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Connectivity-based Cerebrovascular Segmentation in
Time-of-Flight Magnetic Resonance Angiography

Anonymous Authors

ABSTRACT
Accurate segmentation of cerebrovascular structures from TOF-
MRA is vital for treating cerebrovascular diseases. However, ex-
isting methods rely on voxel categorization, leading to disconti-
nuities in fine vessel locations. We propose a connectivity-based
cerebrovascular segmentation method that considers inter-voxel
relationships to overcome this limitation. By modeling connectiv-
ity, we transform voxel classification into predicting inter-voxel
connectivity. Given cerebrovascular structures’ sparse and widely
distributed nature, we employ sparse 3D Bi-level routing atten-
tion to reduce computational overhead while effectively capturing
cerebrovascular features. To enhance directional information ex-
traction, we utilize the 3D-direction excitation block. Additionally,
the 3D-direction interactive block continuously augments direction
information in the feature map and sends it to the skip connection.
We compare our method with current state-of-the-art cerebrovas-
cular segmentation techniques and classical medical image segmen-
tation methods using clinical and open cerebrovascular datasets.
Our method demonstrates superior performance, outperforming
existing approaches. Ablation experiments further validate the ef-
fectiveness of our proposed method.

CCS CONCEPTS
• Applied computing→ Health informatics.

KEYWORDS
cerebrovascular segmentation, connectivity, directional informa-
tion

1 INTRODUCTION
High morbidity and mortality rates associated with cerebrovascular
diseases pose significant threats to health and well-being. Early and
accurate diagnosis, coupled with effective treatment, is paramount
in mitigating the progression of these conditions.

Current medical imaging technologies, including vascular ul-
trasound, computed tomography angiography, digital subtraction
angiography, and magnetic resonance angiography (MRA), play
a crucial role in early cerebrovascular disease diagnosis. Time-of-
flight MRA (TOF-MRA) is preferred due to its non-radioactive, non-
invasive nature and other advantages [11]. However, precise seg-
mentation of cerebrovascular structures from TOF-MRA remains
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challenging, with manual segmentation being time-consuming and
reliant on expert knowledge.

Deep learning has become increasingly prevalent in cerebrovas-
cular segmentation due to its robust feature extraction capabilities[2,
6, 14]. However, many current deep learning-based approaches[9,
15, 16, 21] treat cerebrovascular segmentation as a voxel-level clas-
sification task, assigning each voxel a score indicating its likelihood
of belonging to the cerebrovascular structure. While these meth-
ods have demonstrated favorable segmentation results, they often
overlook the interrelation between voxels, leading to poor connec-
tivity in delicate cerebrovascular structures. This limitation could
potentially impact diagnostic accuracy and treatment planning.

Recent research has explored novel approaches to address these
limitations, such as modeling inter-voxel relationships using con-
nectivity masks [19]. Unlike traditional segmentation masks, con-
nectivity masks incorporate directional information and guide the
network to extract richer contextual information. This approach
shows promise in enhancing cerebrovascular segmentation accu-
racy and improving diagnostic and treatment outcomes.

Each channel in the connectivity mask corresponds to a specific
direction[26], enriching it with abundant directional information.
Similarly, the feature map within the connectivity-based network
also contains rich directional information. Extracting and leverag-
ing this latent directional information from the feature map holds
promise for enhancing the network’s segmentation performance.
To accomplish this, we introduce a 3D direction excitation block
designed to amplify directional information from the feature map
through channel-wise operations.

Cerebrovascular, which exhibits a widespread distribution across
the brain[22]. Given the transformer model’s capability to cap-
ture long-distance dependencies[8], employing it to extract cere-
brovascular features is advantageous. However, cerebrovascular
are sparsely distributed[10], leading to excessive computational
overhead in background areas when using traditional transform-
ers. We adopt a sparse attention mechanism,3D Bi-level routing
attention, to address these concerns and devise a 3D Bi-level For-
mer block. This approach prioritizes feature extraction in regions
with dense blood vessel concentration, thereby mitigating compu-
tational burden while preserving the ability to capture long-range
dependencies of cerebrovascular.

In summary, we propose a connectivity-based cerebrovascular
segmentation framework, TransConNet, that addresses the main
challenges of cerebrovascular segmentation by incorporating a
connectivity mask. Our main contributions are as follows:

• Considering the propensity for voxel-based classification
methods to cause disconnects in the thin cerebrovascular, we
transformed the task of cerebrovascular segmentation from
voxel classification to predicting inter-voxel connectivity.

