
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A APPENDIX

A.1 DETAILS OF THE BREWALGORITHM

We provide pseudocode for the core components of BREW, aligning with the stages introduced in
Section 3. Each algorithm plays a distinct role in constructing, organizing, or refining the knowledge
base over iterative interactions. GENERATEINSIGHTS (Alg. 2) produces concept-aligned insights from
annotated rollouts using ReflAgent. DEDUPLICATECONCEPTS (Alg. 3) clusters semantically
overlapping concepts into a compact meta-concept set. INTEGAGENT incrementally builds and
updates per-concept documents using newly generated insights. Finally, EXPANDNODE (Alg. 4)
performs MCTS-guided expansions to explore improved document variants, while EVALUATE (Alg. 5)
scores candidate KB states using correctness and retrieval-based rewards.

We specify the IntegAgent prompt below:

BREW Integrator Prompt

Enhanced Documentation Editor Prompt

You are a meticulous documentation-level editor specializing in
comprehensive technical reference materials. You will be given a
list of topic nodes, each containing structured information that
must be preserved and enhanced with maximum detail retention.

Input Structure Analysis
Each node contains:
- **Title**: The primary topic identifier
- **Context**: Background information and conceptual foundation
- **How to Use**: Step-by-step instructions, commands, flags,

parameters, and implementation details
- **When to Use**: Specific scenarios, conditions, and decision

criteria
- **Best Practices**: Expert recommendations, optimization techniques,

and common pitfalls to avoid

Detailed Processing Requirements

1. Information Preservation (Zero Loss Policy)
- **Preserve every technical detail**: All command-line flags,

parameter values, configuration options, file paths, URLs, version
numbers, and exact syntax

- **Maintain all examples**: Keep every code snippet, sample input/
output, file names, directory structures, and command sequences
exactly as provided

- **Retain contextual nuances**: Preserve qualifying language like "
typically," "usually," "in most cases," "when available," and
conditional statements

- **Keep quantitative data**: Preserve all numbers, measurements,
timeframes, limits, thresholds, and statistical information

- **Maintain cross-references**: Keep all mentions of related tools,
dependencies, prerequisites, and interconnected concepts

2. Enhanced Detail Extraction
- **Expand abbreviations**: When encountering shortened forms, expand

them naturally while preserving the original
- **Surface implicit knowledge**: Make obvious assumptions explicit (e

.g., "this requires root permissions," "assumes default
configuration")

- **Clarify relationships**: Explicitly describe how different
components, options, or steps relate to each other

- **Highlight edge cases**: Emphasize special conditions, exceptions,
or unusual scenarios mentioned in the source

- **Elaborate on consequences**: When the source mentions outcomes,
expand on both success and failure scenarios

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

3. Prose Transformation Guidelines
- **Bullet integration**: Transform each bullet point into 1-3

complete sentences that naturally flow together
- **Technical precision**: Use precise technical vocabulary while

maintaining readability
- **Logical flow**: Organize information within each section to follow

a logical sequence (setup →execution →verification)
- **Contextual embedding**: Weave code snippets and technical terms

seamlessly into narrative sentences
- **Comprehensive coverage**: Ensure every sub-bullet, nested item,

and parenthetical note becomes part of the prose

4. Structural Requirements
- **Heading hierarchy**: Use ‘# Title‘ for each node’s main heading
- **Section order**: Maintain Context →How to Use →When to Use →Best

Practices sequence
- **Paragraph organization**: Create substantial paragraphs (3-6

sentences) rather than brief statements
- **Transition quality**: Craft smooth bridges between sections and

between different nodes
- **Code formatting**: Preserve all inline code with backticks and

maintain proper formatting for code blocks

5. Quality Assurance Checklist
Before finalizing, verify:
- [] Every piece of source information appears in the output
- [] All technical specifications, parameters, and examples are

intact
- [] Code snippets maintain their exact syntax and formatting
- [] Prose flows naturally without choppy or fragmented sentences
- [] Each section provides comprehensive coverage of its topic area
- [] Cross-references and dependencies are clearly explained
- [] No section labels or formatting artifacts remain in the prose

Output Specifications
Generate a single, cohesive markdown document that reads as

authoritative technical documentation. The result should be
comprehensive enough that a reader could successfully implement
the described tools or techniques using only the information
provided, without referring back to the original nodes.

