompts into the respective
diffusion models, with fidelity further enhanced by classifier-free guidance introduced in Ho &
Salimans [30]. Specifically, we approach unlearning by overriding a class or concept with another
that is safe to retain. The class forgetting experiments were conducted on class-conditional diffusion
models pre-trained on CIFAR-10 and STL-10, while the concept forgetting experiments were con-
ducted on Stable Diffusion, including forgetting celebrities, specifically American actor Brad Pitt and
actress Angelina Jolie, and forgetting a general NSFW (not safe for work) concept, i.e., nudity. For
DDPM baselines, we used the default 1000-step DDPM samplers to obtain FIDs for samples from
the remaining classes, while for SD baselines, we used DDIM samplers with 50 steps. In contrast,
our method requires only a single step for generation, making it 1,000 times faster than the DDPM
baselines and 50 times faster in latent sampling than the SD baselines.

Evaluation To quantitatively assess the effectiveness of class forgetting, we primarily focus on
the success rate of forgetting the target class, and the generative capability on classes to retain.
Specifically, we measure the success rate of forgetting by Unlearning Accuracy (UA) employing an
external classifier trained on the original training set, which is essentially the mis-classification rate
of the classifier on the generated samples from the target class. We measure image generation quality
using Fréchet Inception distance (FID) [28] and sample diversity using Inception scores (IS) [64].
Additionally, we report Precision and Recall [43], and number of function evaluations (NFEs) for
sampling. Following Fan et al. [19], we compute and report generation quality metrics using generated
samples, with the full training set from the remaining classes serving as the reference. For concept
forgetting tasks including celebrity forgetting and “nudity” forgetting, we also provide quantitative
evaluations as well as qualitative comparison. Specifically, we evaluate celebrity forgetting using a
off-the-shelf celebrity face detector, while we assess the MU performance of our “nudity” forgetting
model on the I2P benchmark (https://github.com/ml-research/i2p). Please refer to Appendix B.2 for
more details of the evaluation metrics.

Implementation details Our main implementation of class forgetting experiments is based on
DDPM [31], where we utilize the codebase developed by Fan et al. [19]. Additionally, we implement
our method using EDM [39] framework and the official codebase (https://github.com/NVlabs/edm).
For concept forgetting experiments, we implement our method for SD models based on the imple-
mentation of Zhou et al. [95]. We adopt the same model configuration for both the generator gθ and
its score estimation network sψ and initialize the model weights according to the pre-trained score
network sϕ. This type of initialization prepares a good starting point for SFD.

SFD-Two Stage In addition to initializing both the generator and the fake score network with the pre-
trained score network, we also experimented on a different initialization, i.e., initializing the generator
with a pre-distilled generator model weights. Considering the nature of “first distilling then forgetting,”
we named this variant “SFD-Two Stage.” For this variant specifically, we disabled exponential moving
average (EMA) and adopted a more aggressive regularization with λψ = µψ = λθ = µθ = 1.0. The
rationale behind this configuration was that the first stage distillation would have prepared a solid
foundation for the second stage forgetting, which enables fast forgetting by increasing the weight of
forgetting loss and by further prioritizing it in the second stage. We use Adam optimizer with β1 = 0
and β2 = 0.999 for all the experiments. The base learning rate for both DDPM and EDM models is
set to 10−5, except that we slightly increase the learning rate for sψ when distilling DDPM models.
More details on the hyperparameter settings for the experiments can be found in Table 10.

3.1 EXPERIMENTAL RESULTS

Class forgetting From the empirical results, the proposed method, SFD, can effectively unlearn
unwanted content (e.g., a class of objects) and converge rapidly towards the level of generation quality
of the pre-trained model. Additionally, the models fine-tuned by SFD inherently enables one step
generation. Figure 3 shows that the remaining classes were in fact intact during the MU-regularized
distillation, the generation quality of class 1 to 9 were consistently improving as the number of
generator-synthesized images, which were used by SFD for distillation and MU, went up. The FID
between generated samples and training dataset decreased nearly exponentially fast as is captured by
Figure 4. The forgetting class, on the other hand, was initialized to output airplanes and gradually
forced to match the assigned class, i.e., the class of automobile. The forgetting effect noticeably took
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Figure 3: Generated images on CIFAR-10 and STL-10 during the training of SFD. The upper
panel shows 3× 3 grids of generated samples at different time steps, with fixed random seeds and
class labels arranged from 1 to 9 (left to right, top to bottom). The same sequence of random seeds is
used across all grids to ensure consistency. The lower panel illustrates the forgetting process for two
examples from CIFAR-10 and STL-10.

place between 10k and 20k training steps. From Figure 4, we observe a steady increase of unlearning
accuracy, reflecting the extent to which the generated Class 0 samples can no longer be correctly
identified by the pre-trained image classifier.

