
Published as a conference paper at ICLR 2023

A DATASETS AND EVALUATION DETAILS

We use different datasets throughout this work that we present below.

• For pretraining purposes, we use the standard ImageNet ILSVRC 2012 (IN) (Russakovsky
et al., 2015) dataset, which contains 1.2M training images separated in 1000 class cate-
gories.

• We also use the MS-COCO (COCO) (Lin et al., 2014) dataset for pretraining, but mainly for
finetuning and evaluation purposes. This dataset contains 80 classes of objects and about
118k training images (train2017 subset). Performance is evaluated on the val2017 subset.

• For finetuning, we also use the Pascal VOC 2007 and 2012 (VOC 07-12) (Everingham et al.,
2010) datasets. This dataset contains 20 classes of objects, and we use the combination of
the trainval subsets from both VOC2007 and VOC2012 for training, corresponding to about
16k training images in total. Performance is evaluated on the test subset from VOC2007.

• For a more complicated dataset, we use the Few-Shot Object Detection dataset (Fan et al.,
2020). Since the dataset is designed as open-set, i.e. with different classes between training
and testing, we separately use the train and test sets for benchmarking. We separate the
test set into a training and testing subset, by randomly taking 80% of images for training
and the 20% remaining for testing, and do the same for the train set. We make sure that
all classes appears at least once in both training and testing subsets. The images selected
for training and testing will be made available for reproducibility. This separation leads
to about 11k training images and 3k testing images for the test set, and about 42k training
images and 10k testing images for the train set.

B AUGMENTATIONS USED

We detail in Table 4 the distributions of augmentations used to create the weak view and the strong
view. The Weak Augmentations follow standard supervised training for transformer-based detec-
tors (Carion et al., 2020; Zhu et al., 2021). The Strong Augmentations follow typical contrastive
learning augmentations (Chen et al., 2020a; Bar et al., 2022).

Table 4: The different sets of augmentations used for each branch (weak or strong). Probability
indicates the probability of applying the corresponding augmentation.

Weak Augmentations (T 1)
Augmentations Probability Parameters

Horizontal Flip 0.5 –

Resize 0.5 Mid-scale: short edge = range(320,481,16)
Large-scale: short edge = range(480,801,32)

Resize

0.5

short edge ∈ {400, 500, 600}
Random Size Crop min size = 384 ; max size = 600

Resize Mid-scale: short edge = range(320,481,16)
Large-scale: short edge = range(480,801,32)

Strong Augmentations (T 2)
Color Jitter 0.8 (brightness, contrast, saturation, hue) = (0.4, 0.4, 0.4, 0.1)

GrayScale 0.2 –

Gaussian Blur 0.5 (sigma x, sigma y) = (0.1, 2.0)
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C PRETRAINING COST

We compare the cost of pretraining in terms of memory and hardware used to SoCo (Wei et al.,
2021) in Table 5 since it is the closest in terms of pretraining pipeline. The information are derived
from their paper and official github repository.

Table 5: Comparison of pretraining cost between overall pretraining methods. We compare the
number of pretraining epochs on IN, the total batch size, the total number of iterations, the total
training time (in hours), the number of iterations per seconds (It. / sec.), and the hardware used
(number and type of GPUs). We can see that our pretraining is globally less costly than SoCo.

Method IN epochs Batch Size Iterations Time It. / sec. Hardware

SoCo 400 2048 240k 140h 0.5 16 V100 32G
ProSeCo (Ours) 10 64 187k 40h 1.4 8 A100 40G

Even though A100 GPUs are faster than V100 GPUs, we are training much faster which is partly
explained by the fact that they learn the backbone along with the detection heads during pretraining,
leading to more parameters to learn and more computations. Furthermore, our ProSeCo requires a
smaller batch size leading to less memory and thus less GPUs needed.

D USING ANOTHER CONTRASTIVE LOSS

The popular InfoNCE loss (Oord et al., 2018) used for contrastive learning is a similarity based
function scaled by the temperature τ that maximizes agreement between the positive pair of in-
stances and push negatives away. However, it suffers from the class collision problem (Cai et al.,
2020; Denize et al., 2023), where semantically close instances can be used as negatives in the loss
computation, which damages the quality of the representation learned. Recent work (Zheng et al.,
2021; Denize et al., 2023) have tackled this problem by introducing the relational aspect between
instances. In our experimental study, we also considered the InfoNCE loss for ProSeCo. We formu-
late the loss as follows:
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This formulation leads to an effective batch size of Nb ·N for the contrastive loss. Similarly to our
LocSCE, the localization of the objects can be introduced in the InfoNCE loss function to obtain the
LocNCE objective as follows:
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In Table 6, we compare the two different contrastive objectives for pretraining. We can see that using
the InfoNCE loss leads to slightly better results (+0.3 p.p.). However, when using the localization
information, SCE benefits much more than InfoNCE (+1.7 p.p. compared to +0.6 p.p.). This might
be that the selection of positives from the localization information helps to introduce easy positive
examples, and thanks to this, the relational aspect of SCE can focus on the more difficult positives.
In the end, LocSCE achieves stronger results than LocNCE (+0.8 p.p.).