Input Nodes:
<NODES>
{node_list}
</NODES>

Now, produce the aggregated markdown reference sheet with maximum
detail preservation and enhanced clarity.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Algorithm 2 GenerateInsights: Extract behavioral insights from trajectories
Require: Queries Q, KB D, rubrics
Ensure: Concept-insight pairs B

1: B ← ∅
2: for each query q ∈ Q do
3: τ ← LLM(q,D) ▷ Generate trajectory
4: label← GRADE(τ) ▷ Success/failure
5: (c, i)← REFLAGENT(τ, rubrics, label)
6: B ← B ∪ {(c, i, q)} ▷ Store with source query
7: end for
8: return B

Algorithm 3 DeduplicateConcepts: Cluster similar concepts and map queries
Require: Concept-insight-query triples B
Ensure: Meta-concepts K with mapped queries and insights

1: Extract all concepts from B
2: Embed and cluster concepts by similarity
3: K ← cluster representatives
4: for each k ∈ K do
5: Qtrain

k ← {training queries that contributed insights to k}
6: Qeval

k ← {held-out queries relevant to k}
7: Ik ← {all insights mapped to concept k}
8: end for
9: return K with associated queries and insights

Algorithm 4 ExpandNode: Generate and evaluate new document variants
Require: Node s, concept k, candidates h, current KB Dcurrent, best docs Dbest, tree
Ensure: Updated tree with new evaluated nodes

1: ▷ Generate new insights from concept-relevant queries
2: Bnew ← ∅
3: for query q ∈ Qtrain

k do
4: τ ← LLM(q,Dcurrent)
5: (c, i)← ANNOTATE(τ, rubrics, ·)
6: if c maps to k then
7: Bnew ← Bnew ∪ {i}
8: end if
9: end for

10: ▷ Generate and evaluate candidate documents
11: for j = 1 to h do
12: dk,j ← INTEGAGENT(k, Ik ∪ Bnew, d

s
k)

13: ▷ Evaluate using hybrid KB with best docs from other concepts
14: Dhybrid ← {dk,j} ∪ {dk′ ∈ Dbest : k

′ ̸= k}
15: Rk,j ← EVALUATE(dk,j ,Dhybrid,Qeval

k)
16: ▷ Add to tree and backpropagate
17: Add (dk,j , Rk,j) as child of s in tree
18: Backpropagate Rk,j from new node to root
19: end for

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Algorithm 5 Evaluate: Score document using held-out queries
Require: Document dk, hybrid KB Dhybrid, eval queries Qeval

k
Ensure: Reward score R

1: Rcorr ← 0
2: Rret ← 0
3: for each q ∈ Qeval

k do
4: Rcorr ← Rcorr+ EVAL(q, agent⊕Dhybrid)
5: Rret ← Rret+ MRR(dk, q,Dhybrid)
6: end for
7: Rcorr ← Rcorr

|Qeval
k |

8: Rret ← Rret

|Qeval
k |

9: return λcorr ·Rcorr + λret ·Rret

A.2 BREW CONFIGURATIONS

Base LLM Configuration For all BREWalgorithm steps, we use the OpenAI GPT-4.1-2025-
04-14 model as the underlying language model. To balance exploration and stability, we set the
temperature to 0.7 for the IntegAgent component to encourage diversity in sampled completions,
while all other calls use a temperature of 0.1 for deterministic behavior. The search process employs
an expansion width of e = 3, a maximum search depth of k = 3, and a maximum of n = 10
iterations. Reward signals are weighted equally across correctness and retrieval relevance, with
λcorr = λret = 0.5.

A.3 BASELINE METHODS

We compare BREWagainst two common reasoning baselines. Step-Back Prompting encourages
backward reasoning by guiding the model to work from the final task objective back to the initial
actions. In-Context Learning augments the input prompt with successful trajectories from related
tasks, enabling the model to benefit from relevant prior examples without additional fine-tuning.

A.4 BENCHMARK SPECIFICATIONS

A.4.1 OSWORLD: COMPUTER-USE AUTOMATION

Dataset Overview OSWorld Xie et al. (2024) comprises 369 real-world computer-use tasks span-
ning 10 distinct applications. The benchmark is divided into train and test sets, with the distribution
of tasks across domains shown in Table 2.

Agent Specifications The UI-Tars-7B variant is a 7B-parameter multimodal transformer fine-tuned
for graphical user interface understanding. It operates over an action space of PyAutoGUI commands
(e.g., click, type, and key presses). The agent integrates a retrieval module that queries a task-relevant
knowledge base using the user-provided description, with the top three retrieved items added to the
system prompt. Inputs to the model consist of a screenshot of the active UI paired with the natural
language task description.

The GTA1-7B configuration adopts a two-agent architecture, consisting of a planner and a grounding
module. The planner (GTA-1-7B) generates the high-level action sequence, while the grounding
module (OpenAI O3) verifies and refines each action before execution. Knowledge retrieval is
incorporated differently for each component: the planner performs a single retrieval at the start
of execution, which is persisted in its prompt, whereas the grounding module performs dynamic
retrievals at each verification step.

Evaluation Protocol Evaluation uses 134 task-specific scripts designed for automated verification.
Success criteria include file state checks (e.g., validating .xlsx or .docx outputs), UI element
validation to confirm correct interaction, and process completion checks to ensure that the intended
automation sequence was executed successfully.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A.4.2 τ2-BENCH: INTERACTIVE TOOL USAGE

Dataset Overview τ2-Bench Barres et al. (2025b) extends τ -Bench by introducing bidirectional
tool-calling capabilities. The dataset covers multiple service-oriented domains, with domain-level
task distributions summarized in Table 3.