• Considering the beneficial hidden directional information
within feature maps for connectivity prediction, we devised

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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a 3D direction excitation block and a 3D direction interac-
tive block to extract and facilitate the flow of hierarchical
directional information between the encoder and decoder.

• Our experimental results demonstrate superiority on clinical
and public datasets compared with four state-of-the-art cere-
brovascular segmentation models and two classic medical
segmentation methods.

2 RELATE WORK
This section briefly reviews the state-of-the-art approaches for
cerebrovascular segmentation and the connect-based segmentation
method.

2.1 Cerebrovascular Segmentation
Deep learning has rapidly emerged as the preferred method for
cerebrovascular segmentation due to its exceptional ability to repre-
sent cerebrovascular features accurately [23]. Yet, some challenges
in cerebrovascular segmentation remain, such as class imbalance.

The foreground region of the vessels is often significantly smaller
than the background, leading to a class imbalance issue. Kervadec
et al. [10] proposed boundary loss, which utilizes integrals over
the interface between regions to complement regional information
by penalizing misclassifications at boundary regions. Additionally,
Wang et al. [24] introduced a novel method by embedding image
composition generated by maximum intensity projection into 3D
MRA volumetric images. This technique enhances the model’s abil-
ity to capture subtle vascular features and improve segmentation
accuracy. While these methods mitigate class imbalance issues, they
still focus on computations in the background area. To optimize effi-
ciency, we propose leveraging sparse attention to prioritize feature
extraction in the blood vessel region, thus minimizing computa-
tional waste.

2.2 connect-based segmentation
Preserving the topology of cerebrovascular structures, encompass-
ing their spatial arrangement and connectivity, is crucial for ac-
curately segmenting cerebrovascular systems with complex and
intricate features. Banerjee et al.[1] proposed a multi-task deep
convolutional neural network that simultaneously learns the dis-
tance transform for voxels on the vessel tree surface and the vessel
centerline, these auxiliary tasks contribute to preserving the topog-
raphy of vessel segmentation. Similarly, Gupta et al. [7] introduced
a topological interaction module to identify critical pixels that in-
duce topological errors, further enhancing segmentation accuracy.
However, despite the advancements made by these methods in
increasing precision and accuracy, they still treat each voxel as
an independent entity and do not explicitly consider inter-voxel
relationships, which are crucial for fully preserving cerebrovascular
connectivity.

A promising approach is connectivity-based segmentation meth-
ods, which leverage connectivity masks as training labels. These
masks typically consist of 4, 8, or 26 channels, depending on each
pixel’s predicted number of neighboring pixels, encoding informa-
tion about voxel connectivity in designated directions. Kampffmeyer
et al. cite kampffmeyer2018connnet pioneered four and 8-channel
connection masks, demonstrating their efficacy in natural image

segmentation. Subsequently, Qin et al.[19] explored connectivity
models, showcasing their effectiveness in 3Dmedical image segmen-
tation. Furthermore, Yang et al.[27] integrated pixel connectivity
prediction and pixel classification for in vivo human esophageal
optical coherence tomography layer segmentation.

3 METHDOS
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Figure 1: Connectivity modeling process

3.1 connectivity modeling
In a three-dimensional MRA, 26-connectivity effectively describes
the relationship between one voxel and its 26 neighbors (see Fig.
1). Given a voxel at position 𝑝 = (𝑥,𝑦, 𝑧), we denote its 26 neigh-
bor voxels as 𝑞𝑖 = (𝑥 + 𝑢,𝑦 + 𝑣, 𝑧 + 𝑤), 𝑖 ∈ 𝑐1, 𝑐2, · · · , 𝑐26, where
𝑢, 𝑣,𝑤 ∈ 0,±1 and not all are 0. If both 𝑝 and 𝑞𝑖 are vessel voxels,
their pair (𝑝, 𝑞𝑐𝑖 ) is considered connected, and the correspond-
ing 𝑐𝑖 th channel of position 𝑝 is marked positive. Otherwise, it
is marked negative for a disconnected pair (𝑝, 𝑞𝑐𝑖 ). By traversing
each voxel of the segmentation mask, we establish the relationship
between it and the adjacent 26 voxels, resulting in a 26-channel
connectivity mask. Zero padding is performed on the borders of
the MRA volume to maintain the size of the generated connectivity
mask. By representing the segmentation mask as a connectivity
mask, we transform the task of voxel classification into inter-voxel
relationship prediction. We utilize both the segmentation mask
and connectivity mask to model voxel correlation for supervised
learning.

