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ABSTRACT

We consider the Adversarial Multi-Armed Bandits (MAB) problem with unbounded
losses, where the algorithms have no prior knowledge on the sizes of the losses. We
present UMAB-NN and UMAB-G, two algorithms for non-negative and general unbounded
loss respectively. For non-negative unbounded loss, UMAB-NN achieves the first adap-
tive and scale free regret bound without uniform exploration. Built up on that, we further
develop UMAB-G that can learn from arbitrary unbounded loss. Our analysis reveals the
asymmetry between positive and negative losses in the MAB problem and provide ad-
ditional insights. We also accompany our theoretical findings with extensive empirical
evaluations, showing that our algorithms consistently out-performs all existing algorithms
that handles unbounded losses.

1 INTRODUCTION

Multi-armed bandit (MAB) presents a popular online learning framework for studying decision making
under uncertainty (Slivkins et al., 2019; Lattimore & Szepesvári, 2020; Bubeck et al., 2012), with a wide
range of applications such as advertisement (Schwartz et al., 2017), medical treatments (Villar et al., 2015),
and recommendation systems (Mary et al., 2015). In this paper we focus on the adversarial MAB (AMAB),
where the losses are allowed to be generated adversarially by the environment Auer et al. (2002). Most prior
works on AMAB assume that the losses are naturally bounded, e.g. ℓt ∈ [0, 1],∀t. With such knowledge,
the algorithms can set their learning rate (in a general sense) properly. For example, in its regret analysis,
the EXP3 algorithm relies on the inequality exp(x) ≤ 1 + x + (e − 2)x2 to transform exponential terms
into quadratic terms (Auer et al., 2002), which only holds true if the loss x can be upper bounded by 1.
In many real-world applications, however, such natural loss bound does not always exist. For example, in
quantitative trading, the fluctuation of stock prices can differ wildly across time. In online market places,
the price can vary dramatically for different products. If one must give a uniform bound M for the losses
across all actions and time, such a bound will likely be loose. In such cases, existing algorithms will have
a regret that scales with M , which is suboptimal compared to a guarantee that depends on the actual size of
the losses.

Motivated by the above limitation of existing algorithms, we wish to design AMAB algorithms that require
no prior knowledge on the scale of the losses and adaptively achieves smaller regret when the losses are
small in scale. In addition, instead of a regret bound that depends on the number of rounds and a (hidden)
uniform bound of the losses, we wish to design data-dependent algorithms whose regret scales with the
actual loss sequence, which is beneficial when the sequence of loss is sparse or when its scale varies across
time (Wei & Luo, 2018; Bubeck et al., 2018). In other words, we would like to ask the following question:

Can we design an algorithm that achieves optimal and adaptive regret guarantee
without any prior knowledge on the losses?
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Algorithm Unbounded Adaptive Regret

(Hazan & Kale, 2011) No Yes Õ
(√∑T

t=1 ∥ℓt∥22
)

(Hadiji & Stoltz, 2020) Yes No Õ
(
ℓ∞

√
nT

)
(Putta & Agrawal, 2022) Non-Adaptive Yes No Õ

(
ℓ∞

√
nT +

√
n
∑T

t=1 ∥ℓt∥22
)

(Putta & Agrawal, 2022) Adaptive Yes Yes Õ
(
ℓ∞

√
n
∑T

t=1 ∥ℓt∥1 +
√

n
∑T

t=1 ∥ℓt∥22
)

UMAB-G Non-Adaptive Yes No Õ
(
ℓ−∞

√
nT +

√
n
∑T

t=1 ∥ℓt∥2∞
)

UMAB-G Adaptive Yes Yes Õ
(
ℓ∞

√
n
∑T

t=1 ∥ℓt∥∞ +
√

n
∑T

t=1 ∥ℓt∥2∞
)

Table 1: Comparison between our results and previous works1

In the following, we present two algorithms, UMAB-NN and UMAB-G, for Non-Negative and General un-
bounded loss, respectively. Our main contributions can be summarized as follows.

1. We propose UMAB-NN, a scale-free AMAB algorithm that works for unbounded non-negative
losses. The regret guarantee of UMAB-NN adapts to the infinity norm of the loss sequence while
matching the worst-case lower bound of Auer et al. (2002).

2. Building upon UMAB-NN, we then propose UMAB-G which works for arbitrary unbounded losses
that can be both possible and negative. We present two versions of the algorithm, distinguished
by whether the exploration subroutine adapts to the observed losses. For the non-adaptive version,
it achieves an optimal worst-case regret guarantee and partially adapts to the non-negative part of
the loss sequence, improving upon the previous results of Hadiji & Stoltz (2020); Putta & Agrawal
(2022); Huang et al. (2023). For the adaptive version, our algorithm achieves an improvement on
the order of O(

√
n) compared to Putta & Agrawal (2022), where n is the number of the actions.

3. Last but not least, we evaluate the performance of our algorithms on real world datasets. The
results show that our algorithms consistently outperform existing methods in a variety of tasks
with distinct loss patterns. We also construct synthetic simulations to illustrate the impact of our
exploration strategy and draw comparisons between the two versions of our algorithm.

2 PROBLEM SETUP AND RELATED WORKS

We start with some notations. Let [n] denote the set {1, . . . , n} and [T ] denote the set {1, . . . , T}. Let ∆n

be the probability simplex {p ∈ Rn :
∑

k∈[n] pk = 1; pk ≥ 0,∀k ∈ [n]}. Let 1n and 0n be all ones and
all zeros n-dimensional vector respectively. Let ek denotes the one-hot vector with 1 on the kth entry. For
vectors pt and ℓt, we use pt,k and ℓt,k to represent the kth entry of pt and ℓt respectively. The L1, L2 and L-

infinity norms of ℓt are denoted as ∥ℓt∥1 =
∑

k∈[n] |ℓt,k|, ∥ℓt∥2 =
√∑

k∈[n] ℓ
2
t,k, ∥ℓt∥∞ = maxk∈[n] |ℓt,k|

respectively. We denote by ℓ∞ = maxt∈[T ] ∥ℓt∥∞ the uniform norm bound of the losses. Moreover, we
denote by ℓ−∞ = maxt∈[T ],k∈[n] |min(ℓt,k, 0)| the magnitude of the most negative entry of the losses. Notice
that ℓ−∞ ≤ ℓ∞, and ℓ−∞ = 0 if the loss sequence is non-negative. Both ℓ∞ and ℓ−∞ are unknown to the player
through the game.

Adversarial Multi-armed Bandit: We consider the oblivious adversarial setting. In each round t =
1, . . . , T , the player selects a distribution pt over [n] and the adversary selects a loss vector ℓt ∈ Rn simul-

1For brevity we consider n, ℓ∞ ≪ T and omit the log terms. Detailed regret is provided later.
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taneously. Then, the player samples action kt ∼ pt and observes loss ℓt,kt . We measure the performance of
an algorithm in terms of its pseudo-regret:

RT := E
[∑T

t=1
ℓt,kt

− min
k∈[n]

∑T

t=1
ℓt,k

]
(1)

2.1 RELATED WORKS

Scale-free algorithms are ones whose regret bound scales linearly with respect to ℓ∞, while requiring
no knowledge of ℓ∞ a prior 2. Scale-free regret bounds were first studied in the full information setting,
such as experts problems (Freund & Schapire, 1997; De Rooij et al., 2014; Cesa-Bianchi et al., 2007) and
online convex optimization (Mayo et al., 2022; Jacobsen & Cutkosky, 2023; Cutkosky, 2019). For experts
problems, the AdaHedge algorithm from De Rooij et al. (2014) achieves the first scale-free regret bound.
For online convex optimization, past algorithms can be categorized into two generic algorithmic frameworks:
Mirror Descent (MD) and Follow The Regularizer Leader (FTRL). The scale-free regret from the MD family
is achieved by AdaGrad proposed by Duchi et al. (2011). However, the regret bound of Duchi et al. (2011)
is only non-trivial when the Bregman divergence associated with the regularizer can be well bounded. Later,
the Orabona & Pál (2018) proposed the AdaFTRL algorithm which achieves the first scale-free regret bound
in the FTRL family and generalizes Duchi et al. (2011)’s results to cases where the Bregman divergence
associated with the regularizer is unbounded. For the AMAB problem, Hadiji & Stoltz (2020) extends the
method of Duchi et al. (2011) and provides a scale-free regret bound of Õ

(
ℓ∞

√
nT

)
, which is optimal (up

to log terms) in the worst case. However, such worst-case regret bounds can be overly pessimistic in general
cases: a single outlier loss ℓoutlier can result in an additional regret on the order of O(∥ℓoutlier∥∞

√
nT ).