Domain Characteristics The benchmark spans several domains with distinct task characteristics.
The Telecom domain focuses on connectivity troubleshooting, plan modifications, and service
activation workflows. The Retail domain includes order processing, return handling, and inventory
queries. The Airline domain emphasizes booking modifications and policy-compliant rescheduling
scenarios.

Interaction Settings Two interaction modes are defined. In Easy mode, a human proxy (imple-
mented via GPT-4.1) provides detailed guidance to the agent. The knowledge base is built exclusively
from Easy mode trajectories, ensuring high-quality demonstrations for learning. In Hard mode,
human intervention is minimized. The knowledge base combines both Easy and Hard trajectories,
testing the agent’s robustness to underspecified or noisy instructions.

Evaluation Criteria Task success is measured using domain-specific verification procedures. These
include database state checks to validate final outcomes, status checks for confirming service or
connection state, natural language verification to ensure correct confirmation statements appear in
dialogue, and action matching to confirm that all required steps are completed. Each domain uses a
tailored subset of these checks (e.g., Telecom relies primarily on status checks).

Domain Test Train
Calc 45 2
Chrome 44 2
Writer 21 2
Gimp 24 2
Impress 45 2
Os 22 2
Thunderbird 13 2
Multi-apps 99 2
VLC 15 2
VSCode 21 2

Total 349 20

Table 2: Test and Train samples across different domains in OSWorld.

Domain Test Train
Telecom 105 7
Retail 105 7
Airline 44 6

Total 254 20

Table 3: Task-wise breakdown for τ2-Bench with assumed 2-shot training samples per domain.

Domain Characteristics

• Telecom: Connectivity issues, plan management, service activation
• Retail: Order processing, returns, inventory queries
• Airline: Booking modifications, policy-compliant rescheduling

Evaluation Criteria Task success determined by:

• Database Checks: Final state verification

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

• Status Checks: Service/connection state validation

• NL Checks: Confirmation statements in dialogue

• Action Matching: Required action sequence completion

Note: Each domain uses specific check combinations (e.g., Telecom uses only status checks).

A.4.3 SPREADSHEETBENCH: REAL-WORLD SPREADSHEET MANIPULATION

Dataset Overview SpreadsheetBench Ma et al. (2024) consists of 912 instructions collected from
four major Excel forums and blogs. Each instruction is paired with spreadsheets reflecting authentic,
complex user scenarios, often containing multiple tables and non-standard relational structures.
The dataset totals 2,729 test cases, averaging three per instruction. A breakdown of cell-level and
sheet-level manipulations is shown in Table 4.

Task Settings The benchmark defines two dimensions of evaluation:

• Granularity: Instructions involve either cell-level manipulations (specific ranges such as
D2:D6) or sheet-level manipulations (entire tables or multi-sheet updates).

• Evaluation: Performance is measured using an Online Judge (OJ)-style protocol. The soft
setting (IOI-style) awards partial credit when only some test cases are solved, while the hard
setting (ICPC-style) requires solutions to succeed on all test cases.

Agent Configuration We evaluate
texttto4-mini using a function-calling agent connected to a single Python execution tool. The
agent translates natural language instructions into Python code for spreadsheet manipulation (e.g.,
modifying cells, applying formulas, restructuring tables). After each tool call, all formulas in the
spreadsheet are recalculated to ensure consistency before proceeding to the next step. This setup
provides a controlled environment to assess reasoning, code generation, and execution robustness
across diverse spreadsheet tasks.

Granularity Instructions Test Cases
Cell-Level 329 986
Sheet-Level 583 1,743

Total 912 2,729

Table 4: Cell-level vs. sheet-level distribution in SpreadsheetBench.

A.5 KB CONSTRUCTION AND RETRIEVAL DETAILS

Training Data Collection

• OSWorld: 20 successful trajectories (2 per application domain) and 10 for evals.

• τ2-Bench: 20 trajectories balanced across domains and difficulty settings and 10 for evals.

• SpreadsheetBench: Uniformly sample 30 trajectories for training and 10 for evaluation.

All numbers are reported on the remaining train set.

Retrieval Strategy

• Query Formation: For each task we take in the seed Natural Language query as the retrieval
query.

• Retrieval Count: We take top-3 documents for all the retrieval steps

• Integration Point: For SPREADSHEET ENCH and OSWorld we insert retrievals in the
system prompt augmentation. For τ2-bench we add perfrom retrieval after each user
interaction.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Baseline max_width=3, max_depth=3 max_width=3, max_depth=10 max_width=10, max_depth=3
OSworld 44.20 47.56 43.83 49.32

Table 5: OSworld difference in MCTS parameters

B QUALITATIVE ANALYSIS

Exploration on MCTS parameters WE evaluate OSworld on two different MCTS parameters.

• Increased Depth: To increase the depth we keep maximum width of the tree as 3 and depth as
10 with max number of iterations as 25. We observe that the Knowledge base over optimizes
on the train set leading to a poorer performance on test set.

