A APPENDIX

A.1 DETAILS OF THE BREWALGORITHM

We provide pseudocode for the core components of BREW, aligning with the stages introduced in
Section 3] Each algorithm plays a distinct role in constructing, organizing, or refining the knowledge
base over iterative interactions. GENERATEINSIGHTS (Alg.2)) produces concept-aligned insights from
annotated rollouts using Ref1Agent. DEDUPLICATECONCEPTS (Alg. [3) clusters semantically
overlapping concepts into a compact meta-concept set. INTEGAGENT incrementally builds and
updates per-concept documents using newly generated insights. Finally, EXPANDNODE (Alg.)
performs MCTS-guided expansions to explore improved document variants, while EVALUATE (Alg.[5)
scores candidate KB states using correctness and retrieval-based rewards.

We specify the IntegAgent prompt below:
BREW Integrator Prompt

Enhanced Documentation Editor Prompt

You are a meticulous documentation-level editor specializing in
comprehensive technical reference materials. You will be given a
list of topic nodes, each containing structured information that
must be preserved and enhanced with maximum detail retention.

Input Structure Analysis

Each node contains:

— xxTitlexx: The primary topic identifier

— x*xContext**: Background information and conceptual foundation

- xxHow to Usexx: Step-by-step instructions, commands, flags,
parameters, and implementation details

- xxWhen to Usexx: Specific scenarios, conditions, and decision
criteria

- xxBest Practicesxx: Expert recommendations, optimization techniques,

and common pitfalls to avoid

Detailed Processing Requirements

1. Information Preservation (Zero Loss Policy)

— **xPreserve every technical detailxx: All command-line flags,
parameter values, configuration options, file paths, URLs, version
numbers, and exact syntax

- *xMaintain all examplesx*: Keep every code snippet, sample input/
output, file names, directory structures, and command sequences
exactly as provided

- **xRetain contextual nuancesx*x*: Preserve qualifying language like
typically," "usually," "in most cases," "when available," and
conditional statements

- xxKeep quantitative dataxx: Preserve all numbers, measurements,
timeframes, limits, thresholds, and statistical information

— xxMaintain cross-referencesx**: Keep all mentions of related tools,
dependencies, prerequisites, and interconnected concepts

"

2. Enhanced Detail Extraction

- xxExpand abbreviationsxx: When encountering shortened forms, expand
them naturally while preserving the original

— xxSurface implicit knowledgex*: Make obvious assumptions explicit (e
.g., "this requires root permissions," "assumes default
configuration")

- **xClarify relationshipsxx: Explicitly describe how different
components, options, or steps relate to each other

- *+xHighlight edge casesxx: Emphasize special conditions, exceptions,
or unusual scenarios mentioned in the source

- **xElaborate on consequencesx*x*: When the source mentions outcomes,
expand on both success and failure scenarios

13

3. Prose Transformation Guidelines

— x*xBullet integration**: Transform each bullet point into 1-3
complete sentences that naturally flow together

— x*xTechnical precision**: Use precise technical vocabulary while
maintaining readability

— xxLogical flowxx: Organize information within each section to follow

a logical sequence (setup —execution —verification)

- xxContextual embeddingx*+*: Weave code snippets and technical terms
seamlessly into narrative sentences

- xxComprehensive coveragexx: Ensure every sub-bullet, nested item,
and parenthetical note becomes part of the prose

4. Structural Requirements

— xxHeading hierarchyxx: Use ‘# Title' for each node’s main heading

— **xSection orderxx: Maintain Context —How to Use —When to Use —Best

Practices sequence

- *x*xParagraph organizationxx: Create substantial paragraphs (3-6
sentences) rather than brief statements

- x»xTransition quality=**: Craft smooth bridges between sections and
between different nodes

- xxCode formattingxx: Preserve all inline code with backticks and
maintain proper formatting for code blocks

5. Quality Assurance Checklist

Before finalizing, verify:

— [] Every piece of source information appears in the output

- [1 All technical specifications, parameters, and examples are
intact

] Code snippets maintain their exact syntax and formatting

] Prose flows naturally without choppy or fragmented sentences

] Each section provides comprehensive coverage of its topic area
] Cross—-references and dependencies are clearly explained

] No section labels or formatting artifacts remain in the prose

Output Specifications

Generate a single, cohesive markdown document that reads as
authoritative technical documentation. The result should be
comprehensive enough that a reader could successfully implement
the described tools or techniques using only the information
provided, without referring back to the original nodes.

**xInput Nodes:*x*
<NODES>
{node_1list}
</NODES>

Now, produce the aggregated markdown reference sheet with maximum
detail preservation and enhanced clarity.