To address it, Putta & Agrawal (2022) presents scale-free bounds that adapt to the individual size of losses
across time. Unfortunately, the worst-case guarantee of Putta & Agrawal (2022) is Õ

(
ℓ∞n

√
T
)

, which
scales linearly to the number of actions. Our paper closes this gap: our algorithms achieve an adaptive regret
better than Putta & Agrawal (2022), as well as an optimal worst-case regret that matches with Hadiji &
Stoltz (2020).

Adaptive algorithms refer to the algorithms that dynamically adjusts to the input data it encounters. Rather
than scaling solely on T in the regret, an adaptive algorithm adapts to a “measure of hardness” of the
sequence of losses. An adaptive regret algorithm performs better than the worst-case regret if the sequence
of loss is “good”. In the last two decades, adaptive algorithms have been widely studied in the settings of
expert problems and online convex optimization (Hazan et al., 2007; Streeter & McMahan, 2010; Duchi
et al., 2011; De Rooij et al., 2014; Orabona & Pál, 2015; 2018). For the MAB setting, several works derive
adaptive regret bounds based on different “measure of hardness”. For example, Allenberg et al. (2006);
Foster et al. (2016); Pogodin & Lattimore (2020); Ito (2021) derive the first-order regret (a.k.a. small-
loss regret), which depends on the cumulative loss mink∈[n]

∑
t∈[T ] |ℓt,k|, but under the assumption that

ℓt,k ∈ [0, 1],∀t, k. Hazan & Kale (2011); Bubeck et al. (2018); Wei & Luo (2018); Ito (2021) propose
bounds that depend on the empirical variance of the losses, i.e.,

∑
t∈[T ] ∥ℓt∥22. Path-length bounds are also

studied (Wei & Luo, 2018; Bubeck et al., 2019; Zimmert & Seldin, 2021; Ito, 2021), which depends on the
fluctuation of loss sequence

∑
t∈[T ] ∥ℓt − ℓt−1∥1. We remark that all results above require the assumption

that losses are bounded within [0, 1], which we remove in this paper.

2We note that an alternative and more strict interpretation of scale-free algorithms refers to ones that will not change
the sequence of pt’s when losses are multiplied by a positive constant.
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3 ALGORITHM AND ANALYSIS

We now present our two algorithms UMAB-NN and UMAB-G. UMAB-NN works for the case where losses are
Non-Negative, i.e., ℓt ∈ Rn

+. Remarkably, UMAB-NN is a strictly scale-free algorithm: the algorithm will
not change its sequence of action distributions if the sequence of losses is multiplied by a positive constant,
which immediately implies scale-free regret. Our second algorithm, UMAB-G, builds upon the first algorithm
to allow potentially negative losses, i.e., ℓt ∈ Rn. We provide two versions of the algorithm: UMAB-G with
non-adaptive and adaptive exploration rates. For the non-adaptive version, our results achieve adaptability
to the non-negative part of the loss, while ensuring the optimality for the worst case guarantee, which is new
compared to previous works 3. For the adaptive version, we improve the previous result (Putta & Agrawal,
2022) by O(

√
n). A summary of the comparisons to prior works can be found in Table 1.

Both the algorithms we propose are based on the Follow-the-Regularized-Leader (FTRL) framework. Let
us first consider the full information case, the traditional adaptive FTRL framework uses a regularizer Ψ
and time-varying learning rates η1, . . . , ηT+1, with certain regularity constraints (see, e.g., (Orabona & Pál,
2015)). The update rule takes the form of

p1 = arg min
p∈∆n

1

η1
Ψ(p), pt = arg min

p∈∆n

( t−1∑
s=1

⟨ℓs,p⟩+
1

ηt
Ψ(p)

)
, (2)

where ℓs is the observed loss at round s and ηt is the adaptive learning rate depending on the losses
ℓ1, . . . , ℓt−1. In the bandit setting, we cannot observe the complete loss vector ℓt. Similar to prior works, we
construct an unbiased loss estimator through the importance-weighted (IW) sampling method introduced by
(Auer et al., 2002), i.e., construct ℓ̂t ∈ Rn such that ℓ̂t,k = 1(k=kt)

pt,k
ℓt,k, ∀k ∈ [n], where 1(k = kt) denotes

the indicator function. Notice that E[ℓ̂t] =
∑n

k=1 pt,k
ek

pt,k
ℓt = ℓt. Using ℓ̂t, we are able to reduce the bandit

setting to the full information case.

3.1 NON-NEGATIVE LOSS

Let’s start with the setting where the loss sequence is non-negative but can be arbitrarily large, i.e., ℓt,k ≥ 0
for every t ∈ [T ] and k ∈ [n]. UMAB-NN (Algorithm 1) is a natural adaptation of the classic FTRL algorithm
with log-barrier regularizer. The log-barrier regularizer is defined as

Ψ(pt) =

n∑
k=1

(
log

( 1

pt,k

)
− log

( 1

n

))
.

Notice that Ψ(p) ≥ 0 for all p ∈ ∆n. Such regularizers are commonly used for studying adaptive regret
in the AMAB setting (Wei & Luo, 2018; Putta & Agrawal, 2022; Bubeck et al., 2019). In each round,
UMAB-NN calculates an action distribution pt through the update rule, then plays action kt sampled from
pt. After receiving loss ℓt,k, UMAB-NN constructs the unbiased IW estimator ℓ̂t and updates the learning
rate ηt. The novelty comes in our design of learning rate (line 5). Different from the learning rate in Orabona
& Pál (2018), we use ℓ2t,kt

instead of ∥ℓ̂t∥22. This is because ∥ℓ̂t∥22 is of order 1/p2t,kt
. If one uses the one in

Orabona & Pál (2018) instead, i.e. ηt+1 = O(
√
n/

∑t
s=1 ∥ℓ̂s∥22), the learning rate will be too small since

1/p2t,kt
cannot be bounded. Based on this observation, UMAB-NN adapts the learning rate to the sum of the

square of the partial loss, i.e., ηt+1 = O(
√
n/

∑t
s=1 ℓ

2
s,ks

), which can be well bounded by O(ℓ∞
√
n/T ).

3We note that a recent work (Huang et al., 2023) proposes an algorithm that achieves adaptive regret for general
unbounded loss. However, there exists a critical issue within their proof and algorithm, resulting in their regret being
actually unbounded. We have communicated with the authors about the issue. The details are provided in Appendix B.2.
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Algorithm 1: UMAB-NN: Unbounded AMAB for Non-Negative loss
Input: Log-barriers regularization Ψ, η1 = ∞

1 for t = 1, . . . , T do
2 Compute the action distribution pt = argminp∈∆n

(∑t−1
s=1⟨ℓ̂s,p⟩+

1
ηt
Ψ(p)

)
3 Sample and play action kt ∼ pt. Receive loss ℓt,kt

4 Construct IW estimator ℓ̂t such that ℓ̂t,k = 1(k=kt)
pt,k

ℓt,k, ∀k ∈ [n]

5 Update learning rate ηt+1 = 2
√

n∑t
s=1 ℓ2s,ks

We remark that Algorithm 1 is strictly scale-free. If all losses are multiplied by a constant c, then in line
2, both terms on the right hand side will be multiplied by c, resulting in the same pt being picked by the
algorithm. Our main result is the following regret bound for Algorithm 1.

Theorem 1 For any ℓ1, . . . , ℓT ∈ Rn
+, the expected regret of Algorithm 1 is upper bounded by

RT ≤ Õ
(√

n
∑

t
∥ℓt∥2∞

)
Notice that Theorem 1 is adaptive to the infinity norm of the losses. Furthermore, the worst case regret is
bounded by Õ(ℓ∞

√
nT ), which matches the lower bound established in (Auer et al., 2002). We remark

that Theorem 1 is the first result that achieves both optimal adaptive rate and optimal minimax rate for
unbounded non-negative losses. Next, we briefly highlight the key steps in proving Theorem 1, which also
provide intuition for our further improvement in the next section.