On CIFAR-10, we observed that the SFD-Two Stage model (or Two Stage, for short), which involves
first distilling the pre-trained diffusion model with 50,000 steps and then fine-tuning it using the
SFD loss for the same number of steps, exhibited faster forgetting. In Figure 7, we report two
performance metrics, FID and UA, during the unlearning stage, compared with the results from
SFD. The results indicate that SFD consistently outperforms the two-stage approach in both metrics
given sufficient training. Although the two-stage approach started with a lower FID than SFD, its
performance fluctuated and declined over time. The UA initially increased rapidly, peaked, and then
slightly decreased at the end. The gain in UA during the unlearning stage came at the cost of FID. In
contrast, SFD effectively coordinated machine unlearning and distillation to forget specific classes
while retaining the original generative capability for the remaining classes, thereby improving both
FID and UA throughout finetuning and achieving better final results. Nonetheless, the two-stage
approach remains practical, especially when forgetting requirements vary over time or when there
is an urgent need, as it appears more flexible and efficient under such conditions. Specifically, with
SFD-Two Stage, finetuning achieves more than a 10× speedup, delivering competitive results (FID =
5.73, UA = 99.5%) in as few as ∼1.5k steps.

Celebrity forgetting We provide both qualitative and quantitative results of celebrity forgetting
tasks on two selected celebrities, i.e., Brad Pitt and Angelina Jolie, where the concepts to forget
are “brad pitt” and “angelina jolie,” respectively, and the corresponding concepts to override are “a
middle aged man” and “a middle aged woman,” respectively. As shown in Figure 1 and Table 2, we
showcase the effectiveness of SFD in forgetting concepts such as specific celebrities in text-to-image
diffusion models. For this experiment, we exclude the previous baseline, SalUn, as the original paper
did not evaluate its performance on the celebrity forgetting task.

“Nudity” forgetting In addition to the celebrity forgetting experiments, we conducted concept
forgetting experiments for a broader concept, namely, “nudity.” We note that nudity is a more
abstract and generalized concept than specific individuals (e.g., celebrities), making it a significantly
more challenging forgetting task. To enhance the forgetting performance, we adopted a slightly
different strategy for this task. In particular, we first curated a list of 12 common human subjects
(see Table 5) that could potentially be misused for generating “nudity”-related content. Each subject
was then randomly paired with one of the NSFW keywords (see Table 6) to create prompts to
forget. Furthermore, we leveraged the negative prompting technique to associate these prompts
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Figure 4: FID between generated images and
original dataset of remaining classes. The solid
blue line and dot denote the training FIDs and final
FID evaluated at the last checkpoint of one-step
SFD generator; the dotted green line marks the
initial FID of the pre-trained model using 1,000
sampling steps. The solid orange line and dot mark
the training UAs and final UA evaluated at the last
checkpoint of SFD; the dotted orange line marks
the initial UA of the pre-trained model.

Figure 5: Remaining FIDs on different model
architectures. The solid blue and solid orange
bars denote the remaining FID evaluated for pre-
trained DDPM and EDM respectively. The trans-
parent blue and transparent orange bars denote the
remaining FID evaluated at the last training step
for unlearned and distilled diffusion using DDPM
and EDM respectively.

Table 2: Quantitative results of celebrity forgetting of two celebrities, i.e., “Brad Pitt” and
“Angelina Jolie.” Bold values indicate the best score in each column, while underlined values
represent the second-best.

Model
Brad Pitt Angelina Jolie

Prop. GCD (↓) Prop. GCD (↓)w/o Faces (↓) w/o Faces (↓)

SD v1.4 [61] 10.4% 60.6% 11.7% 73.8%
SLD Medium [65] 14.1% 0.47% 11.9% 3.29%
ESD-x [20] 34.7% 2.01% 32.6% 3.35%
SA [27] 5.8% 7.52% 4.4% 7.74%
SFD-Two Stage (Ours) 1.76% 2.5% 1.92% 1.06%

with their corresponding prompts to override. Specifically, we used the original text prompt as the
conditional text input while using the concatenated NSFW keywords instead of an empty string as
the unconditional text input. We observed that this approach also induces a concept forgetting effect
in the original score distillation method, which we denote as “SiD-LSG-Neg.” Key MU performance
metrics are reported in Table 3, while sample images generated by baseline methods and SFD are
displayed in Figure 6.

3.2 ABLATION STUDIES

Ablation on the model architecture EDM [39] is a state-of-the-art diffusion model with enhanced
capability for generating high-quality images. To evaluate our method’s generalizability across
different model architectures, we additionally conduct experiment using the EDM architecture. We
adapted the codebase used by SiD [96] and fine-tuned the pre-trained class-conditional CIFAR-10
EDM-VP model. Figure 5 shows that the FID results of our method can be further improve when
based on a more powerful pre-trained model.