14

Algorithm 2 Generatelnsights: Extract behavioral insights from trajectories

Require: Queries Q, KB D, rubrics

Ensure: Concept-insight pairs B

B+ o

: for each query ¢ € Q do
T <— LLM(q, D) > Generate trajectory
label <~ GRADE(T) > Success/failure
(¢, 1) + REFLAGENT(T, rubrics, label)
B+ BU{(¢,i,q)} > Store with source query

end for

return 53

A A o e

Algorithm 3 DeduplicateConcepts: Cluster similar concepts and map queries
Require: Concept-insight-query triples B
Ensure: Meta-concepts K with mapped queries and insights
1: Extract all concepts from 5
2: Embed and cluster concepts by similarity
3: KC < cluster representatives
4: for each k € K do
5: Qp" < {training queries that contributed insights to %}
6
7
8
9

szal <+ {held-out queries relevant to k}
Ty, < {all insights mapped to concept k}
: end for
: return XC with associated queries and insights

Algorithm 4 ExpandNode: Generate and evaluate new document variants

Require: Node s, concept k, candidates h, current KB D yrent, best docs Dy, tree
Ensure: Updated tree with new evaluated nodes
: > Generate new insights from concept-relevant queries

1:

2: Bhew < 2

3: for query ¢ € Q*" do

4: 7 < LLM(q, Deurrent)

5: (¢, 1) + ANNOTATE(T, rubrics, -)

6: if ¢ maps to k then

7: Bhew < Brew U {3}

8: end if

9: end for
10: > Generate and evaluate candidate documents
11: for j = 1to h do
12: dy,; < INTEGAGENT(K, I, U Byew, df))
13: > Evaluate using hybrid KB with best docs from other concepts
14: Dhybrid — {dkyj} U {dk/ € Drest - k' 7& k}
15: Ry,.j + EVALUATE(dy, j, Dhybria; Q5')
16: > Add to tree and backpropagate
17: Add (dg,j, Ry, ;) as child of s in tree
18: Backpropagate Ry, ; from new node to root
19: end for

15

Algorithm 5 Evaluate: Score document using held-out queries

Require: Document dy, hybrid KB Dhyprig, €val queries Q;"a'
Ensure: Reward score R
: RO« 0
R0
: for each ¢ € 99" do
R < R4 EVAL(q, agent ® Dhybria)
R™ < R*4+ MRR(dg, q, Dhybria)
end for

RCO\T
RCOIT % W
ret
Rt R
B
return A\.or - RO + Aot - R

R A A S ol r

A.2 BREW CONFIGURATIONS

Base LLM Configuration For all BREWalgorithm steps, we use the OpenAl GPT-4.1-2025-
04-14 model as the underlying language model. To balance exploration and stability, we set the
temperature to 0.7 for the IntegAgent component to encourage diversity in sampled completions,
while all other calls use a temperature of 0.1 for deterministic behavior. The search process employs
an expansion width of e = 3, a maximum search depth of £ = 3, and a maximum of n = 10
iterations. Reward signals are weighted equally across correctness and retrieval relevance, with
Acorr = Aret = 0.5.

A.3 BASELINE METHODS

We compare BREWagainst two common reasoning baselines. Step-Back Prompting encourages
backward reasoning by guiding the model to work from the final task objective back to the initial
actions. In-Context Learning augments the input prompt with successful trajectories from related
tasks, enabling the model to benefit from relevant prior examples without additional fine-tuning.

A.4 BENCHMARK SPECIFICATIONS

A.4.1 OSWORLD: COMPUTER-USE AUTOMATION

Dataset Overview OSWorld |Xie et al.|(2024) comprises 369 real-world computer-use tasks span-
ning 10 distinct applications. The benchmark is divided into train and test sets, with the distribution
of tasks across domains shown in Table[2]

Agent Specifications The UI-Tars-7B variant is a 7B-parameter multimodal transformer fine-tuned
for graphical user interface understanding. It operates over an action space of PyAutoGUI commands
(e.g., click, type, and key presses). The agent integrates a retrieval module that queries a task-relevant
knowledge base using the user-provided description, with the top three retrieved items added to the
system prompt. Inputs to the model consist of a screenshot of the active Ul paired with the natural
language task description.

The GTA1-7B configuration adopts a two-agent architecture, consisting of a planner and a grounding
module. The planner (GTA-1-7B) generates the high-level action sequence, while the grounding
module (OpenAl O3) verifies and refines each action before execution. Knowledge retrieval is
incorporated differently for each component: the planner performs a single retrieval at the start
of execution, which is persisted in its prompt, whereas the grounding module performs dynamic
retrievals at each verification step.

Evaluation Protocol Evaluation uses 134 task-specific scripts designed for automated verification.
Success criteria include file state checks (e.g., validating . x1sx or .docx outputs), Ul element
validation to confirm correct interaction, and process completion checks to ensure that the intended
automation sequence was executed successfully.

16

A.4.2 72-BENCH: INTERACTIVE TOOL USAGE

Dataset Overview 72-Bench [Barres et al.|(2025b) extends 7-Bench by introducing bidirectional
tool-calling capabilities. The dataset covers multiple service-oriented domains, with domain-level
task distributions summarized in Table 3

Domain Characteristics The benchmark spans several domains with distinct task characteristics.
The Telecom domain focuses on connectivity troubleshooting, plan modifications, and service
activation workflows. The Retail domain includes order processing, return handling, and inventory
queries. The Airline domain emphasizes booking modifications and policy-compliant rescheduling
scenarios.