3.2 Network Architecture
The backbone of the proposed network is presented in Fig. 2. The
proposed TransConNet is an asymmetrical encoder-decoder struc-
ture, mainly composed of encoder, bottleneck, decoder and skip
connections, which can learn the hierarchy of connectivity features
at multiple scales.

In the encoder, the patch partition block initially divides the input
images into non-overlapping patches of size 4× 4× 4. Subsequently,
a linear patch embedding block is applied to expand the feature
dimension to 3𝐶 . Here, 𝐶 = 26, representing the dimension of the
26-adjacent connection. Each scale of the encoder is composed
of several Bi-former blocks and patch merging blocks, of which
patchmerging block downsamples spacial resolution and increasing
channel dimensions, while Bi-former blocks focus on connectivity
feature learning. Ultimately, the encoder transforms features to the
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Figure 2: Architecture of TransConNet for Cerebrovascular Segmentation.

size of 𝑊32 × 𝐻
32 × 𝑆

32 × 24𝐶 . In contrast to patch merging block, the
decoder utilizes patch expanding block to decompress the feature
until spacial resouliton matches the input image. The final patch
expanding block restore the feature maps to the size of𝑊 ×𝐻×𝑆×𝐶 .

To capture directional information stored in the channel dimen-
sion, 3D direction excitation is applied at the bottleneck. Addition-
ally, each scale incorporates a 3D-direction enhancement block in
the skip connection to facilitate the flow of hierarchical direction
information between the encoder and decoder. Further elaboration
on TransConNet’s details follows.

3.2.1 3D Bi-level Former block. The Transformer model demon-
strates its remarkable ability to capture long-range dependencies,
making it well-suited to model complex vascular structures that
continuously connect different brain regions. However, the cere-
brovascular target is sparse and small compared to the background
tissue. Thus, we utilize 3D Bi-level routing attention in our 3D
BiFormer block to improve the computation efficiencies. It utilizes
a sparse attention mechanism to compute the self-attention feature,
which can effectively process the sparse targets within the denser
background.

Specifically, the Bi-level routing attention is done as follows.
Given an input feature map 𝑋 ∈ R𝐻 ′×𝑊 ′×𝐷′×𝐶′

, we first divide
it into 𝑆 × 𝑆 × 𝑆 nonoverlapped patches, and reshape it as 𝑋𝑟 ∈
R
𝑆3×𝐻 ′𝑊 ′𝐷′

𝑆3 ×𝐶′
. Then, we derive the query, key,and value tensor,

𝑄,𝐾,𝑉 ∈ R𝑆
3×𝐻 ′𝑊 ′𝐷′

𝑆3 ×𝐶′
, with linear projetions:

(𝑄,𝐾,𝑉 ) = (𝑋𝑟𝑊𝑄 , 𝑋𝑟𝑊𝐾 , 𝑋𝑟𝑊𝑉 ), (1)

where𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ R𝐶′×𝐶′
are projection weights for the query,

key, and value, respectively.
After that, we seek the dynamic sparsity through the construc-

tion of a directed graph. Specifically, the region-level queries and
keys, 𝑄𝑟 , 𝐾𝑟 ∈ R𝑆

3×𝐶′
, are derived by applying per-region average

on 𝑄 and 𝐾 respectively. We then calculate the adjacency matrix
𝑀𝑟 ∈ R𝑆

3×𝑆3
as follow:

𝑀𝑟 = 𝑄𝑟 (𝐾𝑟 )⊤, (2)

which gives the correlation between different regions. Then, we use
row-wise top-k operator to retain only the first 𝑘 connections of
each region (k defaults to 4) and obtain the index matrix 𝐼𝑟 ∈ R𝑆

3×𝑘 :

𝐼𝑟 = TopK(𝑀𝑟 ) . (3)
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We then extract the corresponding key and value tensor of interest
through the gather operator:

𝐾𝑔 = Gather(𝐾, 𝐼𝑟 ),𝑉𝑔 = Gather(𝑉 , 𝐼𝑟 ), (4)

where 𝐾𝑔,𝑉𝑔 ∈ R𝑆
3× 𝑘𝐻 ′𝑊 ′𝐷′

𝑆3 ×𝐶′
are gathered key and values tensor.