Proof sketch of Theorem 1: Since ℓ̂t is an unbiased estimator of ℓt for every t ∈ [T ] and comparator
p† ∈ ∆n, we have E

[∑T
t=1 ℓt,kt −

∑T
t=1⟨ℓt,p†⟩

]
= E

[∑T
t=1⟨ℓ̂t,pt − p†⟩

]
. It suffices to focus on the

regret of
∑T

t=1⟨ℓ̂t,pt − p†⟩. We start with the standard analysis of a FTRL-type algorithm.

Lemma 1 ((Orabona, 2019) Lemma 7.1) For any ℓ̂1, . . . , ℓ̂T ∈ Rn, using the update rule of (2) along with
the non-increasing sequence of learning rates η1, . . . , ηT+1, there is

T∑
t=1

⟨ℓ̂t,pt − p†⟩ ≤ Ψ(p†)

ηT+1
+

T∑
t=1

(
⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1)

)
for every comparator p† ∈ ∆n, where function Ft is defined as Ft(p) =

∑t−1
s=1⟨ℓ̂s,p⟩+

1
ηt
Ψ(p).

For the sake of completeness, the proof of Lemma 1 is provided in the appendix. Lemma 1 decomposes the
regret into two terms. The first term depends on the regularizer and the comparator. Intuitively, Ψ(p†) will
appear to be infinity if p† is the best fixed action (some entries of p† are zeros). The problem can be easily
solved by comparing with some close neighbor of the best action (Putta & Agrawal, 2022), i.e., mixing a
uniform distribution with the best fixed action. Therefore, it suffices to focus on the terms ⟨ℓ̂t,pt −pt+1⟩+
Ft(pt)− Ft(pt+1). The following key lemma gives an upper bound using the notions of local norms.

Lemma 2 For any ℓ̂1, . . . , ℓ̂T ∈ Rn, using the update rule of (2), denote by ∥x∥A =
√
x⊤Ax, there is

⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤
1

2
ηt∥ℓ̂t∥2(∇2Ψ(ξt))−1 , (3)

where ξt is a point between pt and pt+1. Moreover, it suffices to set ξt as pt when ℓ̂t ∈ Rn
+.
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Algorithm 2: UMAB-G: Unbounded AMAB for General Loss
Initialize: Log-barriers regularization Ψ, learning rate η1 = 1/4, exploration rate ρ1 = 1/2n2, clipping

threshold C1 = −1
1 for t = 1, . . . , T do
2 Compute the action distribution: pt = argminp∈∆n

(∑t−1
s=1⟨ℓ̂′s,p⟩+

1
ηt
Ψ(p)

)
3 Calculate p′

t by Algorithm 3 with exploration rate ρt. Play action kt ∼ p′
t. Receive loss ℓt,kt

.

4 Construct loss estimator ℓ̂′t such that ℓ̂′t,k =
1(k=kt)ℓ

′
t,k

p′
t,k

, ∀k ∈ [n], where ℓ′t,kt
= max(2Ct, ℓt,kt).

5 Update clipping threshold Ct+1 = min(Ct, ℓ
′
t,kt

).
6 Update learning rate: ηt+1 = 1

4

√
n

nC2
t+1+

∑t
s=1 ℓ′2s,ks

.

7 Update exploration rate:
1. (Non-Adaptive): ρt+1 = 1/(2n2 +

√
nT ).

2. (Adaptive): ρt+1 = 1/(2n2 + 2
√∑t

s=1 |⟨ℓ̂s, ct⟩|).

Algorithm 3: Extra Exploration on Action Distribution

Input: Action distribution pt. Exploration rate ρt ≤ 1/2n2

Output: Extra exploration distribution p′
t

1 Define k⋆t ∈ argmaxk′∈[n] pt,k′ . Construct a vector ct ∈ Rn such that for every k ∈ [n], there is

ct,k =


1, if pt,k < ρt
−
∑

k′∈[n]/{k} ct,k′ if k = k⋆t
0, else

Construct the extra exploration distribution p′
t = pt + ρtct.

Note that (3) holds for general losses and will be useful in the next section. When ℓ̂t ∈ Rn
+, we can further

bound (3) by min
(

1
2ηtℓ

2
t,kt

, |ℓt,kt
|
)

since ⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤ ⟨ℓ̂t,pt⟩ = |ℓt,kt
|, which

implies ∑T

t=1
⟨ℓ̂t,pt − p†⟩ ≤ Ψ(p†)

ηT+1
+
∑T

t=1
min

(1
2
ηtℓ

2
t,kt

, |ℓt,kt
|
)
. (4)

The right hand side of (4) takes a similar form as in scale-free online convex optimization (Orabona & Pál,
2018), but the upper bound depends on ℓt,kt

instead of ∥ℓt∥2. Using a learning rate as in Algorithm 1, the

second term on the right hand side of (4) can be bounded by O(
√

n
∑T

t=1 ℓ
2
t,kt

) based on (Orabona & Pál,
2018), which suffices to complete the proof.

3.2 GENERAL LOSS

Next, we remove the non-negative assumption and study the general loss setting, i.e., ℓ1, . . . , ℓT ∈ Rn.
To begin with, we first explain why Algorithm 1 cannot work when the losses become negative. Recall
Lemma 2, it requires bounding ⟨ℓ̂t,pt − pt+1⟩ + Ft(pt) − Ft(pt+1) by ηt∥ℓ̂t∥2(∇2Ψ(ξt))−1/2 for general
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losses. However, notice that

∥ℓ̂t∥2(∇2Ψ(ξt))−1 =

n∑
k=1

ℓ̂2t,k
∇2

k,kΨ(ξt)
=

n∑
k=1

ℓ2t,k1(k = kt)

p2t,k
ξ2t,k =

ℓ2t,kt

p2t,kt

ξ2t,kt
, (5)

where ξt,kt
is some value between pt,kt

and pt+1,kt
. Given pt+1,kt

might significantly exceed pt,kt
, the

size of ξt,kt/pt,kt cannot be confined. In this case, ℓ2t,kt
ξ2t,kt

/p2t,kt
is potentially of order O(1/p2t,kt

), which
is too large for the analysis. Additionally, −⟨ℓ̂t,pt+1⟩ could potentially be positive and cannot be well
bounded due to the same reason. Thus, inequality (4) no longer holds under the condition of general loss.
Inspired by such observations, it naturally follows to consider bounding the magnitude of pt+1,kt/pt,kt .
Unfortunately, without imposing additional restrictions on the losses, using the update (2) directly cannot
bound pt+1,kt

/pt,kt
. For example, given arbitrary pt, ηt+1, and kt, we can always find a sufficiently small

ℓt,kt
< 0 that makes pt+1,kt

≥ 1/2 through (2). In this case, if pt,kt
is close to zero, pt+1,kt

/pt,kt
could be

extremely large.

To address this issue, we propose UMAB-G, as illustrated in Algorithm 2. The key ideas of UMAB-G include
(1) using truncated loss to update the action distribution. Instead of directly taking ℓ̂t as the input loss, we
clip it by a threshold Ct that depends on previous received losses ℓ̂1, . . . , ℓ̂t−1. The truncation ensures that
every input loss is “not too negative” for the update of action, and thus the magnitude of pt+1,kt

/pt,kt
can

be well bounded. (2) adding an extra exploration to ensure that the probability pt,k would not be overly
small. For unbounded AMAB with general loss, we need to ensure that each arm has a certain probability
to be pulled, so that we can perceive the change of loss norm in time to tune the learning rate. Instead of
the commonly used scheme of mixing with a uniform distribution (Hadiji & Stoltz, 2020; Putta & Agrawal,
2022), we develop a data-dependent mixing strategy (Algorithm 3) that substantially reduces the error caused
by the extra exploration. Specifically, similar to (Putta & Agrawal, 2022), we consider two exploration rate
distinguished by whether the exploration rate is adaptive. The main result of Algorithm 2 is as follows.