Table 3: Quantitative results of “nudity” forgetting. Bold values indicate the best score in each
column, while underlined values represent the second-best.

Model Inapprop. Prob. (↓) Max. Exp. Inapprop. (↓) CLIP (↑)
SD v1.4 [61] 28.54% 86.6% 31.93
SiD-LSG [95] 26.86% 88.12% 31.23

SiD-LSG-Neg (Ours) 20.97% 81.64% 31.22
SLD Medium [65] 14.10% 71.73% 30.77
ESD-u [20] 16.94 % 69.68% 30.15
SFD-Two Stage (Ours) 11.03% 66.90% 30.25
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Figure 6: Generated images using different text-to-image diffusion models. The prompts used to
generate are in a general form of “A photo of a <nudity keyword> <human subject>.” Sensitive body
parts are manually censored after generation.

Abalation on the classifier-free guidance Classifier-free guidance (CFG), first proposed by Ho &
Salimans [29], is a commonly-used strategy for conditional sampling. While typically adopted during
inference to enhance class fidelity, it has also been shown to be useful for the training of score-based
distillation [86; 95]. We compare our models trained with and without CFG in Table 4. In our
experiments on STL-10, we found that including classifier-free guidance during training improved
the performance in terms of both FID and UA. However, we did not observe such improvements
on the CIFAR-10 dataset; on the contrary, we noticed a degradation in the evaluation metrics. We
speculate that the influence of CFG may be tied to the inter-class differences: when training data
contain classes sharing similar features, such as automobile and truck in CIFAR-10, training with
CFG may not be as beneficial as it is when the training dataset consists of more distinct classes.

Table 4: Ablation study on classifier-free guidance during training and on the CIFAR-10
and STL-10 datasets. The percentages in green and red are the relative performance boost and
degradation respectively when the model is trained without classifier-free guidance.

Model FID (↓) UA (↑)

SFD 5.35 99.64%
+ CFG 7.27 (+35.89%)0 99.62% (-0.02%)

(a) CIFAR-10

Model FID (↓) UA (↑)

SFD 18.82 99.02%
+ CFG 15.32 (-18.60%) 99.64% (+0.63%)

(b) STL-10

4 CONCLUSION

Our work demonstrates that the proposed method, SFD, achieves accelerated forgetting through
score-based distillation, providing an effective solution to diffusion-based generative modeling and
MU. Specifically, the SFD model produces high-quality images of desired classes in a single step,
while ensuring that the target class or concept is effectively forgotten. Experiments on CIFAR-10 and
STL-10 validate the effectiveness of our approach, showing notable improvements in performance.
We further perform a detailed analysis of SFD across various settings, including comparisons against
baselines and different configurations of SFD in terms of UA, FID, and other metrics. Additionally,
we provide both qualitative and quantitative results on concept forgetting in text-to-image diffusion
models such as Stable Diffusion. To summarize, SFD introduces a novel, data-free solution for MU
in diffusion models, which also significantly accelerates their sampling speed.
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Appendix

A RELATED WORK

Unlearning for Machine Learning Models The study of MU can be traced back to classical
machine learning models in response to data protection regulations such as “the right to be forgotten”
[6; 33; 5; 51]. Due to its capability of assessing data influence on model performance, the landscape
of MU has expanded to encompass diverse domains, such as image classification [21; 22; 50; 66],
text-to-image generation [20; 42; 87; 19], federated learning [25; 7], and graph neural networks
[8; 12; 81]. In the literature, ‘exact’ unlearning, which involves retraining the model from scratch after
removing specific training data points, is often considered the gold standard. However, this approach
comes with significant computational demands and requires access to the entire training set [76]. To
address these challenges, many research efforts have shifted towards the development of scalable and
effective approximate unlearning methods [44; 9]. In addition, probabilistic methods with certain
provable removal guarantees have been explored, often leveraging the concept of differential privacy
[50; 66]. Focusing on MU in diffusion-based image generation, this paper introduces a general
data-free approach for rapid forgetting and one-step sampling in diffusion models, eliminating the
need to access any real data.

Challenges in Machine Unlearning In examining the challenges and strategies associated with
diffusion models and MU, several key issues and methodologies have been identified. Diffusion
models, particularly when trained on data from open collections, face risks of contamination or
manipulation, which could lead to the generation of inappropriate or offensive content [11; 65].
Strategies to mitigate these include data censoring and safety guidance to steer models away from
undesirable outputs [53], and introducing subtle perturbations to protect artistic styles [67]. Despite
these measures, challenges remain in fully preventing diffusion models from generating harmful
content or being susceptible to targeted poison attacks [59]. Furthermore, the evaluation of MU
presents unique difficulties, especially as conventional retraining benchmarks are often impractical.
Empirical metrics for assessing MU include unlearning accuracy, the utility of the model post-
unlearning, and the use of classifiers to gauge the integrity of generated outputs [37]. Unlike existing
methods, our approach efficiently suppresses the generation of harmful content using a one-step
diffusion generator that overrides ‘unsafe’ concepts with MU-regularized score-based distillation.