Further, we apply attention on gathered key-value paris as:

𝑂 = Softmax(
𝑄𝐾⊤

𝑔√
𝐶 ′

)𝑉𝑔 . (5)

Finally, we reshape the output attention feature𝑂 ∈ R𝑆
3× 𝑘𝐻 ′𝑊 ′𝐷′

𝑆3 ×𝐶

back to the size of 𝐻 ′ ×𝑊 ′ × 𝐷 ′ ×𝐶 ′.
The designed 3D Bi-level Former block is like the standard vision

transform structure, which is composed of depthwise convolution
(DWConv), multi-layer percetron (MLP), and Bi-level routing at-
tention (BiRA).

Supposing the input feature as 𝑃in, the previous calculaiton pro-
cess can be defined as follows:

𝑃1 = DWConv(𝑃in) + 𝑃in, (6)

𝑃2 = BiRA ◦ LN(𝑃1) + 𝑃1, (7)

𝑃out = MLP ◦ LN(𝑃2) + 𝑃2 . (8)

First, the embedded token sequence of the input images under-
goes layer normalization to ensure that the input values are within
manageable ranges. Then, it is passed through the PDSA module,
with the residual connecting its output to the embedded sequence.
Following this, another layer normalization is applied, and the feed-
forward network employs an MLP for feature projection, followed
by a residual connection.

The structure of the designed 3D BiFormer block is shown in
Figure.2(d). consisting of three main components: depthwise convo-
lution (DWConv), multi-layer percetron (MLP), and Bi-level routing
attention (BiRA).

3.2.2 3D-direction excitation block. We incorporate the connectiv-
itymask during the training process, to capture the directional infor-
mation within the channels of the feature map. Building upon this
approach, we introduce the 3D direction excitation (DE) Module,
where directional information is predominantly captured through
channel-level operations. The DE block is depicted in Figure.2(b).

Suppose 𝑠𝑖 as the output of the 𝑖-th scale of the encoder. Then
𝑠4 is sent to the bottleneck, i.e. direction excitation block. Two
branches are included, the first branch is for weights for each direc-
tion channel, and the second branch is the corresponding direction
feature.

For the first branch, we first upsample 𝑠4 to the input size and
get a preliminary output 𝑥𝐷𝐸 , which will be supervised to learn the
connectivity mask. Then, we use global average pooling to squeeze
𝑥𝐷𝐸 into a vector 𝛼𝐷𝐸 of size 1 × 1 × 1 × 24𝐶 .

𝑥𝐷𝐸 = (Conv ◦ Upsample ◦ Conv) (𝑠4), (9)

𝛼𝐷𝐸 = (Sig ◦ Conv ◦ Conv ◦ Avgp) (𝑥𝐷𝐸 ) . (10)

Then, we split the latent features 𝑠4 into 26 parts by channel wise
slicing, of which the 𝑖th slices is denoted as 𝑠𝑖4. We pass each feature
slice 𝑠𝑖4 through pixel-wise and channel-wise attention blocks to

capture the long-range and inter-channel dependencies, results in
𝑠𝑖4:

𝑠𝑖4 = PAB(𝑠𝑖4) + CAB(𝑠𝑖4) . (11)
Then, we stack all 𝑠𝑖4 by channel-wise dimension into one feature
map 𝑠4. We then multiply 𝑠4 and 𝛼𝐷𝐸 in a channel-wise manner,
allowing network to learn specific direction information.

The final output of 3D-direction excitation block is recoded as:

𝑠DE = Conv(Conv(𝑠4 · 𝛼𝐷𝐸 ) + 𝑠4) . (12)

3.2.3 3D-direction interactive block. To make the direction infor-
mation fused into the feature map in each scale of the decoder, we
incorporate a direction interactive block (DIB) to transmit direction
information from the down-scale to the up-scale of the decoder.
The direction interactive block as show in Figure.2(e)

At the 𝑖th scale, DIB fuse the main feaure map 𝑑𝑖+1 that from
decoder and direction enhanced map 𝑟𝑖+1 .Suppose the output of the
𝑖th DIB as 𝑟𝑖 ,in order to avoid the interference of spatial information,
we first apply Global Average Pooling on 𝑟𝑖+1, and project it to the
same number of channels as 𝑑𝑖+1:

𝑟𝑖+1 = (Conv ◦ Avgp) (𝑟𝑖+1). (13)