Theorem 2 For any ℓ1, . . . , ℓT ∈ Rn, with the non-adaptive and adaptive exploration rate, the expected
regret of Algorithm 2 is upper bounded by

Non-Adaptive: RT ≤ Õ
(
ℓ∞n2 +

√
n
∑

t
∥ℓt∥2∞ + ℓ−∞

√
nT

)
, (6)

Adaptive: RT ≤ Õ
(
ℓ∞n2 +

√
n
∑

t
∥ℓt∥2∞ + ℓ∞

√
n
∑

t
∥ℓt∥∞ +

√
n
∑

t
∥ℓt∥∞

)
(7)

Notice that the non-adaptive regret in Theorem 2 achieves “semi-adaptivity” to the loss sequence. If the loss
sequence is non-negative, the right hand side of (6) is reduced to a form of the regret in Theorem 1. Moreover,
the worst case bound of (6) is Õ(ℓ∞

√
nT ) for large T , which is optimal up to log factors (Auer et al., 2002).

For the adaptive exploration rate, our result improves upon the previous result (Putta & Agrawal, 2022) and
achieves optimal dependency on n and T .

Proof sketch: Recall that ℓ̂t is the unbiased estimator and ℓ̂′t is the clipping biased estimator. By Algorithm 2
and the proof of Theorem 1, it suffices to bound the expectation of

∑T
t=1⟨ℓ̂t,p′

t − p†⟩. We first decompose
the regret into three terms as follows.

T∑
t=1

⟨ℓ̂t,p′
t − p†⟩ =

T∑
t=1

⟨ℓ̂′t,pt − p†⟩︸ ︷︷ ︸
1

+

T∑
t=1

⟨ℓ̂′t,p′
t − pt⟩︸ ︷︷ ︸

2

+

T∑
t=1

⟨ℓ̂t − ℓ̂′t,p
′
t − p†⟩︸ ︷︷ ︸

3

.
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Here, term 1 is the regret of the corresponding FTRL algorithm with truncated loss ℓ̂′1, . . . , ℓ̂
′
T . Term 2

measures the error incurred by extra exploration, i.e., using p′
t instead of pt. Term 3 corresponds to the

error of using the truncated loss ℓ̂′t. In the rest of the proof, we bound these three terms respectively.

Bounding 1 : By Lemma 1 and Lemma 2, we have

T∑
t=1

⟨ℓ̂′t,pt − p†⟩ ≤ Ψ(p†)

ηT+1
+

1

2

T∑
t=1

ηt∥ℓ̂′t∥2(∇2Ψ(ξt))−1 =
Ψ(p†)

ηT+1
+

1

2

T∑
t=1

ηtℓ
′2
t,kt

p2t,kt

p′2t,kt

ξ2t,kt

p2t,kt

.

The key step is to bound the magnitude of pt,kt
/p′t,kt

and pt+1,kt
/pt,kt

(since ξt,kt
is always between pt,kt

and pt+1,kt
) for ℓt,kt

≤ 0. This in turn is guaranteed by our design of loss truncation and extra exploration.
As shown in Lemma 4, Algorithm 2 ensures that both pt,kt

/p′t,kt
and pt+1,kt

/pt,kt
can be bounded by

constants. With these two ratio bounded, we can immediately reduce the right-hand-side to the form of (4).
Using a similar proof as in Section 3.1, we can bound 1 .

Bounding 2 : By the definition of p′
t, we first note that

∑T
t=1⟨ℓ̂′t,p′

t − pt⟩ =
∑T

t=1 ρt⟨ℓ̂′t, ct⟩, where ρt
is the exploration rate and ct is an offset on pt to prevent some entries in action distribution from being too
small. The key of our extra exploration algorithm is to upper bound ⟨ℓ̂′t, ct⟩ by O(ℓ∞

√
nT ), in contrast to

O(ℓ∞n3/2
√
T ) as in (Putta & Agrawal, 2022). This reduces the variance of our exploration rate, leading to

an improved regret. The details are provided in Lemma 5.

Bounding 3 : Notice that
∑T

t=1⟨ℓ̂t − ℓ̂′t,p
′
t − p†⟩ ≤

∑T
t=1 ∥ℓ̂t − ℓ̂′t∥1∥p′

t − p†∥∞ ≤
∑T

t=1 ∥ℓ̂t − ℓ̂′t∥1.
The key idea of bounding 3 is to show that the number of distinct (ℓ̂t, ℓ̂′t) pairs and ∥ℓ̂t∥∞ can be bounded
by O(log ℓ∞) due to the double tricks, which is shown in Lemma 6.

Summing the bounds for 1 , 2 , 3 gives Theorem 2.

4 EXPERIMENTS

We now corroborate our theoretical improvements and testify the performance of our algorithms UMAB-G
(Algorithm 2 with non-adaptive exploration) and UMAB-G-A (Algorithm 2 with adaptive exploration). We
compare to all existing scale-free/unbounded AMAB algorithms, including SF-MAB (Putta & Agrawal,
2022), SF-MAB-A (Putta & Agrawal, 2022), AHB (Hadiji & Stoltz, 2020), and banker-OMD (Huang
et al., 2023). The figures show the average performance and standard deviations across 500 trails.

Applications to Stock Trading: In out first experiment, we consider an application to the stock market.
Here we consider n = 10 stocks and T = 1258 rounds (daily price for 5-years). For every stock, its loss
is the normalized price difference, i.e., the difference between two consecutive days for 100 shares. Stock
prices are generally chaotic and the fluctuation can vary greatly among stocks and across time. The regret
trajectories of the different algorithms are illustrated in Figure 1(a). Note that the regret of UMAB-G and
UMAB-G-A is significantly smaller than that of other algorithms, especially when the number of rounds is
large. This is because 1). Compared to (Putta & Agrawal, 2022), our algorithms tune the learning and explo-
ration rate more carefully, resulting in a saving of O(

√
n) term in theory and better empirical performance

in practice. 2). Compared to (Huang et al., 2023), our exploration rate design ensures that the algorithms
can perceive the changes in loss scale and adapt learning rate in time. 3). Compared to (Hadiji & Stoltz,
2020), our exploration design leads to smaller regret than mixing with uniform distribution.

Applications to Amazon Sales We further construct an experiment using Amazon sales data. Similar to the
above, we consider n = 10 Amazon stores and T = 1258 rounds (weekly sales for 2-years). We assume that
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(c) Meta Algorithm Selection

Figure 1: Real Data Experiments

in each round, each store randomly discloses the weekly sales of one of its departments. The loss is defined
by the negative of the weekly sales. We generate 10 rounds of loss using one week’s data. Notice that the
loss we considered in this setting is completely negative. The simulation results are shown in Figure 1(b).
As expected, our algorithms outperform all other competitors. Compared to the stock market example, the
fluctuation of regret trajectories of Amazon sales data is more stable for all the algorithms. This is because
changes in Amazon store sales are more gradual than those in stocks: since all the algorithms we consider
in the experiment are based on the FTRL/OMD framework, such a loss sequence will induce a stable action
distribution, thereby resulting in the smoothness of the regret curve.

Applications to Model Selection In the last setting, we explore an application to the model selection prob-
lem. We assume that we have access to n = 10 linear regression meta-algorithms (SGD with different
learning rate). Similarly to the above, we set the number of rounds T = 1258. In each round t, the meta-
algorithms output the training loss error based on a dataset of size t. Notice that since the size of the data
set varies in each round, the optimal meta-algorithm will also change. In this scenario, the regret measures
whether a model selection algorithm can promptly detect the change in the optimal meta-algorithm. More-
over, the prediction error can be very large when the data set is small. The results are shown in Figure 1(c).
Again, the regrets of our algorithms are strictly smaller than all baselines. Compared to the first two ex-
periments, the regret trajectories are smoother because of the stochastic nature of the loss sequence as t
increases.

The above experiments demonstrate the effectiveness of our algorithms against several different loss se-
quence patterns. However, one observation is that the adaptive and non-adaptive version of our algorithm
perform quite similarly in all three experiments, and there is no evidence to suggest the significance of extra
exploration. In Appendix A, we perform an ablation study to illustrate the impact of extra exploration. We
also construct a deeper comparison between the adaptive and non-adaptive version of our algorithm, and
discuss their respective strength and weakness.

5 CONCLUSION

We proposed the first algorithms that achieve optimal adaptive and non-adaptive regrets in adversarial multi-
armed bandit problem with unbounded losses. Real data experiments validate our theoretical findings and
demonstrate the superior performance of our algorithms compared to all existing algorithms for unbounded
losses. Future work include extending our algorithmic tools to more challenging settings such as contextual
bandit and reinforcement learning.
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Figure 2: Impact of Extra Exploration with Non-Adaptive/Adaptive Rates

A ADDITIONAL EXPERIMENTS

In this section, we conduct additional experiments investigating the effect of extra exploration and the pros
and cons of adaptive and non-adaptive exploration scheme.