Interaction Settings Two interaction modes are defined. In Easy mode, a human proxy (imple-
mented via GPT-4.1) provides detailed guidance to the agent. The knowledge base is built exclusively
from Easy mode trajectories, ensuring high-quality demonstrations for learning. In Hard mode,
human intervention is minimized. The knowledge base combines both Easy and Hard trajectories,
testing the agent’s robustness to underspecified or noisy instructions.

Evaluation Criteria Task success is measured using domain-specific verification procedures. These
include database state checks to validate final outcomes, status checks for confirming service or
connection state, natural language verification to ensure correct confirmation statements appear in
dialogue, and action matching to confirm that all required steps are completed. Each domain uses a
tailored subset of these checks (e.g., Telecom relies primarily on status checks).

Domain Test Train
Calc 45 2
Chrome 44 2
Writer 21 2
Gimp 24 2
Impress 45 2
Os 22 2
Thunderbird 13 2
Multi-apps 99 2
VLC 15 2
VSCode 21 2
Total 349 20

Table 2: Test and Train samples across different domains in OSWorld.

Domain Test Train

Telecom 105 7
Retail 105 7
Airline 44 6

Total 254 20

Table 3: Task-wise breakdown for 72-Bench with assumed 2-shot training samples per domain.

Domain Characteristics

* Telecom: Connectivity issues, plan management, service activation
* Retail: Order processing, returns, inventory queries

* Airline: Booking modifications, policy-compliant rescheduling
Evaluation Criteria Task success determined by:

¢ Database Checks: Final state verification

17

e Status Checks: Service/connection state validation
* NL Checks: Confirmation statements in dialogue

* Action Matching: Required action sequence completion

Note: Each domain uses specific check combinations (e.g., Telecom uses only status checks).

A.4.3 SPREADSHEETBENCH: REAL-WORLD SPREADSHEET MANIPULATION

Dataset Overview SpreadsheetBench Ma et al.|(2024) consists of 912 instructions collected from
four major Excel forums and blogs. Each instruction is paired with spreadsheets reflecting authentic,
complex user scenarios, often containing multiple tables and non-standard relational structures.
The dataset totals 2,729 test cases, averaging three per instruction. A breakdown of cell-level and
sheet-level manipulations is shown in Table]

Task Settings The benchmark defines two dimensions of evaluation:

* Granularity: Instructions involve either cell-level manipulations (specific ranges such as
D2 :D6) or sheet-level manipulations (entire tables or multi-sheet updates).

* Evaluation: Performance is measured using an Online Judge (OJ)-style protocol. The soft
setting (IOI-style) awards partial credit when only some test cases are solved, while the hard
setting (ICPC-style) requires solutions to succeed on all test cases.

Agent Configuration We evaluate

texttto4-mini using a function-calling agent connected to a single Python execution tool. The
agent translates natural language instructions into Python code for spreadsheet manipulation (e.g.,
modifying cells, applying formulas, restructuring tables). After each tool call, all formulas in the
spreadsheet are recalculated to ensure consistency before proceeding to the next step. This setup
provides a controlled environment to assess reasoning, code generation, and execution robustness
across diverse spreadsheet tasks.

Granularity Instructions Test Cases

Cell-Level 329 986
Sheet-Level 583 1,743
Total 912 2,729

Table 4: Cell-level vs. sheet-level distribution in SpreadsheetBench.

A.5 KB CONSTRUCTION AND RETRIEVAL DETAILS
Training Data Collection

* OSWorld: 20 successful trajectories (2 per application domain) and 10 for evals.
» 72-Bench: 20 trajectories balanced across domains and difficulty settings and 10 for evals.

* SpreadsheetBench: Uniformly sample 30 trajectories for training and 10 for evaluation.

All numbers are reported on the remaining train set.

Retrieval Strategy

* Query Formation: For each task we take in the seed Natural Language query as the retrieval
query.
* Retrieval Count: We take top-3 documents for all the retrieval steps

* Integration Point: For SPREADSHEET ENCH and OSWorld we insert retrievals in the
system prompt augmentation. For 72-bench we add perfrom retrieval after each user
interaction.

18

Baseline max_width=3, max_depth=3 max_width=3, max_depth=10 max_width=10, max_depth=3

OSworld 44.20 47.56 43.83 49.32

B

Table 5: OSworld difference in MCTS parameters

QUALITATIVE ANALYSIS

Exploration on MCTS parameters WE evaluate OSworld on two different MCTS parameters.

* Increased Depth: To increase the depth we keep maximum width of the tree as 3 and depth as
10 with max number of iterations as 25. We observe that the Knowledge base over optimizes
on the train set leading to a poorer performance on test set.

* Increased Width: For increased width we reverse the parameters where depth is 3 and
maximum width is 10 with max iterations 25. We observe many different styles of KBs are
generated storing very similar information, these different styles lead to a varied performance
on both eval and test set notifying the importance of state search.