Next, we dot 𝑟𝑖+1 with the encoded 𝑑𝑖+1 channel-wise, resulting
in 𝑑𝑖+1, where direction-related information is enhanced across
channels. We then apply the sigmoid function to 𝑑𝑖+1 and multiply
it with the encoded 𝑑𝑖+1 to enhance the directional information on
the main feature map 𝑑𝑖+1:

𝑟𝑖 = Sig(𝑑𝑖+1) ⊗ Conv(𝑑𝑖+1) . (14)

The direction-enhanced map 𝑟𝑖 is concatenated with 𝑠𝑖 , the feature
from the encoder layer, to enrich the directional information in
the decoder feature map. Additionally, 𝑟𝑖 is passed to the subse-
quent DIB as input, facilitating the bottom-up flow of directional
information.
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Figure 3: The overview of Bilateral voting for connectivity
output

3.2.4 Bilateral voting for connectivity output. In the predicted seg-
mentation mask 𝑆 , if a pair of neighboring voxels 𝑆 (𝑥,𝑦, 𝑧) and
𝑆 (𝑥 + 𝑎,𝑦 + 𝑏, 𝑧 + 𝑐) belongs to vessel, where 𝑎, 𝑏, 𝑐 ∈ {0,±1} and
are not all simultaneously 0, the connected pairs 𝐶𝑖 (𝑥,𝑦, 𝑧) and
𝐶27−1 (𝑥 + 𝑎,𝑦 + 𝑏, 𝑧 + 𝑐) in the predicted connectivitymap𝐶 should
ideally be equal. This implies that the probabilities of unidirectional
connection to each other should be equal, but in practice, this is
rarely the case. Therefore, we propose 3D Bilateral Voting (BV)to
address this issue.The process of bilateral voting is shown in the
Fig. 3.
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We multiply all connectivity pairs separately and reassign the
resulting result to the connection pair, then we can obtain the new
connectivity map 𝐶 , and the process can be formulated as:

𝐶𝑖 (𝑥,𝑦, 𝑧) = 𝐶27−𝑖 (𝑥 + 𝑎,𝑦 + 𝑏, 𝑧 + 𝑐)

=
√︁
𝐶𝑖 (𝑥,𝑦, 𝑧) ·𝐶27−𝑖 (𝑥 + 𝑎,𝑦 + 𝑏, 𝑧 + 𝑐) .

(15)

Here, 𝑎, 𝑏, 𝑐 ∈ {0,±1} and are not all simultaneously 0. We take
the segmentation prediction �̃� as the geometric mean of the first 𝑏
largest values of 𝐶 (𝑖) , where 𝐶 (𝑖) denotes as the 𝑖th largest value
of 𝐶 . This can be expressed as:

�̃� = (
𝑏∏
𝑖=1

𝐶 (𝑖) )
1
𝑏 . (16)

To obtain the final vessel segmentation mask 𝑆 , we apply a thresh-
olding operation to �̃� as follows:

𝑆 (𝑥,𝑦, 𝑧) =
{

1 if �̃� (𝑥,𝑦, 𝑧) > 0.5,
0 if �̃� (𝑥,𝑦, 𝑧) ≤ 0.5.

(17)

3.3 Training Loss
Both TransConNet and its bottleneck block (directional excitation
block) output the connectivity and segmentation masks. Thus, our
training loss consists mainly of two parts: main lossL𝑚𝑎𝑖𝑛 and aux-
iliary loss L𝑎𝑢𝑥 , corresponding to the final and bottleneck outputs
of TransConNet, represented as:

Ltotal = Lmain + 0.3Laux . (18)

In particular, Lmain and Laux have the same form, consisting of
connectivity loss and segmentation loss. As an example, the main
loss has the form:

Lmain = Lseg + Lcon . (19)

Moreover, Lseg is composed of the binary crossing entropy loss
LBCE, the dice loss LDice, and the intersection over union loss
LIoU[13, 20], represented as:

Lseg = LBCE (�̃� ,𝐺𝑆 ) + LDice (𝑆,𝐺𝑆 ) + LIoU (𝑆,𝐺𝑆 ), (20)

where 𝐺𝑠 and 𝐺𝑐 are the ground truth segmentation label and
its corresponding connectivity labels. �̃�and 𝑆 are computed from
Eq. 16 and Eq. 17 respectively.