A.1 IMPACT OF EXTRA EXPLORATION

First, we demonstrate the importance of extra exploration for unbounded loss. Consider a problem with two
arms n = 2 and set T = 1258. We design the following loss sequence:

ℓt =


[0,−0.5]⊤, if 1 ≤ t < 100

[−10, 0]⊤, if 100 ≤ t < 150

[−0.05, 0]⊤, if 150 ≤ t < 1258

(8)

The intuition is to try deceive algorithms into taking the second arm as the “superior option” in the initial
rounds which reduces the frequency of algorithms pulling the first arm, and thus hindering algorithms ability
to detect the changes of the optimal arm. Especially, considering the loss can be unbounded, failing to detect
the changes is costly. In this case, the regret trajectories are provided in Figure 2(a), where the comparison is
between UMAB-G-A and our algorithm with no extra exploration. It suffices to note that the algorithm with
extra exploration performs much better than the one without extra exploration. This is consistent with the
intuition of our design: extra exploration ensures that each arm has a probability of being pulled, so that the
algorithm can always perceive the changes in the losses and adjust its learning rate in relatively few rounds.

A.2 COMPARISON BETWEEN UMAB-G AND UMAB-G-A

Next, let’s investigate the difference between our algorithms with non-adaptive and adaptive exploration
rates. Intuitively, adaptive exploration rate is usually larger than the non-adaptive rate because it is of order
O(1/

√
t) instead of O(1/

√
T ) (assuming ℓ∞ ≪ T ). This makes adaptive exploration perform better in

adversary cases, e.g. as shown in Figure 2(b), where we use the same loss sequence in (8). However, if the
loss sequence is not adversary, e.g. there exists one arm that is always better than the others, non-adaptive
exploration will be better since it loses less in extra exploration. An example is illustrated in Figure 2(c),
where we use stochastic loss with expectation [1, 0]⊤. In summary, adaptive and non-adaptive have their
own advantages under different loss sequences in practice.
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B ADDITIONAL DISCUSSION ABOUT CLOSELY RELATED WORKS

B.1 DETAILED COMPARISON TO PUTTA & AGRAWAL (2022)

In this subsection, we provide a detailed comparison between our work and Putta & Agrawal (2022) since it
is the most closely related work to ours. Both works are based on FTRL-type algorithms design, and both
consider non-adaptive and adaptive extra exploration. The key idea of Putta & Agrawal (2022) is to bound
(3) by O(ℓ2t,kt

/pt,k), resulting in an expectation regret O(∥ℓt∥2). In our work, we refine the analysis of (3),
improving the bound to O(ℓ2t,kt

), where the expectation is bounded by O(∥ℓt∥2∞). Considering the worst
case scenario where ∥ℓt∥22 = n∥ℓt∥2∞, our algorithm saves

√
n in the regret.

Furthermore, Putta & Agrawal (2022) choose a uniform distribution for extra exploration. This approach
ensures an exploration error ( 2 in this paper) of O(ℓ∞

√
nT ) in non-adaptive case. However, for adaptive

case, mixing a uniform distribution results in a large variance in the analysis of the exploration error. The
proof idea of Putta & Agrawal (2022) can be summarized as (under our notations definition)

⟨ℓ̂′t, ct⟩ ≤ ∥ℓ̂′t∥∞∥ct∥1 ≤ ℓ∞
√
nT · n = ℓ∞n3/2

√
T ,

which is suboptimal in n. In this study, we design to a new exploration strategy, as described in Algorithm 3.
By Lemma 10, we bound ⟨ℓ̂′t, ct⟩ by O(ℓ∞(

√
nT + n2)), which is optimal in n for large enough T . In

summary, the algorithms presented in this article offer a O(
√
n) improvement of the regret over Putta &

Agrawal (2022), in both non-adaptive and adaptive settings, thanks to both our novel exploration strategy
and tighter analysis.

B.2 THE ERROR IN BANKER-OMD (HUANG ET AL., 2023)

Huang et al. (2023) shared a similar clipping (skipping) idea with us. In Lemma 4.2 of (Huang et al., 2023),
the authors control the regret of the general case by the regret of the non-negative case directly (Theorem
4.2 of (Huang et al., 2023)). In this case, the authors bounded the clipping error (i.e., 3 in this paper) by

⟨ℓ̂t,pt − p†⟩ ≤ ⟨ℓ̂t,pt⟩ ≤ ℓ∞.

However, notice that the above only holds true if ℓ̂t ≥ 0. When ℓ̂t < 0, -⟨ℓ̂t,p†⟩ is positive and on the order
of 1/pt,kt , which can be arbitrarily unbounded. In this case, their regret will always include a O(1/pt,kt)
term and thus be unbounded. We have confirmed this with the authors of Huang et al. (2023), and indeed
they have made the mistake in their proof. So their current analysis for the general loss setting does not
work.

One may think that the issue can be solved by analyzing the regret using ℓt instead of ℓ̂t, i.e.,

E[⟨ℓt,pt − p†⟩] = E[1¬clip⟨ℓt,pt − p†⟩] + E[1¬clip⟨ℓt,pt − p†⟩]

where 1¬clip denotes the probability of the clipping happening. Using the proof of (Huang et al., 2023), it
suffices to show the second term can be bounded by O(ℓ∞ log ℓ∞). It might be intuitive to think that the
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first term can also be bounded by using ℓ̂′ to estimate 1¬clip(t,k)ℓt. However, we note that

E[⟨ℓ̂′t,pt − p†⟩] =
∑
k

pt,k

(
1¬clip(t,k)ℓt,k

pt,k
pt,k −

1¬clip(t,k)ℓt,k

pt,k
1(k = k∗)

)
=

∑
k

1¬clip(t,k)ℓt,kxt,k −
∑
k

1¬clip(t,k)ℓt,k1(k = k∗)

=
∑
k

1¬clip(t,k)ℓt,kxt,k − 1¬clip(t,k⋆)ℓt,k⋆

̸=
∑
k

xt,k

(
1¬clip(t,k)(ℓt,k − ℓt,k⋆)

)
= E[1clip(t)⟨ℓt, xt − y⟩],

which implies that ℓ̂′t is not an unbiased estimator of 1¬clip(t,k)ℓt, so this route does not work. Therefore,
as far as we can see, there doesn’t exist a clear way of fixing the proof in Huang et al. (2023) to make their
results match ours.

In our paper, we avoid issue by adding extra exploration to upper bound ∥ℓ̂t∥∞. We suspect such explicit
exploration is inevitable for no-regret learning under the unbounded losses (Bubeck et al., 2012). Besides
this issue, our differences and improvements compared to (Huang et al., 2023) mainly include: (1). Our
results reveal an asymmetry between positive and negative losses in the AMAB problem. Especially, there
is no clipping in our algorithm UMAB-NN, which greatly simplifies the algorithms in (Huang et al., 2023).
(2). The space complicity of our algorithms is O(n) because the algorithm only needs to maintain a constant
number of Rn vectors. In contrast, the space complexity of (Huang et al., 2023) is O(T 2) due to the necessity
of keeping a weight matrix of size T × T .

C PROOF OF THEOREM 1

C.1 MAIN PROOF AND STATEMENT OF TECHNICAL LEMMAS

Recall (1), the expected regret is denoted by

E
[ T∑

t=1

ℓt,kt
− min

k∈[n]

T∑
t=1

ℓt,k

]
= E

[ T∑
t=1

⟨ℓt,pt − p⋆⟩
]
= E

[ T∑
t=1

⟨ℓ̂t,pt − p†⟩
]
+

T∑
t=1

⟨ℓt,p† − p⋆⟩,

where p⋆ denote the best fixed strategy. Especially, we consider

p† =
(
1− 1

T

)
p⋆ +

1n

nT
.

where 1n is the all-ones vector. It is obvious that p† ∈ ∆n. In this case, there is

⟨ℓt,p† − p⋆⟩ ≤ ⟨ℓt,
1n

nT
− 1

T
p⋆⟩ ≤ 1

nT
⟨ℓt,1n⟩ ≤

1

nT
∥ℓt∥1 ≤ ℓ∞

T
,

where the second inequality is due to ℓt ≥ 0 by assumption. Thus we have
∑T

t=1⟨ℓt,p† − p⋆⟩ ≤ ℓ∞. It
suffices to focus on

∑T
t=1⟨ℓt,pt − p⋆⟩. Recall (4), there is
T∑

t=1

⟨ℓ̂t,pt − p†⟩ ≤ Ψ(p†)

ηT+1
+

T∑
t=1

min
(1
2
ηtℓ

2
t,kt

, |ℓt,kt
|
)

≤ n log(nT )

ηT+1
+

T∑
t=1

min
(1
2
ηtℓ

2
t,kt

, |ℓt,kt
|
)
.
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where the second inequality is because all entries of p† are no less than 1/nT by definition.