• Increased Width: For increased width we reverse the parameters where depth is 3 and
maximum width is 10 with max iterations 25. We observe many different styles of KBs are
generated storing very similar information, these different styles lead to a varied performance
on both eval and test set notifying the importance of state search.

We report the numbers on table ??

C EXEMPLAR KNOWLEDGE BASES

C.1 KNOWLEDGE BASE LEARNED FOR OSWORLD

We showcase a small part of knowledge base learned thought BREW . This demonstrate 3 major
parts on which each document is aggregated. These parts discuss when to use a piece of information,
why to use the information, how to use the information/tool.

Search and Open Files

When to use: Locating documents, spreadsheets, images, or
downloads for editing, conversion, or attachment.

How to Perform
- Open **File Manager (Nautilus)** from launcher or system dock
- Press ‘Ctrl + F‘ or click the search icon
- Enter part of filename, full name, or wildcard (‘*.pdf‘, ‘report*‘)
- Use right-click →**Open With** to choose the desired application
- Use the sidebar to navigate to **Downloads**, **Documents**, or

custom folders

Additional Actions
- Right-click →**Properties** to check modification date or file type
- Sort results by Date, Type, or Name from the top-right dropdown
- Use ‘F2‘ to rename files inline

Example
- Task: "Edit the file titled ‘sales_report_march.ods‘"
- Search for ‘sales‘ in File Manager
- Confirm ‘.ods‘ type and open with LibreOffice Calc

...

Insert Images

When to use: Adding visual elements to documents, presentations,
emails, or templates.

How to Perform
- Navigate to **Insert →Image →From File** (in Writer, Impress,

Thunderbird)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

- Select an image file (‘.png‘, ‘.jpg‘, ‘.svg‘) from the file dialog
- Use drag handles to resize; right-click →**Wrap** or **Alignment**

for layout

Additional Actions
- In GIMP: **File →Open as Layers** to insert image as a new layer
- Use drag-and-drop from file manager into open document windows
- Use **Format →Image** to apply borders, shadows, or color

corrections (in Writer/Impress)

Example
- Task: "Insert the logo.png image into the title slide"
- Open ‘.odp‘ file in Impress →Go to Slide 1 →Insert →Image →

Select ‘logo.png‘

...

Export as PDF

When to use: Required submission format

How to Perform
- Go to **File →Export As PDF**
- Choose output folder (usually **Documents** or **Downloads**)
- Click **Save**, then confirm the exported file opens correctly

Additional Actions
- In GIMP or Impress: choose **File →Export As**, then select ‘.pdf‘

from format list
- Use **Save As** to preserve both editable and exported versions

separately

Example
- Task: "Export the flyer.xcf as a PDF"
- Open in GIMP →File →Export As →Rename to ‘flyer.pdf‘ →Click

Export

C.2 BREW KNOWLEDGE BASE FOR τ2-BENCH

BREW enable use to learn relevant information for tau bench for across the domains in a single
knowledge base. This knowledge base is helpful to use relevant actions from the action pool.

Additional Actions

* Inform the user:
- Refunds via gift card = immediate.
- Refunds via other methods = -57 business days.

Example

* Task: "Cancel a T-shirt order placed yesterday"
* Validate: Status is ‘pending‘
* Reason: "no longer needed"
* Confirm
* Execute tool call

Exchange Delivered Order

When to use:
User wants to swap delivered items for a different variant (e.g., size

or color).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Why to use it:
To fix sizing or option errors without needing a new purchase.

How to Perform
- Authenticate user
- Confirm order status is ‘delivered‘
- Get full list of exchange items
> "Please ensure all items for exchange are listed. This step ’cant be

repeated."
- Ask for refund/payment method
- Confirm:
> "’Youre exchanging item X for same product, different option.

Proceed?"
- On confirmation:
‘‘‘python
request_exchange(order_id="45678", item_exchanges=[...],

payment_method="paypal")
‘‘‘

Additional Actions

* Mention: An email will be sent with return instructions
* Validate that the new variant is from the same product

Example

* Task: "Exchange red shirt for blue in Order #45678"
* Confirm all exchange items
* Confirm payment method for difference
* Execute tool call

Example

* Task: "Show me my last 2 orders"
* Authenticate
* Retrieve and present info

Deny Unsupported Request

When to use:
User asks for an unsupported action (e.g., cancel processed order,

exchange to different product type, help another user).

Why to use it:
To stay compliant with platform policy.

How to Perform
- Politely reject:
> "’Im sorry, but I ’cant process that request. ’Its outside the

allowed scope."

Example

* Task: "Cancel a processed order"
* Respond with denial message

Transfer to Human Agent

When to use:
User needs help outside the ’assistants permitted capabilities.

Why to use it:
To ensure user gets the right help from trained staff.

How to Perform

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

- Make tool call:
‘‘‘python
transfer_to_human_agents()
‘‘‘

- Then inform user:
> "YOU ARE BEING TRANSFERRED TO A HUMAN AGENT. PLEASE HOLD ON."