To ensure that our predicted connectivity masks remain consis-
tent with the ground truth𝐺𝐶 , we utilize both 𝐶 and 𝐶 (Eq. 15) to
compute the connectivity loss:

Lcon = LBCE (𝐶,𝐺𝐶 ) + LBCE (𝐶,𝐺𝐶 ) . (21)

By integrating these two connectivity loss functions, our model
is trained to generate accurate connectivity masks. This leads to
improved performance in cerebrovascular segmentation tasks.

4 EXPERIMENTS
4.1 Cerebrovascular datasets
4.1.1 FAH-WMU dataset. The FAH-WMU dataset comprises 82
cases of TOF-MRA volumes, acquired using a 3T Philips Medical
MRI System at the First Affiliated Hospital of Wenzhou Medical
University. The acquisition parameters include an echo time of 3.46

ms, a resolution of 560× 560× 140, a repetition time of 23 ms, a flip
angle of 18 degrees, and a voxel size of 0.38 × 0.38 × 0.70,mm3.

Two graduate medical students initially manually annotated the
cerebral vessels in each TOF-MRA volume. Subsequently, three
experienced cerebrovascular clinicians compared the initially an-
notated vessels with the original TOF-MRA volumes to correct
any missing or incorrect vessels. Finally, a chief physician further
examined the annotation results.

Before conducting the experiments, written consent was ob-
tained from all participants, and ethical approval was obtained
from the respective ethics committees at Zhejiang University of
Technology and the First Affiliated Hospital of Wenzhou Medical
University.

4.1.2 IXI dataset. The IXI dataset[3] is a public cerebrovascular
dataset that comprises 45 TOF MRA volumes. These volumes were
acquired using a 3T MRI scanner and followed standardized proto-
cols. All volumes have dimensions of 1024 × 1024 × 92 and a voxel
size of 0.264 × 0.264 × 0.8𝑚𝑚3. The ground truth for each volume
has been annotated voxel-wise under the supervision of multiple
radiologists, each possessing over three years of clinical experience.

4.2 Experimental details
We randomly selected 62 cases from the FAH-WMU dataset and 25
from the IXI dataset for training. The remaining cases from both
datasets were used for validation. Independent experiments were
conducted on each dataset.

During the training phase, we applied random axis mirror flips
with a probability of 0.5 for all three axes and random rotations
ranging from 0 to 90 degrees with a probability of 0.5 to perform
data augmentation. All MRA volume data were normalized with a
zero mean and unit standard deviation.

Due to the high GPU memory requirement for processing the
entire volume during training, we divided the segmentation mask
𝐺𝑆 , connectivity mask 𝐺𝐶 , and raw volume into sub-volumes with
dimensions of 128×128×128, which was then fed into our network.

During testing, we post-processed the predicted results of the
sub-volume to obtain the complete cerebrovascular segmentation
results.

We trained and tested the models using the PyTorch framework,
utilizing the Adam optimizer with a fixed learning rate of 10−4. The
experiments were performed on an Nvidia V100 GPU, leveraging its
computational power for efficient model training and evaluation.

4.3 Evaluation metrics
We assessed model’s segmentation performance using various met-
rics, including Dice Similarity Coefficient (DSC) [4, 29], 95th per-
centile Hausdorff Distance (HD95) [12], Average Symmetric Surface
Distance (ASSD) [31], Relative Volume Error (RVE), and Sensitivity
(SENS) [28]. These metrics collectively evaluate spatial overlap and
geometric accuracy, providing insights into segmentation agree-
ment, accuracy across the region, geometric precision, identification
of positive cases, and volume difference. We obtained a comprehen-
sive evaluation of segmentation performance by considering these
metrics together.
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4.4 Comparison with State-of-the-Art Methods
We compared TransConNet with four state-of-the-art deep-based
cerebrovascular segmentation models (CSNet [15], RENet [30], ER-
Net [25], and DSCNet [18]), as well as two classical medical segmen-
tation methods (3DUnet [5] and VTUet [17]), on the FAH-WMU
and IXI datasets. All models utilize the same experimental setup
and data augmentation.

Table 1 and Table 2 illustrate the quantitative metrics for different
models on the FAH-WMU and IXI datasets, respectively, with values
representing averages on the testing dataset. For the FAH-WMU
dataset, TransConNet achieves a DSC of 92.268%, ASSD of 0.695mm,
SENS of 91.331%, and REV of 2.581%, outperforming the state-of-
the-art methods in all measurements. Similarly, on the IXI dataset,
TransConNet achieves a DSC of 83.197%, ASSD of 1.376mm, SENS
of 82.323%, and REV of 7.144%, again surpassing the performance
of other methods.