It remains to bound
∑T

t=1 min
(

1
2ηtℓ

2
t,kt

, |ℓt,kt
|
)

. The proof relies on a technical lemma from (Orabona &
Pál, 2018).

Lemma 3 ((Orabona & Pál, 2018) Lemma 3) Let a1, . . . , aT ≥ 0. Then

T∑
t=1

min
( a2t√∑t−1

s=1 a
2
s

, at

)
≤ 3.5

√√√√ T∑
t=1

a2t + 3.5max
t∈[T ]

at

Using Lemma 3 and η0, . . . , ηT as in Algorithm 1, we have

T∑
t=1

⟨ℓ̂t,pt − p†⟩ ≤ n log(nT )

ηT+1
+

T∑
t=1

min
(1
2
ηtℓ

2
t,kt

, |ℓt,kt |
)

≤ 1

2

√√√√n

T∑
t=1

ℓ2t,kt
log(nT ) +

T∑
t=1

min
(√ n∑t−1

s=1 ℓ
2
s,ks

ℓ2t,kt
, |ℓt,kt |

)

≤ 1

2

√√√√n

T∑
t=1

ℓ2t,kt
log(nT ) +

√
n

T∑
t=1

min
( ℓ2s,kt√∑t−1

s=1 ℓ
2
s,ks

, |ℓt,kt
|
)

≤ 1

2

√√√√n

T∑
t=1

ℓ2t,kt
log(nT ) + 3.5

√
n
(√√√√ T∑

t=1

ℓ2t,kt
+max

t∈[T ]
|ℓt,kt

|
)

≤ 4

√√√√n

T∑
t=1

ℓ2t,kt
log(nT ) + 3.5

√
nℓ∞

≤ 4

√√√√n

T∑
t=1

∥ℓt∥2∞ log(nT ) + 3.5
√
nℓ∞.

Note that the right hand side of the above is deterministic. Thus

E
[ T∑

t=1

ℓt,kt
− min

k∈[n]

T∑
t=1

ℓt,k

]
≤ 4

√√√√n

T∑
t=1

∥ℓt∥2∞ log(nT ) + 3.5
√
nℓ∞ + ℓ∞

≤ Õ
(√√√√n

T∑
t=1

∥ℓt∥2∞
)

completes the proof.
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C.2 PROOF OF TECHNICAL LEMMAS

C.2.1 PROOF OF LEMMA 1

For notations simplicity, we denote by

Ψt(p) =
1

ηt
Ψ(p).

We first note
T∑

t=1

⟨ℓ̂t,pt − p†⟩ = −FT+1(p
†) + ΨT+1(p

†) +

T∑
t=1

⟨ℓ̂t,pt⟩

= −FT+1(p
†) + ΨT+1(p

†)− F1(p1) + FT+1(pT+1)

+

T∑
t=1

(Ft(pt)− Ft+1(pt+1)) +

T∑
t=1

⟨ℓ̂t,pt⟩

= −FT+1(p
†) + ΨT+1(p

†)− F1(p1) + FT+1(pT+1)

+

T∑
t=1

(
Ft(pt) + ⟨ℓ̂t,pt⟩ − Ft+1(pt+1)

)
By definition, there is

FT+1(pT+1)− FT+1(p
†) = min

p∈∆n

FT+1(p)− FT+1(p
†) ≤ 0

ΨT+1(p
†)− F1(p1) = ΨT+1(p

†)− min
p∈∆n

Ψ1(p) ≤ ΨT+1(p
†).

Thus, we obtain

T∑
t=1

⟨ℓ̂t,pt − p†⟩ ≤ ΨT+1(p
†) +

T∑
t=1

(
Ft(pt) + ⟨ℓ̂t,pt⟩ − Ft+1(pt+1)

)
Furthermore, we note that

Ft(pt) + ⟨ℓ̂t,pt⟩ − Ft+1(pt+1) =

t∑
s=1

⟨ℓ̂s,pt − pt+1⟩+
1

ηt
Ψ(pt)−

1

ηt+1
Ψ(pt)

≤
t∑

s=1

⟨ℓ̂s,pt − pt+1⟩+
1

ηt
Ψ(pt)−

1

ηt
Ψ(pt)

= ⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1),

where the first inequality is due to the assumption ηt+1 ≤ ηt. Combining the above concludes the proof.

C.2.2 PROOF OF LEMMA 2

We first prove inequality (3). By Taylor’s expansion,

Ft(pt+1)− Ft(pt) = ⟨∇Ft(pt),pt+1 − pt⟩+
1

2
∥pt+1 − pt∥2∇2Ft(ξt)

.

16



Under review as a conference paper at ICLR 2024

where ξt = αpt + (1− α)pt+1 for some α ∈ [0, 1]. By definition,

pt = arg min
p∈∆n

Ft(p).

By KKT conditions, there exists some λt ∈ R such that

pt = argmin
p∈R

(
Ft(p) + λt(1−

n∑
k=1

pt,k)
)
.

By the optimality of pt, we have

∇Ft(pt) + λt1n = 0,

which implies

⟨∇Ft(p),pt+1 − pt⟩ = ⟨−λt1n,pt+1 − pt⟩ = 0.

Thus, there is

Ft(pt+1)− Ft(pt) =
1

2
∥pt+1 − pt∥2∇2Ft(ξt)

.

Using the above,

⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) = ⟨ℓ̂t,pt − pt+1⟩ −
1

2
∥pt+1 − pt∥2∇2Ft(ξt)

≤ max
p∈R

(
⟨ℓ̂t,p⟩ −

1

2
∥p∥2∇2Ft(ξt)

)
≤ 1

2
∥ℓ̂t∥2(∇2Ft(ξt))−1 =

1

2
ηt∥ℓ̂t∥2(∇2Ψ(ξt))−1 ,

where the second inequality is because ∇2Ψ(ξt) is a diagonal matrix and the second equality is due to
∇2Ft(ξt) = ∇2Ψ(ξt)/ηt. Thus the proof of (3) is complete.

Now we prove

⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤
1

2
ηt∥ℓ̂t∥2(∇2Ψ(pt))−1

if ℓ̂t ∈ Rn
+. Recall

∥ℓ̂t∥2(∇2Ψ(ξt))−1 =

n∑
k=1

ℓ̂2t,k
∇2

k,kΨ(ξt)
=

n∑
k=1

ℓ2t,k1(k = kt)

p2t,k
ξ2t,k =

ℓ2t,kt

p2t,kt

ξ2t,kt

and ξt is between pt and pt+1, we prove case by case.

1. (pt,kt
− pt+1,kt

< 0): In this case, we have

⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤ ⟨ℓ̂t,pt − pt+1⟩
= ℓ̂t,kt

(pt,kt
− pt+1,kt

)

≤ 0 ≤ 1

2
∥ℓ̂t∥2(∇2Ψ(pt))−1 .

The first inequality is due to pt minimizing Ft.
2. (pt,kt

− pt+1,kt
≥ 0): In this case, we have ξt,kt

≤ pt,kt
, and thus

∥ℓ̂t∥2(∇2Ψ(ξt))−1 ≤ ℓ2t,kt
= ∥ℓ̂t∥2(∇2Ψ(pt))−1

completes the proof.
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C.2.3 PROOF OF LEMMA 3

The proof refers to Lemma 3 in (Orabona & Pál, 2018). Without loss of generality, we can assume at > 0,
otherwise we can remove all at = 0 without affecting either side of the inequality. Let Mt = maxs∈[t] as
and M0 = 0. We aim to prove for any α > 1

min
( a2t√∑t−1

s=1 a
2
s

, at

)
≤ 2

√
1 + α2

(√√√√ t∑
s=1

a2s −

√√√√t−1∑
s=1

a2s

)
+

α

α− 1
(Mt −Mt−1).

from which Lemma 3 follows by summing over t = 1, . . . , T and choosing α =
√
2. The proof is based on

case analysis.