Concept Erasure for Diffusion Models Diffusion models have gained significant attention and
also triggered many controversies due to their incredible capability of generating high-quality, diverse
visual content. For example, with ill-intended text prompts, text-to-image diffusion models can easily
generate inappropriate images containing sensitive content. Consequently, concept erasure (CE)
has become a high priority for mitigating such problems. Current approaches mainly fall into two
categories: sampling-based training-free approaches and finetuning-based MU approaches. One
classic sampling-based approach is to set concepts to erase as negative prompts during sampling,
which is a direct application of classifier-free guidance (CFG) [29]. Further enhancing the idea of safe
guidance, Schramowski et al. [65] propose Safe Latent Diffusion (SLD) as a configurable method to
balance suppressing “unsafe” concepts with minimizing its impact on generated images. In parallel,
finetuning-based MU methods have also been applied to solve concept erasure problems [20; 27;
87; 19]. Closely related to CFG, ESD [20] finetunes the Stable Diffusion components to fit a target
conditional score function that contains the opposite direction of the score associated with concepts to
remove. Heng & Soh [27] perceive the MU problem from a Bayesian continual learning perspective
and introduce replaying data to retain the model’s generative capability for data to remember. Zhang
et al. [87] present a cross-attention-based loss to tackle the problem by minimizing attention weights
related to the concepts to forget. To improve finetuning efficiency, Fan et al. [19] propose selecting
parameters for finetuning based on the saliency map of the concept to remove. However, existing
methods are all based on standard multi-step diffusion models, making them not directly compatible
with more efficient one-step diffusion models distilled using score distillation methods. Therefore, we
foresee an opportunity for a novel, swift, and data-free MU approach that leverages score distillation
to solve the data-free MU problem while simultaneously enhancing the distilled model’s resilience to
"unsafe" concepts, achieving both goals at once.

Distribution Matching and Score Matching Generative modeling is a pivotal area in statis-
tics and machine learning. Prior to the development of diffusion models and their associated
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denoising score matching (SM) techniques, effectively matching distributions in high-dimensional
spaces—particularly those with intractable probability density functions—posed a significant chal-
lenge. Traditionally, deep generative models aimed to minimize discrepancies between data and
model probability distributions using various distribution-matching related loss functions. These
included Kullback-Leibler (KL) divergence [40; 85], Jensen-Shannon (JS) divergence [23], and
transport cost [74; 92; 88; 75]. While VAEs and GANs developed under this framework have
significantly advanced the field of generative modeling, they have exhibited limited capabilities
in faithfully regenerating the original data. More recent methods have utilized data-based Fisher
divergence [71; 31; 72] to compare noise-corrupted data with noise-corrupted model distributions.
While directly minimizing Fisher divergence, i.e., the explicit SM loss, is intractable, diffusion
models have effectively transformed the problem into minimizing a data-based denoising SM loss
[77; 69]. This transformation has allowed diffusion models to demonstrate exceptional capabilities
in generating high-dimensional data that closely resemble the original distribution. However, the
iterative denoising-based sampling inherent in these models is not only slow but also complicates
efforts to further optimize the data generation process for downstream tasks. This issue becomes
particularly challenging for tasks such as MU, which require the model to selectively forget specific
concepts we are targeting in this paper.

Accelerated Diffusion Models Classic score-matching-based diffusion models [69; 71; 31; 72]
have become increasingly influential in developing generative models with high extensibility and
sample quality [16; 39; 58]. However, standard Gaussian diffusion models, along with other non-
Gaussian variants [34; 3; 10; 94], suffer from relatively slow sampling compared to traditional
one-step generative models, such as GANs and VAEs. Inspired by the success of applying diffusion
processes to the training of generative models, Xiao et al. [82] and Wang et al. [78] were among the
first to promote faster generation by leveraging both adversarial training techniques and diffusion-
based data augmentation. However, these approaches inevitably reintroduce potential issues like
training instability and mode collapse. Closely related to the original score matching, Salimans & Ho
[63] proposed progressively halving the steps needed in the reverse generation process. Similarly,
Song et al. [73] presented the consistency model as a method for distilling the reverse ODE sampling
process. Along this direction, much effort has been made by others [83; 86; 47; 96] to improve both
sample quality and diversity.