We report the numbers on table ??

C

C.1

EXEMPLAR KNOWLEDGE BASES

KNOWLEDGE BASE LEARNED FOR OSWORLD

We showcase a small part of knowledge base learned thought BREW . This demonstrate 3 major
parts on which each document is aggregated. These parts discuss when to use a piece of information,
why to use the information, how to use the information/tool.

Search and Open Files

**xWhen to usexx: Locating documents, spreadsheets, images, or
downloads for editing, conversion, or attachment.

How to Perform

— Open *xFile Manager (Nautilus)x** from launcher or system dock

- Press ‘Ctrl + F' or click the search icon

- Enter part of filename, full name, or wildcard (‘x.pdf‘, ‘reportx?)

— Use right-click —**Open With** to choose the desired application

— Use the sidebar to navigate to **Downloads=*#*, xxDocumentsxx, or
custom folders

Additional Actions

— Right-click —=*xPropertiesxx to check modification date or file type
— Sort results by Date, Type, or Name from the top-right dropdown

— Use ‘F2' to rename files inline

Example

- Task: "Edit the file titled ‘sales_report_march.ods"
— Search for ‘sales' in File Manager
- Confirm ‘.ods' type and open with LibreOffice Calc

Insert Images

**When to usexx: Adding visual elements to documents, presentations,
emails, or templates.

How to Perform

- Navigate to xxInsert —Image —From Filexx (in Writer, Impress,
Thunderbird)

19

- Select an image file (‘.png‘, ‘.jpg', ‘.svg') from the file dialog
— Use drag handles to resize; right-click —#*xWrap** or xxAlignmentxx*
for layout

Additional Actions

— In GIMP: x*xFile —Open as Layers+** to insert image as a new layer

— Use drag-and-drop from file manager into open document windows

— Use *xxFormat —Imagexx to apply borders, shadows, or color
corrections (in Writer/Impress)

Example
- Task: "Insert the logo.png image into the title slide"
- Open ‘.odp' file in Impress —Go to Slide 1 —Insert —Image —
Select ‘logo.png’

Export as PDF
**When to usexx: Required submission format

How to Perform

- Go to xxFile —Export As PDFxx*

— Choose output folder (usually **xDocuments** or x*Downloadsxx)
— Click xxSavex*+*, then confirm the exported file opens correctly

Additional Actions

— In GIMP or Impress: choose xxFile —Export Asx*+*, then select ‘.pdf®
from format list

- Use xxSave Asxx to preserve both editable and exported versions
separately

Example
— Task: "Export the flyer.xcf as a PDE"
— Open in GIMP —File —Export As —Rename to ‘flyer.pdf' —Click
Export

C.2 BREW KNOWLEDGE BASE FOR 72-BENCH

BREW enable use to learn relevant information for tau bench for across the domains in a single
knowledge base. This knowledge base is helpful to use relevant actions from the action pool.

Additional Actions

* Inform the user:
- Refunds via gift card = immediate.
- Refunds via other methods = -57 business days.

Example

* Task: "Cancel a T-shirt order placed yesterday"
Validate: Status 1is ‘pending’

Reason: "no longer needed"

Confirm

Execute tool call

* X X %

Exchange Delivered Order

**When to usexx:
User wants to swap delivered items for a different variant (e.g., size
or color).

20

xWhy to use itxx:
To fix sizing or option errors without needing a new purchase.

How to Perform
— Authenticate user
— Confirm order status is ‘delivered®
— Get full list of exchange items
> "Please ensure all items for exchange are listed. This step ’cant be
repeated."
- Ask for refund/payment method
- Confirm:
> "’Youre exchanging item X for same product, different option.
Proceed?"
— On confirmation:
*Y'python
request_exchange (order_id="45678", item_exchanges=[...],
payment_method="paypal")

ANRNRY

Additional Actions

* Mention: An email will be sent with return instructions
* Validate that the new variant is from the same product

Example

x Task: "Exchange red shirt for blue in Order #45678"
* Confirm all exchange items
* Confirm payment method for difference
* Execute tool call

Example
* Task: "Show me my last 2 orders"
* Authenticate
* Retrieve and present info
Deny Unsupported Request
**When to usexx:
User asks for an unsupported action (e.g., cancel processed order,

exchange to different product type, help another user).

xWhy to use itxx:
To stay compliant with platform policy.

How to Perform
- Politely reject:
> "/ Im sorry, but I ’'cant process that request. ’'Its outside the
allowed scope."
Example
* Task: "Cancel a processed order"
* Respond with denial message

Transfer to Human Agent

*xWhen to usexx:
User needs help outside the ’assistants permitted capabilities.

**Why to use itw*x:
To ensure user gets the right help from trained staff.

How to Perform

21

- Make tool call:
‘Y 'python
transfer_to_human_agents ()
— Then inform user:
> "YOU ARE BEING TRANSFERRED TO A HUMAN AGENT. PLEASE HOLD ON."