1. (a2t ≤ α2
∑t−1

s=1 a
2
s)

min
( a2t√∑t−1

s=1 a
2
s

, at

)
≤ a2t√∑t−1

s=1 a
2
s

=
a2t√

1
1+α2 (α2

∑t−1
s=1 a

2
s +

∑t−1
s=1 a

2
s)

≤ a2t (1 + α2)√
a2t +

∑t−1
s=1 a

2
s

≤ 2
√
1 + α2

(√√√√ t∑
s=1

a2s −

√√√√t−1∑
s=1

a2s

)

where the last inequality is by x2/
√

x2 + y2 ≤ 2(
√
x2 + y2 −

√
y2).

2. (a2t > α2
∑t−1

s=1 a
2
s)

min
( a2t√∑t−1

s=1 a
2
s

, at

)
≤ at =

αat − at
α− 1

≤ α

α− 1

(
at −

√√√√t−1∑
s=1

a2s

)
≤ α

α− 1
(Mt −Mt−1),

where we use at = Mt and Mt−1 ≤
√∑t−1

s=1 a
2
s.

D PROOF OF THEOREM 2

D.1 MAIN PROOF AND STATEMENT OF TECHNICAL LEMMAS

We begin by presenting the lemma statements that were left out in Section 3.2.

Lemma 4 Given any action sequence k1, . . . , kT , if ℓt,kt
≤ 0. there is pt,kt

≤ 2p′t,kt
and pt+1,kt

≤ 6pt,kt

for every t ∈ [T ].

Lemma 5 With the non-adaptive and adaptive exploration rates as in Algorithm 3, we have

Non-Adaptive: E
[∑

t
⟨ℓ̂′t,p′

t − pt⟩
]
≤ 2

√
n
∑

t
∥ℓt∥2∞,

Adaptive E
[∑

t
⟨ℓ̂′t,p′

t − pt⟩
]
≤ 2n2ℓ∞ + 2

√
1 + 4n

∑
t
∥ℓt∥∞ + 2ℓ∞

√
n
∑

t
∥ℓt∥∞.
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Lemma 6 Given any action sequence k1, . . . , kT , with the non-adaptive and adaptive exploration rates as
in Algorithm 3, we have

Non-Adaptive: E
[∑

t
⟨ℓ̂t − ℓ̂′t,p

′
t − p†⟩

]
≤ ℓ−∞(2n2 +

√
nT ) log2(1 + ℓ∞),

Adaptive: E
[∑

t
⟨ℓ̂t − ℓ̂′t,p

′
t − p†⟩

]
≤ ℓ−∞

(
2n2 + 3

√
n
∑

t
∥ℓt∥∞

)
log2(1 + ℓ∞).

Now we give the detailed proof of Theorem 2. By Lemma 2, we have

⟨ℓ̂′t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤ min
(1
2
ηtℓ

′2
t,kt

, |ℓ′t,kt
|
)
.

if ℓt,kt
≥ 0. Alternatively, when ℓt,kt

< 0, by Lemma 2 and 4 and inequality (5), we have

⟨ℓ̂′t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤
1

2
ηt∥ℓ̂′t∥2(∇2Ψ(ξt))−1 =

1

2
ηt

ℓ′
2
t,kt

p′2t,kt

ξ2t,kt

≤ 1

2
ηtℓ

′2
t,kt

p2t,kt

p′2t,kt

max(p2t,kt
, p2t+1,kt

)

p2t,kt

≤ 72ηtℓ
′2
t,kt

.

Moreover, we further note by Lemma 4,

⟨ℓ̂′t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤ ⟨ℓ̂′t,pt − pt+1⟩

≤
∣∣∣ℓ′t,kt

pt,kt

∣∣∣∣∣∣ pt,kt

p′t,kt

∣∣∣|pt,kt
− pt+1,kt

|

≤
∣∣∣ℓ′t,kt

pt,kt

∣∣∣∣∣∣ pt,kt

p′t,kt

∣∣∣|5pt,kt
| ≤ 10|ℓ′t,kt

|.

Combining the above we have

⟨ℓ̂′t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤ 18min
(
4ηtℓ

′2
t,kt

, |ℓ′t,kt
|
)

for any ℓt ∈ Rn. Using a similar proof as in Theorem 1, we have
T∑

t=1

⟨ℓ̂′t,pt − p†⟩ ≤ n log(nT )

ηT+1
+ 18min

(
4ηtℓ

′2
t,kt

, |ℓ′t,k|
)

≤ 4

√√√√2n2ℓ2∞ + n

T∑
t=1

ℓ′2t,kt
log(nT ) + 18

√
nmin

( ℓ′
2
t,kt√∑t−1

s=1 ℓ
′2
s,ks

, |ℓ′t,k|
)

≤ 4

√√√√2n2ℓ2∞ + n

T∑
t=1

ℓ′2t,kt
log(nT ) + 63

√
n
(√√√√ T∑

t=1

ℓ′2t,kt
+max

t∈[T ]
|ℓ′t,k|

)

≤ 67

√√√√2n2ℓ2∞ + n

T∑
t=1

ℓ′2t,kt
log(nT ) + 63

√
nmax

t∈[T ]
|ℓ′t,k|

≤ 67

√√√√2n2ℓ2∞ + n

T∑
t=1

∥ℓt∥2∞ log(nT ) + 63
√
nℓ∞.

19



Under review as a conference paper at ICLR 2024

The last inequality is because |ℓ′t,kt | ≤ |ℓt,kt |. In short, we can bound

E
[ T∑

t=1

⟨ℓ̂′t,pt − p†⟩
]
≤ Õ

(√√√√n2ℓ2∞ + n

T∑
t=1

∥ℓt∥2∞
)
. (9)

Now we summarize all the results.

E
[ T∑

t=1

ℓt,kt
− min

k∈[n]

T∑
t=1

ℓt,k

]
=E

[ T∑
t=1

⟨ℓ̂t,p′
t − p⋆⟩

]
≤E

[ T∑
t=1

⟨ℓ̂t,p′
t − p†⟩

]
+ ℓ∞

≤E
[ T∑
t=1

⟨ℓ̂′t,pt − p†⟩
]
+ E

[ T∑
t=1

⟨ℓ̂′t,p′
t − pt⟩

]
+ E

[ T∑
t=1

⟨ℓ̂t − ℓ̂′t,p
′
t − p†⟩

]
+ ℓ∞.

Based on Lemma 5 and 6 and inequality (9), we have

1. (Non-Adaptive):

E
[ T∑

t=1

ℓt,kt
− min

k∈[n]

T∑
t=1

ℓt,k

]

≤Õ
(√√√√n2ℓ2∞ + n

T∑
t=1

∥ℓt∥2∞
)
+ Õ

(√√√√n

T∑
t=1

∥ℓt∥2∞
)
+ Õ

(
ℓ−∞(n2 +

√
nT )

)

=Õ
(
ℓ∞n2 +

√√√√n

T∑
t=1

∥ℓt∥2∞ + ℓ−∞
√
nT

)
.

2. (Adaptive):

E
[ T∑

t=1

ℓt,kt
− min

k∈[n]

T∑
t=1

ℓt,k

]

≤Õ
(√√√√n2ℓ2∞ + n

T∑
t=1

∥ℓt∥2∞
)
+ Õ

(
ℓ∞

(
n2 +

√√√√n

T∑
t=1

∥ℓt∥∞
)
+

√√√√n

T∑
t=1

∥ℓt∥∞
)

+ Õ
(
ℓ−∞

(
n2 +

√√√√n

T∑
t=1

∥ℓt∥∞
))

=Õ
(
ℓ∞n2 +

√√√√n

T∑
t=1

∥ℓt∥2∞ + ℓ∞

√√√√n

T∑
t=1

∥ℓt∥∞ +

√√√√n

T∑
t=1

∥ℓt∥∞
)
.
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D.2 PROOF OF TECHNICAL LEMMAS

D.2.1 PROOF OF LEMMA 4

The first inequality pt,kt ≤ 2p′t,kt
can be easily verified. Recall p′

t = pt+ρtct and k⋆t ∈ argmaxk′∈[n] pt,k′

as in Algorithm 3, it suffices to focus on the case kt = k⋆t , otherwise pt,kt
≤ p′t,kt

. When kt = k⋆t , we note
that

p′t,kt
= pt,kt

+ ρtct,kt
≥ pt,kt

− 1

2n2
n = pt,kt

− 1

2n
.