Cerebral blood vessels are highly intricate structures consisting
of numerous small vessels, which poses a significant challenge for
accurate extraction. As depicted in Fig. 4, like 3DUNet [5], VTUNet
[17], and ERNet [25] struggle to identify delicate cerebrovascu-
lar structures accurately, while others such as CSNet [15], RENet
[30], and DSCNet [18] exhibit interruptions along the middle po-
sitions. However, TransConNet demonstrates promising segmen-
tation results, by accurately capturing small vessels and ensuring
connectivity in delicate structures. This success is attributed to
TransConNet’s utilization of voxel connectivity.

Table 1: Cerebrovascular segmentation performance of
different models over FAH-WMU dataset, with the best

results highlighted

Method DSC HD95 ASSD REV SENS

3DUNet 88.077 7.051 1.367 13.79 82.298
VTUNet 88.767 5.694 1.136 12.62 83.802
CS2Net 89.263 3.215 0.879 16.321 82.043
RENet 90.388 2.068 0.820 8.805 82.007
ERNet 90.721 2.902 0.929 5.172 89.191
DSCNet 91.143 1.845 0.777 10.937 86.620

TansConNet 92.413 1.188 0.669 2.581 91.331

Table 2: Cerebrovascular segmentation performance of
different models over the IXI dataset, with the best results

highlighted

Method DSC HD95 ASSD REV SENS

3DUNet 77.916 17.486 2.435 21.116 69.864
VTUNet 76.040 18.882 2.63 30.956 64.365
CS2Net 72.810 19.861 2.786 31.093 61.658
RENet 76.295 17.366 2.455 28.117 65.675
ERNet 81.539 13.041 1.961 15.844 75.321
DSCNet 82.081 10.578 1.825 7.159 81.110

TansConNet 83.197 6.819 1.376 7.144 82.323

4.5 Ablation study
In this work, we propose a connectivity-based cerebral blood vessel
segmentation method. The goal of our work is to use connectiv-
ity masks to improve the segmentation accuracy of cerebral blood
vessels and maintain the connections of small blood vessels. In
particular, we utilize connectivity mask and connectivity loss to
maintain vessel segmentation consistency and introduce direction
excitation block and direction interactive block to excite and flow
directional information in feature maps. All of these operations
are specially designed to improve the connectivity of vessel seg-
mentation and to preserve detailed features as much as possible.
We conducted three ablation studies to investigate the influence
of connectivity masks and their associated connectivity losses on
segmentation. Additionally, we analyzed the individual impact of
each module on segmentation outcomes, as well as examined the
effects of different loss functions employed during training on seg-
mentation results.

Table 3: Cerebrovascular segmentation performance of
TansConNet when adding connectivity mask and connec-
tivity loss,

√
indicates the presence of this mask and corre-

sponding loss, with the best results highlighted

seg mask con mask DSC HD95 ASSD REV SENS
√

90.978 1.399 0.761 5.996 88.262√ √
91.930 1.284 0.786 3.309 90.369

4.5.1 Ablations study on connectivity mask and connectivity loss.
In this experiment, we initially utilize the segmentation mask as the
training label, followed by the addition of the connectivity mask and
corresponding connectivity loss. As shown in Table 3, the addition
of the connectivity mask and the corresponding connectivity loss
increased the DSC by 0.952. Although there was a slight rise in
ASSD, other indicators demonstrated improvement. This shows that
considering the connectivity between voxels can improve blood
vessel segmentation results

Table 4: Ablation study on our architectures.
√
indicates the

presence of this block, with the best results highlighted

Basnet DE DI DSC HD95 ASSD REV SENS
√

90.469 3.577 0.954 8.699 87.098√ √
91.449 1.433 0.750 3.662 92.739√ √ √
92.413 1.188 0.669 2.581 91.331

4.5.2 Ablation study on architectures. To demonstrate the effec-
tiveness of each block in TransConNet, we present quantitative
comparison results against other relevant architectures. We start
with the Basnet and progressively enhance it with various blocks,
including the direction excitation(DE) block and direction inter-
active(DI) block. Table 4 showcases the outcomes of this ablation
study.Basenet only contains Bi-level Former block and skip connec-
tion
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Figure 4: Visualization Results of Cerebrovascular Segmentation Using Different Methods on FAH-WM and IXI Datasets . (a)-(f)
the segmentation results of 3DUnet, VTUnet, CSNet, RENet, ERNet, and DSCNet. (g) the segmentation results of TransConNet.
(h) the ground truth label. The first row is the segmentation result on the FAH-WMU datasets. The third row is the segmentation
result of the IXI datasets. The second and fourth rows are partially enlarged images, respectively.