Example
* Task: "Delete a task"

* Deny deletion
* Transfer to human

C.3 BREW KNOWLEDGE BASE FOR SPREADSHEETBENCH

Header Extraction

1. Detecting Header Rows

Overview:

To accurately identify header rows, scan the initial region of your
dataset. This process is crucial for mapping column information
for further processing.

Approaches:

— Heuristic Checks:

— Look for rows where all cells are strings (e.g., "Name", "Date", "
Region", "Amount").

— Identify rows with distinctive formatting such as bold text or
background color.

- Example:

| Name | Date | Region | Amount | |--
————— |-~-—-———-—-——-———-|-—-——-———-—-—-—--—|-—=—-=--] | John | 2024-01-01| North

| 100 |

- Pattern Recognition:

— Use regex to match typical header patterns, such as column names
starting with uppercase letters.

— Score candidate rows based on the likelihood of being headers.

— Multi-Table Sheets:

— Detect gaps, empty rows, or separators indicating a new table.

— Assign a Table ID to each detected table for later reference.

Edge Cases:

- Merge multi-row headers (e.g., "Sales" over "2024", "2025" becomes "
Sales 2024", "Sales 2025").

— Fill in missing headers by inferring from context.

2. Assigning and Validating Headers

Overview:

Once headers are detected, assign them programmatically and ensure
they match expected schema and data types.

Implementation:

— Column Naming:

- Set names in code, e.g., df.columns = ["Name", "Date", "Region", "
Amount"].

- Schema Mapping:

— Map headers to a standardized schema, using external files or user
prompts.

- Example:

— Raw header: "Amt"; Mapped header: "Amount"

— Quality Checks:

— Detect duplicate or empty headers ("Date", "Date" becomes "Date_1",
"Date_2") .

- Validate each column’s expected data type.

22

3.
Oov
En

Fe

Automation and Usability Enhancements

erview:

hance usability and automation to streamline header extraction and
user interaction.

atures:

Freeze Panes:

Automatically freeze header rows in Excel for easier navigation.

Highlighting:

Use colored formatting to visually distinguish headers.

Example:

Yellow fill for header row.

Documentation:

Log extraction logic and confidence scores for each detected header.

Integration:

Build header extraction into ETL pipelines and record process
metadata.

Block Detection

1. Identifying Block Boundaries

Overview:

Block detection segments data into logical units or tables.

Methods:

- Boundary Detection:

- Find empty rows, repeated labels, or formatting changes.

- Example:

| Name | Amount | |-————-— | ——————— | | John | 100 | | | | <-— Empty row

indicates new block | Name | Amount | | Alice| 200

- Machine Learning:

— Train classifiers to detect block boundaries based on cell patterns.

Advanced:

— Detect nested blocks or hierarchies using indentation or merged
cells.

— Identify summary blocks with keywords like "Total" or "Summary".

2. Processing and Tracking Blocks

Overview:

Once blocks are detected, assign IDs and enable block-level analysis.

Actions:

- Block ID:

- Assign unique IDs (e.g., Block_001, Block_ 002).

— Analysis:

- Perform group-by or aggregation within each block.

- Example:

— Sum "Amount" for Block_001: 100 + 150 = 250

3. Additional Block Actions

Overview:

Enable modular analysis and reporting at the block level.

Features:

— Summary Rows:

— Add computed totals/averages for each block.

- Export/Save:

— Save blocks as separate files or sheets.

— Example:

— Export Block_001 to "blockl.csv"

Search for Values or Patterns

1. Search Execution Methods

Overview:

Efficiently locate specific values or patterns in your data.

23

Techniques:

— Manual Tools:

— Use Ctrl + F in Excel for quick lookups.

— Programmatic Search:

— Scan all cells using loops or vectorized code.

- Example:

- Find all instances of "North" in the "Region" column.

— Pattern Matching:

— Support exact, wildcard (*Totalx), and regex (\d{4}-\d{2}-\d{2} for
dates) .

2. Recording and Highlighting Results
Overview:
Log and visualize search matches for user review.

Actions:

- Logging:

- Record coordinates (e.g., Sheetl, Row 3, Col "Region").
- Highlighting:

— Apply conditional formatting to search hits.

3. Advanced Search Scenarios
Overview:
Handle complex or large-scale search requirements.

Scenarios:

— Merged Cells:

— Search within merged cells or across multiple sheets.

- Export:

— Export found results for further analysis.

- Example:

- Export all rows containing "John" to "john_results.csv"

Writeback Results

1. Output Placement

Overview:

Choose where and how to insert results.

Options:

— Target Columns:

- Select existing or blank columns for output.

— Appending:

— Add new columns for flags, counts, or statuses.
- Example:

— Add "Approved_Flag" column next to "Status".

2. Writing and Styling Results
Overview:
Automate and style the output for visibility.

Methods:

- Formulas/Code:

— Use code (e.g., ws.cell(row, col).value = result) to insert results.
- Styling:

— Bold, borders, or colors for output cells.