Example

* Task: "Delete a task"
* Deny deletion
* Transfer to human

C.3 BREW KNOWLEDGE BASE FOR SPREADSHEETBENCH

Header Extraction
1. Detecting Header Rows
Overview:
To accurately identify header rows, scan the initial region of your

dataset. This process is crucial for mapping column information
for further processing.

Approaches:
- Heuristic Checks:
- Look for rows where all cells are strings (e.g., "Name", "Date", "

Region", "Amount").
- Identify rows with distinctive formatting such as bold text or

background color.
- Example:
| Name | Date | Region | Amount | |--

-----|-----------|-----------|--------| | John | 2024-01-01| North
| 100 |

- Pattern Recognition:
- Use regex to match typical header patterns, such as column names

starting with uppercase letters.
- Score candidate rows based on the likelihood of being headers.
- Multi-Table Sheets:
- Detect gaps, empty rows, or separators indicating a new table.
- Assign a Table ID to each detected table for later reference.

Edge Cases:
- Merge multi-row headers (e.g., "Sales" over "2024", "2025" becomes "

Sales 2024", "Sales 2025").
- Fill in missing headers by inferring from context.

2. Assigning and Validating Headers
Overview:
Once headers are detected, assign them programmatically and ensure

they match expected schema and data types.

Implementation:
- Column Naming:
- Set names in code, e.g., df.columns = ["Name", "Date", "Region", "

Amount"].
- Schema Mapping:
- Map headers to a standardized schema, using external files or user

prompts.
- Example:
- Raw header: "Amt"; Mapped header: "Amount"
- Quality Checks:
- Detect duplicate or empty headers ("Date", "Date" becomes "Date_1",

"Date_2").
- Validate each column’s expected data type.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

3. Automation and Usability Enhancements
Overview:
Enhance usability and automation to streamline header extraction and

user interaction.

Features:
- Freeze Panes:
- Automatically freeze header rows in Excel for easier navigation.
- Highlighting:
- Use colored formatting to visually distinguish headers.
- Example:
- Yellow fill for header row.
- Documentation:
- Log extraction logic and confidence scores for each detected header.
- Integration:
- Build header extraction into ETL pipelines and record process

metadata.

Block Detection
1. Identifying Block Boundaries
Overview:
Block detection segments data into logical units or tables.

Methods:
- Boundary Detection:
- Find empty rows, repeated labels, or formatting changes.
- Example:
| Name | Amount | |------|--------| | John | 100 | | | | <-- Empty row

indicates new block | Name | Amount | | Alice| 200 |
- Machine Learning:
- Train classifiers to detect block boundaries based on cell patterns.

Advanced:
- Detect nested blocks or hierarchies using indentation or merged

cells.
- Identify summary blocks with keywords like "Total" or "Summary".

2. Processing and Tracking Blocks
Overview:
Once blocks are detected, assign IDs and enable block-level analysis.

Actions:
- Block ID:
- Assign unique IDs (e.g., Block_001, Block_002).
- Analysis:
- Perform group-by or aggregation within each block.
- Example:
- Sum "Amount" for Block_001: 100 + 150 = 250

3. Additional Block Actions
Overview:
Enable modular analysis and reporting at the block level.

Features:
- Summary Rows:
- Add computed totals/averages for each block.
- Export/Save:
- Save blocks as separate files or sheets.
- Example:
- Export Block_001 to "block1.csv"

Search for Values or Patterns
1. Search Execution Methods
Overview:
Efficiently locate specific values or patterns in your data.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Techniques:
- Manual Tools:
- Use Ctrl + F in Excel for quick lookups.
- Programmatic Search:
- Scan all cells using loops or vectorized code.
- Example:
- Find all instances of "North" in the "Region" column.
- Pattern Matching:
- Support exact, wildcard (*Total*), and regex (\d{4}-\d{2}-\d{2} for

dates).

2. Recording and Highlighting Results
Overview:
Log and visualize search matches for user review.

Actions:
- Logging:
- Record coordinates (e.g., Sheet1, Row 3, Col "Region").
- Highlighting:
- Apply conditional formatting to search hits.

3. Advanced Search Scenarios
Overview:
Handle complex or large-scale search requirements.

Scenarios:
- Merged Cells:
- Search within merged cells or across multiple sheets.
- Export:
- Export found results for further analysis.
- Example:
- Export all rows containing "John" to "john_results.csv"

Writeback Results
1. Output Placement
Overview:
Choose where and how to insert results.

Options:
- Target Columns:
- Select existing or blank columns for output.
- Appending:
- Add new columns for flags, counts, or statuses.
- Example:
- Add "Approved_Flag" column next to "Status".

2. Writing and Styling Results
Overview:
Automate and style the output for visibility.

Methods:
- Formulas/Code:
- Use code (e.g., ws.cell(row, col).value = result) to insert results.
- Styling:
- Bold, borders, or colors for output cells.
- Example:
- Green fill for "Success", red for "Error".