Data-Free Score Distillation To address the slow sampling speed associated with traditional diffu-
sion models, score distillation methods have been developed to harness pretrained score functions.
These methods approximate data scores, facilitating model distribution matching under noisy condi-
tions to align with the noisy data distribution governed by the pretrained denoising score matching
function. These methods, as explored in several recent works [57; 79; 47; 52; 86], primarily utilize
the KL divergence, whose gradients can be analytically computed using both the pretrained and
estimated score functions. Importantly, these KL-based methods do not require access to real data, as
the KL divergence is defined with respect to the model distribution. While these approaches have
successfully approximated the data distribution in a data-free manner, they often suffer from perfor-
mance degradation when compared to the original, pretrained teacher diffusion model. Consequently,
additional loss terms that require access to the original training data or data synthesized with the
pretrained diffusion models are often necessary to mitigate this performance degradation. However,
employing these terms voids the data-free feature of the process. In response to these challenges,
Score identity Distillation (SiD) has emerged as an effective data-free solution for matching distribu-
tions by minimizing a model-based Fisher divergence. Although directly computing this divergence
is intractable, its minimization is effectively converted into a model-based score distillation loss.
This data-free method facilitates the distillation of the pretrained score function from the teacher
diffusion model into a potentially superior one-step student generator. Inspired by the success of this
data-free score distillation, we are motivated to integrate its loss into our algorithm, SFD, to enhance
its effectiveness and efficiency in generative modeling with data-free unlearning.

Evaluation of Machine Unlearning When applying MU to classification tasks, effectiveness-
oriented metrics include unlearning accuracy, which evaluates how accurately the model performs on
the forget set after unlearning [22]. Utility-oriented metrics include remaining accuracy, which
measures the updated model’s performance on the retain set post-unlearning [70], and testing
accuracy, which assesses the model’s generalization capability after unlearning. For generation
tasks, accuracy-based metrics use a post-generation classifier to evaluate the generated content [89],
while quality metrics assess the overall utility of the generated outputs [20]. A significant limitation
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of these metrics, particularly in measuring unlearning effectiveness, is their heavy dependence on the
specific unlearning tasks [19]. To address this, we train an external classifier to evaluate unlearning
accuracy (UA), ensuring that the generated images do not belong to the forgetting class or concept.
Additionally, we use FID to evaluate the quality of image generations for non-forgetting classes or
prompts.

B EXPERIMENTAL DETAILS

B.1 DATASETS FOR CLASS FORGETTING TASKS

For the class forgetting tasks, we utilize CIFAR-10 [41] at a resolution of 32× 32 and STL-10 [14] at
64× 64 resolution. The CIFAR-10 dataset consists of 60,000 32×32 color images in 10 classes, with
6,000 images per class. There are 50,000 training images and 10,000 test images. The dataset consists
of 50,000 training images and 10,000 test images. It is organized into five training batches and one
test batch, each containing 10,000 images. The test batch includes precisely 1,000 randomly-selected
images from each class. The training batches, which hold the remaining images in random order,
may have varying numbers of images from each class. The STL-10 dataset is another natural image
dataset with 10 classes, each of which has 500 training data and 800 testing data. The image data
has a higher resolution of 96×96 in pixels and RGB color channels compared with CIFAR-10. The
images were acquired from labeled examples on ImageNet [15]. During training time, the image data
from STL-10 are resized to 64×64. Due to the limited number of the original training data, both
training and testing data were used in the experiments, making up 13,000 training images in total.

B.2 EVALUATION

Unlearning accuracy For class forgetting tasks, we employed an external classifier to obtain
unlearning accuracy (UA), ensuring that the generated images are not associated with the class or
concept designated for forgetting. The UA is essentially the mis-classification rate of the classifier
on the generated samples from the target class. A classifier with high test accuracy and low UA
typically indicates effective forgetting, ensuring that the generated images are unlikely to belong to
the target class or concept. For the external classifier, we fine-tuned ResNet-34 [26] for 10 epochs
on both CIFAR-10 and STL-10 datasets using transfer learning, which is originally pretrained on
ImageNet [15]. We adapted the original 1000-way classification model by replacing the last fully-
connected layer with a customized fully-connected layer with 10 output dimension. The resulting
classifiers achieved training and testing accuracies of 99.96% and 95.03% on CIFAR-10, and 100.00%
and 96.20% on STL-10, respectively.

GCD score For the celebrity forgetting task, we first generated 1,000 images generated from 50
different prompts per celebrity. We then utilized an open-source celebrity detector1 to calculate the
proportion of images without human faces, referred to as probability without faces (“Prop. w/o
Faces”), and the average probability of detecting specific celebrities in images that contain faces,
referred to as the Giphy Celebrity Detection (GCD) score.