- Example:

— Green fill for "Success", red for "Error".
3. Audit and Protection
Overview:

Maintain the integrity and traceability of results.

Measures:
- Lock Columns:

24

— Prevent edits to output columns.
- Timestamps/User Info:

— Add audit trail for writebacks.
- Example:

- "2024-06-01, User: admin"

Difference in State

1. Sheet Comparison

Overview:

Identify changes between input and output sheets.

Process:

— Load Sheets:

- Read both sheets into memory.

— Compare Cells:

— Detect differences by position and value.

2. Recording and Reporting Differences
Overview:
Log and report all detected changes.

Actions:

- Log Mismatches:

- Record cell coordinates and values.

- Example:

- Cell B3: "North" —"South"

— Export Diff Report:

- List all detected differences for review.

3. Visualization and Automation
Overview:
Make changes visible and automate validation.

Features:

— Highlight Changes:

— Color code changed cells.

— Automate Checks:

- Integrate diff comparisons into test scripts.

Column Selection

1. Selection Criteria

Overview:

Choose relevant columns for analysis.

Methods:

- Labels/Indices:

— Select by name or position.

— Dynamic Rules:

- E.g., all numeric columns.

- Assign Roles:

- Example: "ID", "Date", "Metric"

2. Preparation and Validation
Overview:
Prepare columns for consistent use.

Actions:

— Rename/Relabel:

- Standardize column names.

- Validate Types:

- Ensure columns are of expected type.
- Example:

- "Date" column as datetime.

3. Reusability

25

Overview:
Save and reuse column selections.

Features:

— Presets:

- Save selection profiles.
— Downstream Use:

— Use validated columns in subsequent processes.

Filter Rows

1. Filtering Methods

Overview:

Refine your dataset with filters.

Techniques:

— Spreadsheet Tools:

— Use built-in filters.
- Code Logic:

- Filter with code (e.g., df[df[’Status’]

— Multiple Criteria:

— Combine conditions (AND/OR) .

- Example:

- Status = "Approved" AND Amount > 100

2. Helper Columns and Complex Filters
Overview:
Simplify filtering using helper columns.

Actions:

— Helper Columns:

— Compute intermediate flags.

- Document Logic:

— Record filtering rules for audit.

3. Post-Filter Actions
Overview:
Visualize and export filtered data.

Features:

- Highlighting:

— Grey-out filtered-out rows.
- Export:

— Save the filtered dataset.

Merge Tables

1. Key-Based Merging

Overview:

Combine tables using shared keys.

Techniques:

- Join Operations:

— Use VLOOKUP, JOIN, or code merges.

— Example:

— Merge "Customer_ID" from two tables.
— Align Data:

— Match on columns like "ID", "Name".

2. Stack-Based Merging
Overview:
Append tables when keys ’arent needed.

Methods:

- Vertical Append:

— Combine rows from similar tables.
- Deduplicate:

26

"Approved’]) .

— Remove duplicate records.

3. Tracking and Audit
Overview:
Track source and unmatched records.

Actions:

— Source Column:

— Add "Source" to indicate origin.
— Highlight Unmatched:

- Mark or export mismatched rows.

Pivot or Unpivot

1. Pivoting Data

Overview:

Summarize data using pivots.

Methods:

— PivotTables:

- Group by row/column dimensions.
- Example:

- Sum "Amount" by "Region".

- Aggregation:

- Choose SUM, AVG, COUNT, etc.

2. Unpivoting (Melting) Data
Overview:
Reshape data from wide to long format.

Techniques:

— Melt Operations:

- Convert columns into rows.
- Example:

| Year | Sales_2019 | Sales_2020 | |-————=|———————————~
_)

| Year | Sales_Year | Value |

- Flexible Restructuring:

— Selectively unpivot non-ID columns.

3. Post-Pivot Actions
Overview:
Prepare pivoted data for export.

Features:

- Flatten Pivot Table:

Convert back to flat for further analysis.
— Reorder/Rename:

- Clarify pivoted fields.

Map with Lookup Tables

1. Mapping Techniques

Overview:

Standardize data using lookups.

Methods:

- Functions:

— Use VLOOKUP, merge with dictionaries.
— Code—-to-Label:

- Example:

- Code "N" —Label "North"

2. Application and Fallbacks

Overview:
Apply lookups and handle missing values.

27

Actions:

- Apply Mappings:

— Across selected columns.

- Handle Missings:

— Use defaults for missing codes.

3. Audit and Display
Overview:
Ensure mapping transparency.

Features:

— Cache Mappings:

- Store for repeated use.
— Display Codes/Labels:

- Show both for clarity.

Fill Missing Data

1. Choosing Fill Methods

Overview:

Impute missing data appropriately.

Techniques:

- Forward/Backward Fill:

- Fill gaps with prior/next wvalue.

— Default Values:

— Use fixed placeholder (e.g., 0, "Unknown").

- Contextual Example:

— Dates: Fill missing month with last known month.

