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This supplementary material shows more visualization results to
prove the effectiveness of joint Homophily and Heterophily Rela-
tional Knowledge Distillation (H2RKD) method for efficient and
compact 3D Object Detection.

First of all, we compare the disparities in global and local fea-
ture relationships captured from both the student and teacher in
Figure 1 and Figure 2 respectively. Specifically, in Figure 1, we cal-
culate the mean square distance between feature maps of teacher
PointPillars and student 4x compressed PointPillars. It’s intuitive
that a larger mean square value indicates a greater representation
disparity, and the higher the frequency, the more values correspond-
ingly fall within the interval. It can be seen from Figure 1(a) that
RDD[3] most effectively imitates the teacher’s feature map, but
the small distance one needs to be further reduced. At the same
time, PointDistiller[4] performs better at small distances, but the
maximum distance is 3 times that of RDD in Figure 1(b). As shown
in Figure 1(c). We optimize the transfer of similarity from teacher
feature maps by exploring global second-order and third-order
relationships. Regarding the transfer of local relationships, we visu-
alized the local area voxel feature similarity matrix. In Figure 2 (a),
we supplement the diagram in the introduction. It is evident that
RDD failed to capture feature relationships effectively due to its
neglect of relationship transfer. (b) primarily focuses on homophily,
thus it does not perform well in low-similarity regions. In contrast,
our method emphasizes simultaneously distilling both relations to
effectively imitate the teacher by separate local distillation. In sum-
mary, our method effectively replicates the teacher’s characteristics
while also capturing both homophily and heterophily between the
features.

Then, we provided a visualization of significant points detected
on the KITTI[2] and nuScense[1] datasets. The CenterPoint is 2x
compressed, and the PointPillars is 4x compressed. As depicted
in Figure 3, the saliency of foreground objects (such as cars and
pedestrians) is notably higher, while the background points are
suppressed. This observation suggests that our method effectively
localizes important points.

Finally, we give some detection results with 2x compressed Cen-
terPoint on nuScense datasets. As depicted in Figure 4, superior
detection results are attained in both night and day scenarios. Ad-
ditionally, in Figure 5, we can observe that the model without
distillation exhibits poorer detection performance for pedestrians
at a distance and vehicles at corners.

Overall, our method demonstrates outstanding performance on
KITTI and nuScense datasets, effectively identifying distant pedes-
trians and vehicles even in highly sparse point clouds.
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(a) Teacher-RDD (b) Teacher-PointDistiller (c) Teacher-Ours

Figure 1: Histogram of the mean square distance between
feature maps of the teacher and the student distilled by RDD,
PointDistiller, and Ours on KITTI.

Teacher Student

(a) RDD
Student

(b)PointDistiller (c) Ours

Figure 2: Visualization of the relations among voxel features
from the teacher and the student distilled by (a), (b), and (c)
on KITTI, respectively. The relations are demonstrated by
the similarity matrix, where the white box represents high
similarity, and the yellow box represents weak similarity.
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(b) Feature distribution with PointPillars on the KITTI dataset

Figure 3: Visualization of Important Points in Detectors on KITTI and nuScense datasets.

At night

Figure 4: Visualization of the detection results in day and night with CenterPoint on the nuScense Validation set.
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s With KD Without KD

Cam FRONT CAM_FRONT RIGHT CAM_FRONT_RIGHT

Figure 5: Comparison between the detection results of students trained with and without KD on the nuScense test set. The top
are detection results, and the bottom are the front and back views of images corresponding to the scene.
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