I2P metrics We followed the Inappropriate Image Prompts (I2P) benchmark introduced by [65]
to assess the risk of generating NSFW images in text-to-image diffusion models. The I2P dataset
consists of 4,703 text prompts covering a wide range of NSFW concepts, including “nudity.” For
each prompt, we generated 10 images and applied both the NudeNet and Q16 detectors to identify
inappropriate content. We report the sample-level inappropriate probability (referred to as “Inapprop.
Prob.”) and the prompt-level inappropriate rate (referred to as “Max. Exp. Inapprop.”).

B.3 SFD-TWO STAGE

We plot two main evaluation metrics for class forgetting experiments on CIFAR-10 for comparing
SFD with SFD-Two Stage in Figure 7.

1https://github.com/Giphy/celeb-detection-oss
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(a) FID (b) UA

Figure 7: Comparison between evaluation metrics, i.e., FID and UA, of the joint finetuning
(ours) and the second stage of the two-stage approach on the CIFAR-10 dataset. The blue line
and dot denotes the learning curve and last point of SFD. The orange line and dot denotes the learning
curve and last point of the two-stage approach.

Algorithm 1 SFD: Score Forgetting Distillation
Input: pre-trained score network sϕ, generator gθ , fake score network sψ , hybrid coefficient η, label/concept
to forget cf , label/concept to override co, remaining coefficient λψ and forgetting coefficient µψ for ψ update,
forgetting coefficient λθ and remaining coefficient µθ for θ update, tmin < tinit ≤ tmax
Initialization θ ← ϕ, ψ ← ϕ
repeat

Sample cr ∼ Dr , nr, nf ∼ N (0, I); Let xr = gθ(σinitnr, cr, tinit), xf = gθ(σinitnf , cf , tinit)
Sample ϵr, ϵf ∼ N (0, I), s, t ∼ Unif[tmin, tmax]
zr ← αsxr + σsϵr , zf ← atxf + σtϵf
Compute xψ according to Eq. 2 and reweighting coefficients γ(s), ωt
Update ψ with SGD using the following loss:
Lψ = λψγ(s)∥xψ(zr, cr, s)− xr∥22 + µψωt∥xψ(zf , cf , t)− xf∥22

Sample cr ∼ Dr , nr, nf ∼ N (0, I); Let xr = gθ(σinitnr, cr, tinit), xf = gθ(σinitnf , cf , tinit)
Sample ϵr, ϵf ∼ N (0, I), s, t ∼ Unif[tmin, tmax]
zr ← αsxr + σsϵr , zf ← atxf + σtϵf
Update gθ using SGD with the loss specified in Eq. 10:
Lθ = λθL̂sfd(θ, ψ;ϕ, cr, cr, η) + µθL̂sfd(θ, ψ;ϕ, co, cf , η)

until the maximum number training steps or images seen is reached
Output: gθ

B.4 IMPLEMENTATION DETAILS

We implemented our techniques in a newly developed codebase, loosely based on the original
implementations by [39; 19; 95]. The pseudo-code is described in Algorithm 1. We performed
extensive evaluation to verify that our implementation produced exactly the same results as previous
work, including samplers, pre-trained models, network architectures, training configurations, and
evaluation. All experiments were conducted using four NVIDIA RTX A5000 GPUs. For class
forgetting tasks, we pretrained base diffusion models for CIFAR-10 and STL-10. For concept
forgetting tasks, including celebrity forgetting and nudity forgetting under the SFD-Two Stage setting,
we utilized the pretrained checkpoint provided by Zhou et al. [95], which is a one-step diffusion
model based on Stable Diffusion 1.5.

B.5 FORGETTING CELEBRITIES

The text prompts used to train our model to forget “Brad Pitt” and “Angelina Jolie” were simply
“brad pitt” and “angelina jolie,” which correspond to the overriding prompts “a middle aged man” and
“a middle aged woman,” respectively.
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B.6 FORGETTING NUDITY AS A CONCEPT

We provide details of “nudity” forgetting experiments. Table 5 lists 12 common human subjects by
category that were used for fine-tuning our model, while Table 6 lists 27 NSFW keywords, which
often carry sexual connotations and suggest nudity. For the forgetting text prompts, we randomly
combined one of the human subject with one NSFW keyword in two forms: “<NSFW keyword>
<human subject>” and “<human subject>, <NSFW keyword>,” which correspond to a negative
prompt composed of the comma-separated 27 NSFW keywords.

We also provide additional nudity detection results by NudeNet detector in Table 7. Upon reviewing
the ’unsafe’ images flagged by NudeNet, we identified several false positives (see Figure 8 for
examples) that were unrelated to the classification results, such as cases where no exposed anus was
present in images generated by SFD.