3. Audit and Protection
Overview:
Maintain the integrity and traceability of results.

Measures:
- Lock Columns:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

- Prevent edits to output columns.
- Timestamps/User Info:
- Add audit trail for writebacks.
- Example:
- "2024-06-01, User: admin"

Difference in State
1. Sheet Comparison
Overview:
Identify changes between input and output sheets.

Process:
- Load Sheets:
- Read both sheets into memory.
- Compare Cells:
- Detect differences by position and value.

2. Recording and Reporting Differences
Overview:
Log and report all detected changes.

Actions:
- Log Mismatches:
- Record cell coordinates and values.
- Example:
- Cell B3: "North" →"South"
- Export Diff Report:
- List all detected differences for review.

3. Visualization and Automation
Overview:
Make changes visible and automate validation.

Features:
- Highlight Changes:
- Color code changed cells.
- Automate Checks:
- Integrate diff comparisons into test scripts.

Column Selection
1. Selection Criteria
Overview:
Choose relevant columns for analysis.

Methods:
- Labels/Indices:
- Select by name or position.
- Dynamic Rules:
- E.g., all numeric columns.
- Assign Roles:
- Example: "ID", "Date", "Metric"

2. Preparation and Validation
Overview:
Prepare columns for consistent use.

Actions:
- Rename/Relabel:
- Standardize column names.
- Validate Types:
- Ensure columns are of expected type.
- Example:
- "Date" column as datetime.

3. Reusability

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Overview:
Save and reuse column selections.

Features:
- Presets:
- Save selection profiles.
- Downstream Use:
- Use validated columns in subsequent processes.

Filter Rows
1. Filtering Methods
Overview:
Refine your dataset with filters.

Techniques:
- Spreadsheet Tools:
- Use built-in filters.
- Code Logic:
- Filter with code (e.g., df[df[’Status’] == ’Approved’]).
- Multiple Criteria:
- Combine conditions (AND/OR).
- Example:
- Status = "Approved" AND Amount > 100

2. Helper Columns and Complex Filters
Overview:
Simplify filtering using helper columns.

Actions:
- Helper Columns:
- Compute intermediate flags.
- Document Logic:
- Record filtering rules for audit.

3. Post-Filter Actions
Overview:
Visualize and export filtered data.

Features:
- Highlighting:
- Grey-out filtered-out rows.
- Export:
- Save the filtered dataset.

Merge Tables
1. Key-Based Merging
Overview:
Combine tables using shared keys.

Techniques:
- Join Operations:
- Use VLOOKUP, JOIN, or code merges.
- Example:
- Merge "Customer_ID" from two tables.
- Align Data:
- Match on columns like "ID", "Name".

2. Stack-Based Merging
Overview:
Append tables when keys ’arent needed.

Methods:
- Vertical Append:
- Combine rows from similar tables.
- Deduplicate:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

- Remove duplicate records.

3. Tracking and Audit
Overview:
Track source and unmatched records.

Actions:
- Source Column:
- Add "Source" to indicate origin.
- Highlight Unmatched:
- Mark or export mismatched rows.

Pivot or Unpivot
1. Pivoting Data
Overview:
Summarize data using pivots.

Methods:
- PivotTables:
- Group by row/column dimensions.
- Example:
- Sum "Amount" by "Region".
- Aggregation:
- Choose SUM, AVG, COUNT, etc.

2. Unpivoting (Melting) Data
Overview:
Reshape data from wide to long format.

Techniques:
- Melt Operations:
- Convert columns into rows.
- Example:
-
| Year | Sales_2019 | Sales_2020 | |------|------------|------------|
→
| Year | Sales_Year | Value |
- Flexible Restructuring:
- Selectively unpivot non-ID columns.

3. Post-Pivot Actions
Overview:
Prepare pivoted data for export.

Features:
- Flatten Pivot Table:
- Convert back to flat for further analysis.
- Reorder/Rename:
- Clarify pivoted fields.

Map with Lookup Tables
1. Mapping Techniques
Overview:
Standardize data using lookups.

Methods:
- Functions:
- Use VLOOKUP, merge with dictionaries.
- Code-to-Label:
- Example:
- Code "N" →Label "North"

2. Application and Fallbacks
Overview:
Apply lookups and handle missing values.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Actions:
- Apply Mappings:
- Across selected columns.
- Handle Missings:
- Use defaults for missing codes.

3. Audit and Display
Overview:
Ensure mapping transparency.

Features:
- Cache Mappings:
- Store for repeated use.
- Display Codes/Labels:
- Show both for clarity.

Fill Missing Data
1. Choosing Fill Methods
Overview:
Impute missing data appropriately.

Techniques:
- Forward/Backward Fill:
- Fill gaps with prior/next value.
- Default Values:
- Use fixed placeholder (e.g., 0, "Unknown").
- Contextual Example:
- Dates: Fill missing month with last known month.

2. Application and Auditing
Overview:
Apply fills and flag for review.

Actions:
- Targeted Filling:
- Apply to specific columns/rows.
- Flag Filled Cells:
- Highlight for later review.