E FULL EVALUATION METRICS

Tables 7 and 8 provide the results with full evaluation metrics (mAP, AP50 and AP75 in %) on
PASCAL VOC, Mini-VOC, FSOD-test and FSOD-train benchmarks.
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Table 6: Performance (mAP in %) comparison on Mini-COCO 5% of the different contrastive loss
and the effect of the localization information on each of them.

Loss δ mAP

InfoNCE 1.0 26.4
LocNCE (Ours) 0.5 27.0
SCE 1.0 26.1
LocSCE (Ours) 0.2 27.0
LocSCE (Ours) 0.7 27.1
LocSCE (Ours) 0.5 27.8

Table 7: Performance comparison after finetuning on PASCAL VOC and in the novel Mini-VOC
setting. On Mini-VOC, we use different percentage of training data (with the corresponding number
of images reported) for finetuning.

Method
PASCAL VOC Mini-VOC

100% (16k) 5% (0.8k) 10% (1.6k)

mAP AP50 AP75 mAP AP50 AP75 mAP AP50 AP75

Supervised 59.5 82.6 65.6 33.9 56.9 35.0 40.8 63.7 43.1
DETReg (Bar et al., 2022) 63.5 83.3 70.3 43.1 63.4 46.1 48.2 68.6 51.9
ProSeCo (Ours) 65.1 84.7 73.0 46.1 66.1 50.2 51.3 72.7 56.1

F INCREASING THE NUMBER OF QUERIES

In Table 9, we provide an ablation on the number of object proposals (queries) N in Def. DETR,
when pretraining with ProSeCo and finetuning afterward. A higher N leads to more parameters in
the model and longer computing time, but we can see that the results of Def. DETR are relatively
stable w.r.t. to the number of queries. On the other hand, ProSeCo benefits from increasing the
number of queries, since it means a higher effective batch size during contrastive learning. However,
the default value of N = 300 leads to the best results, both with and without pretraining.

G FINETUNING WITH A LOT OF DATA

In Table 10, we present results when finetuning on the full COCO dataset under the 1× training
schedule (Wei et al., 2021; Li et al., 2022), i.e. 12 training epochs and decaying the learning rate
in the last epoch. The improvements in the large-scale annotated data regime are limited, which
can be observed also in previous work (Dai et al., 2021b; Bar et al., 2022). As we can see, our
ProSeCo reaches similar results than DETReg (Bar et al., 2022). We believe that this limitation
comes from the pretrained backbone that stays fixed during pretraining, and from the extensive
supervision during fine-tuning. However, as we can see in both Tables 1b and 8, we outperform
DETReg on our FSOD-train benchmark, which represents a setting with mid-scale annotated data
(42k training images).

H PERFORMANCE COMPARISON OF DETECTORS IN THE FEW DATA REGIME

From the results presented in Table 11, we can see that Def. DETR, a recent state-of-the-art detection
model based on transformers, achieves consistently better performance than the most popular two-
stage method in when learning with limited labels. These differences in performance are all the more
impressive since the two methods have a similar number of parameters. These results motivated our
choice of transformer-based architectures for our pretraining method.
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Table 8: Performance comparison on FSOD-test and FSOD-train

Method
FSOD-test (11k) FSOD-train (42k)

mAP AP50 AP75 mAP AP50 AP75

Supervised 39.3 57.7 42.6 42.6 58.1 46.5
DETReg (Bar et al., 2022) 43.2 59.6 47.8 43.3 57.9 47.3
ProSeCo (Ours) 46.6 64.5 50.9 47.2 62.4 51.7

Table 9: Performance (mAP in %) comparison on Mini-COCO 5% when changing the number of
object proposals in Def. DETR.

Method N Performance

Supervised

100 23.1
200 23.0
300 23.6
500 23.3

ProSeCo (Ours)

100 25.7
200 26.5
300 27.8
500 27.2

Table 10: Performance (mAP, AP50 and AP75 in %) comparison on the full COCO dataset (118k
training images) with the 1× training schedule.

Method COCO (118k)

mAP AP50 AP75

Supervised 37.4 55.5 40.5
DETReg (Bar et al., 2022) 38.9 56.6 42.3
ProSeCo (Ours) 38.9 56.2 42.4

Table 11: Performance (mAP in %) comparison between Faster-RCNN (FRCNN) (Ren et al.,
2015) with Feature Pyramid Network (FPN) (Lin et al., 2017), a two-stage detector com-
monly used, FCOS (Tian et al., 2019), a more recent one-stage method, and Deformable DETR
(Def. DETR) (Zhu et al., 2021), a state-of-the-art transformer-based object detector, with the same
ResNet-50 backbone model.
† Results from Liu et al. (2022b). ‡ Results from Bouniot et al. (2023).

Method Mini-COCO

0.5% (590) 1% (1.2k) 5% (5.9k) 10% (11.8k)

FCOS† 5.42± 0.01 8.43± 0.03 17.01± 0.01 20.98± 0.01
FRCNN + FPN† 6.83± 0.15 9.05± 0.16 18.47± 0.22 23.86± 0.81
Def. DETR‡ 8.95± 0.51 12.96 ± 0.08 23.59 ± 0.21 28.55 ± 0.08
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