Table 5: List of 12 subjects potentially prone to abuse

Category Subjects
Age and Gender boy, girl, man, woman
Group couple, people
Human Form person, figure, body, human form
Representation portrait, silhouette

Table 6: List of nudity-related NSFW keywords used for negative prompts

Category NSFW Keywords
Sexual Themes nudity, sexual, explicit, erotic, inappropriate, indecent, suggestive,

provocative, seductive, lewd

Clothing and Exposure revealing, topless, bottomless, lingerie, bikini, underwear, skimpy,
swimsuit, improper clothing, overexposure

Explicit Contexts pornography, adult content, nsfw, intimate, mature themes, objectifi-
cation, private setting

Table 7: Count of exposed body parts detected using the NudeNet classifier on the I2P benchmark
dataset (4703 images).

Model Armpits Belly Buttocks Feet Female Female Male Male Anus
Breasts Genitalia Breasts Genitalia

SD v1.4 214 171 40 39 295 23 21 6 0
SD v2.1 191 124 24 30 154 14 12 6 0
SLD Medium 58 60 7 15 42 1 21 0 0
ESD-u 60 17 13 9 26 1 4 3 0
SA 72 77 19 25 83 16 0 0 0
SFD (Ours) 25 10 4 3 8 2 1 7 1

B.7 ADDITIONAL EXPERIMENTS ON ADVERSARIAL ROBUSTNESS

We conducted additional experiments to evaluate the robustness of our method against adversarial
attacks. Specifically, we followed the adversarial setup described in UnlearnDiffAtk [91] and
evaluated our nudity-forgetting SFD model under scenarios without attacks and with adversarial
prompts. We measured the adversarial robustness of our model using the Attack Success Rate (ASR),
calculated based on NudeNet detection results of generated images from 142 prompts in the I2P
dataset. We denote the scenario without attacks as “Pre-ASR” and the scenario with UnlearnDiffAtk
as “Post-ASR.”

In addition to MU baselines for diffusion models, we included a stronger baseline in terms of
adversarial robustness against UnlearnDiffAtk, i.e., AdvUnlearn [90]. Here, “AdvUnlearn-UN” and
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Figure 8: Detection results of SFD-generated images using NudeNet. False alarms are marked in
red, while true positives are marked in green.

“AdvUnlearn-TE” represent SD models with UNet and text encoder finetuned using AdvUnlearn,
respectively. The evaluation results are provided in Table 8.

We note that our method, SFD, achieves the best Pre-ASR among all baselines and the best Post-ASR
among all UNet-based baselines, demonstrating the inherent robustness of our model. While the
original SFD model underperforms AdvUnlearn-TE in Post-ASR, incorporating AdvUnlearn-TE into
our SFD model (referred to as “SFD-TE”) achieves the best adversarial robustness across all models.
These results further demonstrate the flexibility and adaptability of our method.

Table 8: Adversarial robustness of different MU methods

Metric ESD FMN SLD AdvUnlearn-UN AdvUnlearn-TE SFD (ours) SFD+TE (ours)
Pre-ASR 20.42% 88.03% 33.10% - 7.75% 7.04% 0.70%
Post-ASR 76.05% 97.89% 82.39% 64.79% 21.13% 55.63% 7.04%

B.8 ADDITIONAL EXPERIMENTS ON ALTERNATIVE SCORE DISTILLATION METHODS

To demonstrate the flexibility of the SFD framework, we adapted it to accommodate alternative
score distillation methods, such as Diff-Instruct [48]. Specifically, we incorporated a Kullback-
Leibler (KL)-divergence-based forgetting distillation loss into the SFD framework, resulting in a
variant denoted as “SFD-KL.” Similar to Equation (3), this KL-based score forgetting distillation loss
is defined as follows:

Lsfd-kl(θ;ϕ, c1, c2) = Ezt,t,x∼Dθ,c2

[
ωt log

pθ(zt | c2, t)
pϕ(zt | c1, t)

]
. (13)

Following Luo et al. [48], the gradient of this loss with respect to the generator is given by:

∇θLsfd-kl = Ezt,t,x∼Dθ,c2

[
ωtαt

(
sψ∗(θ)(zt, c2, t)− sϕ(zt, c1, t)

)
∇θx

]
, (14)
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where the true score sψ∗ is approximated by the score estimator sψ during training. A comparison
of the original SFD and the adapted SFD-KL is presented in Table 9. While both methods perform
well, the original SFD achieves superior results across all metrics except Precision, demonstrating
its enhanced generation quality and diversity. Figure 9 further highlights the advantages of SFD,
showcasing faster convergence and a lower final FID compared to SFD-KL. These findings emphasize
the efficiency and effectiveness of SFD in MU tasks. Overall, the results demonstrate the flexibility of
the SFD framework in adapting to alternative score distillation methods while maintaining competitive
performance. Additionally, the faster convergence and improved generation quality achieved by the
original SFD underscore its robustness and practicality for real-world applications.

Table 9: Comparison of SFD and SFD-KL across various metrics.