2. Application and Auditing
Overview:
Apply fills and flag for review.

Actions:

- Targeted Filling:

- Apply to specific columns/rows.
- Flag Filled Cells:

— Highlight for later review.

3. Documentation
Overview:
Keep fill logic transparent.

Features:

- Record Logic:

— Document assumptions and methods.
- Audit Trail:

— Track all changes.

Flag Rows or Cells

1. Defining Flag Rules

Overview:

Establish criteria for flagging.

Examples:

— Simple Rule:

- Flag where Amount < 0

— Complex Rule:

- Flag where Status = "Pending" and Amount > 1000

2. Applying Flags

Overview:
Insert flags and summarize.

28

Actions:

- Flag Column:

- Add "Flag" column with "Yes"/"No".
— Export Flagged Rows:

— Save for further inspection.

3. Advanced Flagging
Overview:
Use multiple criteria and document.

Features:

- Multi-Criteria:

— Combine several rules for granular checks.
- Notes:

— Document flagging rationale.

Sort Data

1. Setting Sort Criteria
Overview:

Organize data for analysis.

Options:

- Sort Columns:

- By value, ascending/descending.

- Multi-Level:

- E.g., sort by "Region", then by "Amount".

2. Applying Sorts
Overview:
Implement sorting programmatically or manually.

Methods:

— Spreadsheet Tools:

- Built-in sort features.

- Code:

- E.g., df.sort_values ([’Region’, ’Amount’])

3. Post-Sort Actions
Overview:
Finalize sorted data.

Actions:

— Renumber Rows:

- Update indices.

— Highlight Extremes:

- Mark top/bottom values.

Validate Data

1. Validation Checks

Overview:

Ensure data meets required standards.

Checks:

- Type:

- Ensure numeric columns contain numbers.
— Range:

- E.g., "Amount" > 0.

— Pattern:

— Date columns match YYYY-MM-DD.

— Business Rule Example:

— "Start Date" < "End Date"

2. Marking and Reporting

Overview:
Visualize and report errors.

29

Actions:

— Highlight Invalids:

— Color-code errors.

— Export Summary:

— Table of error counts and locations.

3. Integration in Workflow
Overview:
Make validation a routine part of processing.

Features:

— Pre-Processing Step:

- Validate before analysis.

— Automation:

- Integrate into data pipelines.

Split Sheets or Data

1. Defining Split Rules

Overview:

Segment data for modular analysis.

Methods:

- By Category:

- E.g., split by "Region".
- By Date Range:

- E.g., split by year.

2. Exporting Segments
Overview:
Save segments for separate use.

Actions:

- Export Files:

— "North_Region.csv", "South_Region.csv"
- Consistent Formatting:

— Ensure identical columns and styling.

3. Automation and Documentation
Overview:
Automate splitting and track provenance.

Features:

- Automation:

- Use scripts/macros for repeated splits.
- Documentation:

— Record rules and export logs.

D QUALITATIVE ANALYSIS OF BREW-GENERATED KNOWLEDGE BASES

This section presents a comprehensive qualitative analysis of knowledge bases generated through
the BREW technique applied to two distinct agent training environments: OSWorld and 72Bench
described in the section before. The analysis examines knowledge representation patterns, procedural
sophistication, and domain-specific learning characteristics extracted from CUA agent behaviors,
providing insights into the effectiveness and scope of knowledge distillation techniques across diverse
task environments.

30

D.1 CRross-DOMAIN KNOWLEDGE BASE ANALYSIS

D.1.1 BASE STRUCTURE & ORGANIZATION

Schema Consistency and Evolution: Both knowledge bases demonstrate consistent structural
schemas, though adapted to their respective domains. The OSWorld KB employs a four-part
schema (contextual triggers, procedural steps, extended capabilities, concrete instantiation), while the
72Bench KB extends this to a five-part structure, adding explicit purpose rationale (“Why to use it”).
This evolution suggests that BREW adapts its extraction patterns to domain-specific requirements—
conversational commerce demands explicit justification for actions due to customer interaction
contexts.

Taxonomic Organization Principles: The OSWorld KB reveals a capability-based taxonomy
organized around computational tasks: file operations, document processing, inter-application work-
flows, and data visualization. Each category represents a distinct computational domain with specific
tool requirements and interaction patterns. In contrast, the 72Bench KB employs a lifecycle-based
taxonomy structured around transactional states: order creation, modification, fulfillment, and
post-delivery operations. This organizational difference reflects fundamental domain characteristics—
desktop automation focuses on tool orchestration, while conversational commerce centers on process
management.

Hierarchical Task Decomposition: Both KBs demonstrate sophisticated hierarchical reasoning, but
through different decomposition strategies. OSWorld exhibits technical decomposition, breaking
complex operations like “Create Charts from Data” into constituent technical steps (data selection,
chart insertion, customization, formatting). 72Bench shows process decomposition, structuring
operations like order modification into authentication, validation, confirmation, and execution phases.
This suggests BREW successfully identifies domain-appropriate decomposition strategies rather than
applying uniform patterns.