3. Documentation
Overview:
Keep fill logic transparent.

Features:
- Record Logic:
- Document assumptions and methods.
- Audit Trail:
- Track all changes.

Flag Rows or Cells
1. Defining Flag Rules
Overview:
Establish criteria for flagging.

Examples:
- Simple Rule:
- Flag where Amount < 0
- Complex Rule:
- Flag where Status = "Pending" and Amount > 1000

2. Applying Flags
Overview:
Insert flags and summarize.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Actions:
- Flag Column:
- Add "Flag" column with "Yes"/"No".
- Export Flagged Rows:
- Save for further inspection.

3. Advanced Flagging
Overview:
Use multiple criteria and document.

Features:
- Multi-Criteria:
- Combine several rules for granular checks.
- Notes:
- Document flagging rationale.

Sort Data
1. Setting Sort Criteria
Overview:
Organize data for analysis.

Options:
- Sort Columns:
- By value, ascending/descending.
- Multi-Level:
- E.g., sort by "Region", then by "Amount".

2. Applying Sorts
Overview:
Implement sorting programmatically or manually.

Methods:
- Spreadsheet Tools:
- Built-in sort features.
- Code:
- E.g., df.sort_values([’Region’, ’Amount’])

3. Post-Sort Actions
Overview:
Finalize sorted data.

Actions:
- Renumber Rows:
- Update indices.
- Highlight Extremes:
- Mark top/bottom values.

Validate Data
1. Validation Checks
Overview:
Ensure data meets required standards.

Checks:
- Type:
- Ensure numeric columns contain numbers.
- Range:
- E.g., "Amount" > 0.
- Pattern:
- Date columns match YYYY-MM-DD.
- Business Rule Example:
- "Start Date" < "End Date"

2. Marking and Reporting
Overview:
Visualize and report errors.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Actions:
- Highlight Invalids:
- Color-code errors.
- Export Summary:
- Table of error counts and locations.

3. Integration in Workflow
Overview:
Make validation a routine part of processing.

Features:
- Pre-Processing Step:
- Validate before analysis.
- Automation:
- Integrate into data pipelines.

Split Sheets or Data
1. Defining Split Rules
Overview:
Segment data for modular analysis.

Methods:
- By Category:
- E.g., split by "Region".
- By Date Range:
- E.g., split by year.

2. Exporting Segments
Overview:
Save segments for separate use.

Actions:
- Export Files:
- "North_Region.csv", "South_Region.csv"
- Consistent Formatting:
- Ensure identical columns and styling.

3. Automation and Documentation
Overview:
Automate splitting and track provenance.

Features:
- Automation:
- Use scripts/macros for repeated splits.
- Documentation:
- Record rules and export logs.

D QUALITATIVE ANALYSIS OF BREW-GENERATED KNOWLEDGE BASES

This section presents a comprehensive qualitative analysis of knowledge bases generated through
the BREW technique applied to two distinct agent training environments: OSWorld and τ2Bench
described in the section before. The analysis examines knowledge representation patterns, procedural
sophistication, and domain-specific learning characteristics extracted from CUA agent behaviors,
providing insights into the effectiveness and scope of knowledge distillation techniques across diverse
task environments.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

D.1 CROSS-DOMAIN KNOWLEDGE BASE ANALYSIS

D.1.1 BASE STRUCTURE & ORGANIZATION

Schema Consistency and Evolution: Both knowledge bases demonstrate consistent structural
schemas, though adapted to their respective domains. The OSWorld KB employs a four-part
schema (contextual triggers, procedural steps, extended capabilities, concrete instantiation), while the
τ2Bench KB extends this to a five-part structure, adding explicit purpose rationale (“Why to use it”).
This evolution suggests that BREW adapts its extraction patterns to domain-specific requirements—
conversational commerce demands explicit justification for actions due to customer interaction
contexts.

Taxonomic Organization Principles: The OSWorld KB reveals a capability-based taxonomy
organized around computational tasks: file operations, document processing, inter-application work-
flows, and data visualization. Each category represents a distinct computational domain with specific
tool requirements and interaction patterns. In contrast, the τ2Bench KB employs a lifecycle-based
taxonomy structured around transactional states: order creation, modification, fulfillment, and
post-delivery operations. This organizational difference reflects fundamental domain characteristics—
desktop automation focuses on tool orchestration, while conversational commerce centers on process
management.

Hierarchical Task Decomposition: Both KBs demonstrate sophisticated hierarchical reasoning, but
through different decomposition strategies. OSWorld exhibits technical decomposition, breaking
complex operations like “Create Charts from Data” into constituent technical steps (data selection,
chart insertion, customization, formatting). τ2Bench shows process decomposition, structuring
operations like order modification into authentication, validation, confirmation, and execution phases.
This suggests BREW successfully identifies domain-appropriate decomposition strategies rather than
applying uniform patterns.