In the second row of Table 4, the absence of the direction exci-
tation block notably affects the connectivity loss. To ensure a fair
comparison, we introduce an additional upsampling output at the
bottleneck. It becomes evident that integrating the direction excita-
tion block yields improvements in segmentation results, with the
DSC increasing by 0.98%, the HD95 decreasing by 2.414 mm, and
the ASSD decreasing by 0.204 mm, respectively. Exciting directional
information from feature maps facilitates the network’s ability to
learn the directional information inherent in the connectivity mask.

Furthermore, the integration of direction interactive block re-
sults in notable enhancements, with DSC showing a boost of 0.964%.
Concurrently, HD95 observes a reduction of 0.245 mm, and ASSD
experiences a decrease of 0.081mm. The incorporation of a direc-
tion interactive block injects directional information into the skip
connections, simultaneously ensuring the establishment of vessel
connectivity while enhancing the resolution of the feature map.

4.5.3 Ablations study on training loss. We concurrently augment
each loss in 𝐿𝑚𝑎𝑖𝑛 and 𝐿𝑎𝑢𝑥 . Initially, we utilize 𝐿𝐵𝐶𝐸 and 𝐿𝐷𝐼𝐶𝐸
as the foundational loss functions. Upon adding 𝐿𝐼𝑜𝑢 , we observed
a 1.216% increase in DSC. However, the disparities between HD95
and ASSD were not significant. This suggests that additional loss
functions enhance segmentation efficacy, yet challenges persist in
accurately delineating vessel edges.

By adding the connectivity loss LBCE (𝐶,𝐺𝐶 ) i.e.L1
BCE, we ob-

served a marginal increase of 0.029% in DSC, a decrease of 0.145mm

Table 5: Ablation study on training loss.
√
indicates the pres-

ence of this loss, with the best results highlighted

L𝑚𝑎𝑖𝑛 + L𝑎𝑢𝑥 Metrics

L𝐷𝑖𝑐𝑒 L𝐵𝐶𝐸 L𝐼𝑜𝑢 L1
BCE L2

BCE DSC HD95 ASSD
√ √

90.978 1 .399 0.761√ √ √
92.239 1.401 0.740√ √ √ √
92.268 1.256 0.695√ √ √ √ √
92.413 1.188 0.669

in HD95, and a reduction in ASSD. While the overall improvement
in segmentation may not be particularly pronounced, including
connectivity loss contributes to a more precise delineation of blood
vessel boundaries by mitigating the negative impact of IoU loss.
Upon adding LBCE (𝐶,𝐺𝐶 ) i.e.L2

BCE , all segmentation metrics are
further optimized.

Upon the above analysis, we observed that including connectivity
loss enhances the network’s ability to segment blood vessel bound-
aries, resulting in more precise delineations. This improvement is
valuable for detecting diseases occurring at the cerebrovascular
boundary.
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5 CONCLUSION
In this study, we introduced TransConNet, a connectivity-based
cerebrovascular segmentation network. By converting traditional
segmentation masks into connectivity masks, we transformed the
voxel classification task into one based on connectivity prediction,
thereby enhancing the preservation of cerebrovascular connectivity.
The building of 3D Bi-level Former blocks improved computational
efficiency in sparse vessel feature extraction, while the integration
of 3D-direction excitation and interactive blocks enhanced the cap-
ture and utilization of directional information.Our experimental
results demonstrate the superiority of TransConNet in preserv-
ing cerebrovascular connectivity compared to existing methods.
This has significant implications for preoperative examinations in
computer-assisted medical procedures, where accurate segmenta-
tion and preservation of vessel connectivity are paramount. In the
future, we’ll refine directional excitation and interactive blocks to
boost vessel segmentation accuracy and connectivity even further.
This advancement will likely entail refining algorithms,and possi-
bly integrating cutting-edge technologies like machine learning or
advanced image processing techniques. The goal is to achieve more
precise segmentation, which is crucial for various medical imaging
applications such as diagnosis and treatment planning.
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