Model UA (↑) FID (↓) IS (↑) Precision (↑) Recall (↑) NFEs (↓) Data-free
SFD 99.64 5.35 9.51 0.6587 0.5471 1 Yes

SFD-KL 99.53 6.99 9.44 0.6688 0.5016 1 Yes

Figure 9: FID training curve comparison between SFD and SFD-KL. SFD achieves faster convergence
and a better final FID, highlighting its superior efficiency and performance.

B.9 HYPERPARAMETER SETTINGS

We list all the detailed hyparameter settings for training our DDPM, EDM, SD models in Table 10.

C LIMITATIONS

There can be substantial disparities and biases between training and testing datasets in real-world
settings. These discrepancies might result in models performing poorly and having unintended effects
when applied to new, unseen data. To address these challenges and lessen the impact of biases, it is
crucial to employ strategies like data preprocessing, augmentation, and regularization. Additionally,
considerations around environmental and computational resource usage are important. Such measures
will enhance the models’ usability and accessibility across diverse user groups.
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Table 10: Detailed unlearned and distilled diffusion hyperparameter setting in for both DDPM, EDM,
and SD model architectures

Scope Hyperparameter Model
DDPM EDM SD

Training batch size 128 256 8
#kimgs 6,400 20,480 100 / 300

Distillation
σinit 2.5 2.5 2.5
tmin 38 0 20
tmax 712 800 980
η 1.2 1.2 1.0

Forgetting cf 0 0 see B.5/B.6
co 1 1 see B.5/B.6

sψ

λψ 1.0 1.0 1.0
µψ 0.01 0.01 1.0

optimizer Adam Adam Adam
learning rate 3× 10−5 10−5 3× 10−6

β1 0.0 0.0 0.0
β2 0.999 0.999 0.999
ϵ 10−8 10−8 10−8

gθ

λθ 1.0 1.0 1.0
µθ 0.01 0.01 1.0

optimizer Adam Adam Adam
learning rate 10−5 10−5 10−6

β1 0.0 0.0 0.0
β2 0.999 0.999 0.999
ϵ 10−8 10−8 10−8
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D PROOF OF LEMMA 1

For a fixed timestep t, we have:

Egθ∥sϕ(y, c1)− sθ(y, c2)∥2

= Egθ [(sϕ(y, c1)− sθ(y, c2))
T sϕ]− Egθ [(sϕ(y, c1)− sθ(y, c2))

T sθ]

= Egθ [(sϕ(y, c1)− sθ(y, c2))
T sϕ]−

∫
y

(sϕ(y, c1)− sθ(y, c2))
T∇ypθ(y | c2)dy

= Egθ [(sϕ(y, c1)− sθ(y, c2))
T sϕ]−

∫
y

(sϕ(y, c1)− sθ(y, c2))
T∇y

(∫
x

p(y | x)pθ(x | c2)dx
)
dy

= Egθ [(sϕ(y, c1)− sθ(y, c2))
T sϕ]−

∫
y

(sϕ(y, c1)− sθ(y, c2))
T

∫
x

∇yp(y | x)pθ(x | c2)dxdy

= Egθ [(sϕ(y, c1)− sθ(y, c2))
T sϕ]−

∫∫
x,y

(sϕ(y, c1)− sθ(y, c2))
T s(y | x)pθ(x, y | c2)dxdy

= Egθ [(sϕ(y, c1)− sθ(y, c2))
T sϕ]− Egθ [(sϕ(y, c1)− sθ(y, c2))

T s(y | x)]
= Egθ [(sϕ(y, c1)− sθ(y, c2))

T (sϕ + σ−2(y − αx))]

= ασ−2Egθ [(sϕ(y, c1)− sθ(y, c2))
T ((σ2sϕ + y)/α− x)]

= ασ−2Egθ [(sϕ(y, c1)− sθ(y, c2))
T (xϕ(y, c1)− x)]

where gθ represents the joint distribution of z, x and z = αx+ σϵ, x ∼ Dθ,c2 , ϵ ∼ N (0, I). We can
see that the equality holds for arbitrary t up to some constant. Therefore, for any weighted sum or
expectation of the losses w.r.t. t, we know the two expressions are equivalent.

25


	Introduction
	Method
	Problem Definition and Notations
	Score Forgetting Distillation

	Experiments
	Experimental Results
	Ablation Studies

	Conclusion
	Related work
	Experimental Details
	Datasets for class forgetting tasks
	Evaluation
	SFD-Two Stage
	Implementation Details
	Forgetting Celebrities
	Forgetting Nudity as a Concept
	Additional Experiments on Adversarial Robustness
	Additional Experiments on Alternative Score Distillation Methods
	Hyperparameter Settings

	Limitations
	Proof of Lemma 1