Knowledge Boundary Definition: Both KBs explicitly encode operational boundaries, but through
contrasting mechanisms. OSWorld boundaries are capability-constrained—determined by available
applications and system resources. 72Bench boundaries are policy-constrained—explicitly defined
through “Deny Unsupported Request” patterns and escalation protocols. This difference highlights
how knowledge extraction adapts to domain-specific constraint types.

D.1.2 PROCEDURAL KNOWLEDGE GROUNDING

Context-Dependent Action Selection: Both domains demonstrate sophisticated context awareness,
but grounded in different environmental factors. OSWorld exhibits application-context sensitivity,
where identical operations (e.g., image insertion) require different procedures across LibreOffice
Writer, Impress, GIMP, and Thunderbird. The agent learned application-specific affordances and
interaction patterns rather than generic command sequences. 72Bench demonstrates state-context
sensitivity, where available actions depend on order status (pending vs. delivered), payment methods,
and authentication levels. This reveals learned understanding of business process constraints and
temporal operation windows.

Error Prevention and Validation Workflows: Both KBs incorporate sophisticated error prevention
mechanisms, but grounded in domain-specific failure modes. OSWorld emphasizes technical valida-
tion: file integrity checks (“confirm the exported file opens correctly”), application state verification,
and multi-step confirmation for irreversible operations. 72Bench emphasizes transactional valida-
tion: authentication cascades, confirmation dialogues with standardized templates, and explicit user
consent protocols. The emergence of defensive programming practices across both domains suggests
these represent fundamental principles of reliable agent behavior.

State-Dependent Decision Logic: The procedural knowledge in both domains demonstrates sophisti-
cated state machine reasoning. OSWorld exhibits application state awareness—understanding when
applications are ready for input, when files are loaded, and when operations can be safely executed.
Window management and application switching reveal learned understanding of desktop metaphors
and resource constraints. 72Bench demonstrates business process state awareness—finite state
machine reasoning where order lifecycle states determine available operations. The agent learned
that pending orders enable modification while delivered orders unlock return workflows, indicating
internalized understanding of business logic constraints.

31

Security and Authentication Grounding: While OSWorld operates in a trusted desktop environment
with minimal explicit security concerns, 72Bench reveals pervasive authentication-first paradigms.
Nearly every transactional operation begins with identity verification through email, name, and zip
code combinations. The KB demonstrates graduated security reasoning: information retrieval
requires basic authentication while financial transactions trigger rigorous verification protocols. This
contrast highlights how procedural knowledge adapts to domain-specific security requirements.

Cross-Application vs. Cross-Process Orchestration: OSWorld demonstrates technical orches-
tration—coordinating multiple applications (Chrome, LibreOffice suite, File Manager, GIMP) to
accomplish complex workflows. The ‘“Navigate Between Applications™ section reveals learned be-
haviors for window management, application switching, and resource coordination. 72Bench exhibits
process orchestration—coordinating authentication, validation, confirmation, and execution phases
across different operational contexts. Both forms of orchestration require sophisticated temporal
reasoning and constraint management, but applied to different environmental complexity types.

Failure Mode Internalization: Both KBs reveal learned understanding of domain-specific failure
modes. OSWorld incorporates file validation, application crash recovery suggestions, and verification
steps for critical operations. 72Bench includes explicit escalation protocols (“Transfer to Human
Agent”), policy compliance mechanisms, and irreversibility warnings for financial operations. The
consistent emergence of failure-aware procedures suggests that agents successfully internalize risk
assessment and mitigation strategies during training.

Domain-Specific Communication Patterns: The procedural knowledge reveals distinct communica-
tion paradigms appropriate to each domain. OSWorld procedures are task-oriented with minimal
user interaction—focusing on efficient command execution and verification. 72Bench procedures are
dialogue-oriented with standardized customer interaction templates, confirmation protocols, and
expectation management communications. This adaptation demonstrates that BREW extracts not just
procedural logic but domain-appropriate interaction modalities.

The cross-domain analysis reveals that BREW successfully extracts procedural knowledge that is both
structurally consistent (following learnable organizational patterns) and contextually grounded
(adapted to domain-specific constraints, failure modes, and interaction requirements). This dual capa-
bility suggests significant potential for knowledge transfer across related domains while maintaining
appropriate domain-specific adaptations.

32

	Appendix
	Details of the BREWAlgorithm
	BREW Configurations
	Baseline Methods
	Benchmark Specifications
	OSWorld: Computer-Use Automation
	2-Bench: Interactive Tool Usage
	SpreadsheetBench: Real-World Spreadsheet Manipulation

	KB Construction and Retrieval Details

	Qualitative Analysis
	Exemplar Knowledge Bases
	Knowledge base learned for OSWorld
	BREW Knowledge Base for 2-Bench
	BREW Knowledge Base for SpreadsheetBench

	Qualitative Analysis of BREW-Generated Knowledge Bases
	Cross-Domain Knowledge Base Analysis
	Base Structure & Organization
	Procedural Knowledge Grounding