Knowledge Boundary Definition: Both KBs explicitly encode operational boundaries, but through
contrasting mechanisms. OSWorld boundaries are capability-constrained—determined by available
applications and system resources. τ2Bench boundaries are policy-constrained—explicitly defined
through “Deny Unsupported Request” patterns and escalation protocols. This difference highlights
how knowledge extraction adapts to domain-specific constraint types.

D.1.2 PROCEDURAL KNOWLEDGE GROUNDING

Context-Dependent Action Selection: Both domains demonstrate sophisticated context awareness,
but grounded in different environmental factors. OSWorld exhibits application-context sensitivity,
where identical operations (e.g., image insertion) require different procedures across LibreOffice
Writer, Impress, GIMP, and Thunderbird. The agent learned application-specific affordances and
interaction patterns rather than generic command sequences. τ2Bench demonstrates state-context
sensitivity, where available actions depend on order status (pending vs. delivered), payment methods,
and authentication levels. This reveals learned understanding of business process constraints and
temporal operation windows.

Error Prevention and Validation Workflows: Both KBs incorporate sophisticated error prevention
mechanisms, but grounded in domain-specific failure modes. OSWorld emphasizes technical valida-
tion: file integrity checks (“confirm the exported file opens correctly”), application state verification,
and multi-step confirmation for irreversible operations. τ2Bench emphasizes transactional valida-
tion: authentication cascades, confirmation dialogues with standardized templates, and explicit user
consent protocols. The emergence of defensive programming practices across both domains suggests
these represent fundamental principles of reliable agent behavior.

State-Dependent Decision Logic: The procedural knowledge in both domains demonstrates sophisti-
cated state machine reasoning. OSWorld exhibits application state awareness—understanding when
applications are ready for input, when files are loaded, and when operations can be safely executed.
Window management and application switching reveal learned understanding of desktop metaphors
and resource constraints. τ2Bench demonstrates business process state awareness—finite state
machine reasoning where order lifecycle states determine available operations. The agent learned
that pending orders enable modification while delivered orders unlock return workflows, indicating
internalized understanding of business logic constraints.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Security and Authentication Grounding: While OSWorld operates in a trusted desktop environment
with minimal explicit security concerns, τ2Bench reveals pervasive authentication-first paradigms.
Nearly every transactional operation begins with identity verification through email, name, and zip
code combinations. The KB demonstrates graduated security reasoning: information retrieval
requires basic authentication while financial transactions trigger rigorous verification protocols. This
contrast highlights how procedural knowledge adapts to domain-specific security requirements.

Cross-Application vs. Cross-Process Orchestration: OSWorld demonstrates technical orches-
tration—coordinating multiple applications (Chrome, LibreOffice suite, File Manager, GIMP) to
accomplish complex workflows. The “Navigate Between Applications” section reveals learned be-
haviors for window management, application switching, and resource coordination. τ2Bench exhibits
process orchestration—coordinating authentication, validation, confirmation, and execution phases
across different operational contexts. Both forms of orchestration require sophisticated temporal
reasoning and constraint management, but applied to different environmental complexity types.

Failure Mode Internalization: Both KBs reveal learned understanding of domain-specific failure
modes. OSWorld incorporates file validation, application crash recovery suggestions, and verification
steps for critical operations. τ2Bench includes explicit escalation protocols (“Transfer to Human
Agent”), policy compliance mechanisms, and irreversibility warnings for financial operations. The
consistent emergence of failure-aware procedures suggests that agents successfully internalize risk
assessment and mitigation strategies during training.

Domain-Specific Communication Patterns: The procedural knowledge reveals distinct communica-
tion paradigms appropriate to each domain. OSWorld procedures are task-oriented with minimal
user interaction—focusing on efficient command execution and verification. τ2Bench procedures are
dialogue-oriented with standardized customer interaction templates, confirmation protocols, and
expectation management communications. This adaptation demonstrates that BREW extracts not just
procedural logic but domain-appropriate interaction modalities.

The cross-domain analysis reveals that BREW successfully extracts procedural knowledge that is both
structurally consistent (following learnable organizational patterns) and contextually grounded
(adapted to domain-specific constraints, failure modes, and interaction requirements). This dual capa-
bility suggests significant potential for knowledge transfer across related domains while maintaining
appropriate domain-specific adaptations.

32

	Appendix
	Details of the BREWAlgorithm
	BREW Configurations
	Baseline Methods
	Benchmark Specifications
	OSWorld: Computer-Use Automation
	2-Bench: Interactive Tool Usage
	SpreadsheetBench: Real-World Spreadsheet Manipulation

	KB Construction and Retrieval Details

	Qualitative Analysis
	Exemplar Knowledge Bases
	Knowledge base learned for OSWorld
	BREW Knowledge Base for 2-Bench
	BREW Knowledge Base for SpreadsheetBench

	Qualitative Analysis of BREW-Generated Knowledge Bases
	Cross-Domain Knowledge Base Analysis
	Base Structure & Organization
	Procedural Knowledge Grounding