The first inequality is due to ρt ≤ 1/2n2 and ct,kt
≥ −n by definition. Moreover, there is

pt,kt ∈ arg max
k′∈[n]

pt,k′ ≥ 1

n
.

Thus

pt,kt
≤ pt,kt

+ pt,kt
− 1

n
= 2

(
pt,kt

− 1

2n

)
= 2p′t,kt

completes the proof.

The proof of the second inequality relies on the following two technical lemmas.

Lemma 7 Given any L ∈ Rn and k ∈ [n], consider

x = arg min
p∈∆n

(
⟨L,p⟩+ 1

η
Ψ(p)

)
x̃ = arg min

p∈∆n

(
⟨L+

l

xk
ek,p⟩+

1

η
Ψ(p)

)
where xk is the kth entry of x. If

− 1

2η
≤ l ≤ 0,

then

x̃k ≤ 2xk.

Lemma 8 Given any L ∈ Rn, consider

x = arg min
p∈∆n

(
⟨L,p⟩+ 1

η
Ψ(p)

)
x′ = arg min

p∈∆n

(
⟨L,p⟩+ 1

η′
Ψ(p)

)
,

if

η′ ≤ η ≤ Cη′,

for some C > 0, then

x′
k ≤ Cxk, ∀k ∈ [n].
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Now we use Lemma 7 and 8 to bound the magnitude of pt+1,kt/pt,kt . Recall the update rule of action
distribution

pt = arg min
p∈∆n

(
⟨
t−1∑
s=1

ℓ̂′s,p⟩+
1

ηt
Ψ(p)

)
,

pt+1 = arg min
p∈∆n

(
⟨ℓ̂′t +

t−1∑
s=1

ℓ̂′s,p⟩+
1

ηt+1
Ψ(p)

)
.

Define the intermediate distribution

p̃t = arg min
p∈∆n

(
⟨ℓ̂′t +

t−1∑
s=1

ℓ̂′s,p⟩+
1

ηt
Ψ(p)

)
.

Notice that ℓ̂′t = ℓ′t,kt
1kt/pt,kt . Denote by L =

∑t−1
s=1 ℓ̂

′
s, by Lemma 7, p̃t,kt/pt,kt ≤ 2 if −1/2ηt ≤ ℓ′t,kt

≤
0. Moreover, by Lemma 8, pt+1,kt/pt,kt ≤ 3 if ηt+1 ≤ ηt ≤ 3ηt+1. Combining these two results leads to
pt+1,kt/pt,kt ≤ 6, which completes the proof. Therefore, it remains to show that the two conditions hold.

We first prove −1/2ηt ≤ ℓ′t,kt
≤ 0. Recall

ηt =
1

4

√
n

nC2
t +

∑t−1
s=1 ℓ

′2
s,ks

.

We have

ℓ′
2
t,kt

≤ 4C2
t ≤ 4

(nC2
t +

∑t−1
s=1 ℓ

′2
s,ks

n

)
≤ 1

4η2t
,

where the first inequality is by the assumption ℓt,kt
≤ 0, which implies ℓ′t,kt

≤ 0, and the clipping rule (line
5 of Algorithm 2).

Then we show ηt+1 ≤ ηt ≤ 3ηt+1. Since ηt+1 ≤ ηt is trivial, it suffices to prove ηt ≤ 3ηt+1. Notice that

C2
t+1 = min

(
C2

t , ℓ
′2
t,kt

)
≤ min

(
C2

t , 4C
2
t

)
= 4C2

t .

Thus,

ηt =
1

4

√
n

nC2
t +

∑t−1
s=1 ℓ

′2
s,ks

=
3

4

√
n

9nC2
t + 9

∑t−1
s=1 ℓ

′2
s,ks

≤ 3

4

√
n

4nC2
t + 4nC2

t +
∑t−1

s=1 ℓ
′2
s,ks

≤ 3

4

√
n

nC2
t+1 + ℓ′2t,kt

+
∑t−1

s=1 ℓ
′2
s,ks

= 3ηt+1.

completes the proof.
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D.2.2 PROOF OF LEMMA 5

Non-Adaptive exploration:

E
[ T∑

t=1

⟨ℓ̂′t,p′
t − pt⟩

]
= E

[ T∑
t=1

ρt⟨ℓ̂′t, ct⟩
]

≤ E
[ T∑

t=1

ρt⟨|ℓ̂t|, |ct|⟩
]

=

T∑
t=1

ρt⟨|ℓt|, |ct|⟩

≤ 2n

T∑
t=1

∥ℓt∥∞
n2 +

√
nT

≤ 2
√
n

∑T
t=1 ∥ℓt∥∞√

T

≤ 2

√√√√n

T∑
t=1

∥ℓt∥2∞.

The first inequality is due to that ℓ̂′t is the truncation of ℓ̂t, thus |ℓ̂′t| ≤ |ℓ̂t|. The last inequality is by
Cauchy–Schwartz inequality.

Adaptive exploration: We first introduce two auxiliary lemmas.

Lemma 9 Let a1, . . . , aT ≥ 0. Then

T∑
t=1

at√
2
∑t−1

s=1 as + 1
≤ 2

√√√√ T∑
t=1

at + 1 +max
t∈[T ]

(at).

Lemma 10 Given any action sequence k1, . . . , kT , with the adaptive exploration rate as in Algorithm 2,
there is

|⟨ℓ̂′t, ct⟩| ≤ ℓ∞

(
2n2 +

√√√√2

T∑
t=1

|⟨ℓ̂′t, ct⟩|
)
.
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The detailed proof of Lemma 9 and 10 would be provided later. Now we can prove Lemma 5.

T∑
t=1

⟨ℓ̂′t,p′
t − pt⟩ ≤

T∑
t=1

ρt|⟨ℓ̂′t, ct⟩|

≤
T∑

t=1

|⟨ℓ̂′t, ct⟩|√
1 + 2

∑t−1
s=1 |⟨ℓ̂′s, cs⟩|

≤ 2

√√√√1 + 2

T∑
t=1

|⟨ℓ̂′t, ct⟩|+max
t∈[T ]

(
|⟨ℓ̂′t, ct⟩|

)

≤ 2

√√√√1 + 2

T∑
t=1

|⟨ℓ̂′t, ct⟩|+ ℓ∞

(
2n2 +

√√√√2

T∑
t=1

|⟨ℓ̂′t, ct⟩|
)
.

where the second inequality is due to ρt = 1/(2n2+
√
2
∑t−1

s=1 |⟨ℓ̂′s, cs⟩|) ≤ 1/(
√
1 + 2

∑t−1
s=1 |⟨ℓ̂′s, cs⟩|, the

third inequality is by Lemma 9 with at = |⟨ℓ̂′t, ct⟩|. The last inequality is by Lemma 10. Taking expectation
on the both sides, there is

E
[ T∑

t=1

⟨ℓ̂′t,p′
t − pt⟩

]
≤ E

[
2

√√√√1 + 2

T∑
t=1

|⟨ℓ̂′t, ct⟩|
]
+ E

[
ℓ∞

(
2n2 +

√√√√2

T∑
t=1

|⟨ℓ̂′t, ct⟩|
)]

≤ 2n2ℓ∞ + 2

√√√√1 + 2E
[ T∑

t=1

|⟨ℓ̂′t, ct⟩|
]
+ ℓ∞

√√√√2E
[ T∑

t=1

|⟨ℓ̂′t, ct⟩|
]

≤ 2n2ℓ∞ + 2

√√√√1 + 2

T∑
t=1

⟨E
[
|ℓ̂′t|

]
, |ct|⟩+ ℓ∞

√√√√2

T∑
t=1

⟨E
[
|ℓ̂′t|

]
, |ct|⟩

≤ 2n2ℓ∞ + 2

√√√√1 + 2

T∑
t=1

⟨|ℓt|, |ct|⟩+ ℓ∞

√√√√2

T∑
t=1

⟨|ℓt|, |ct|⟩

≤ 2n2ℓ∞ + 2

√√√√1 + 4n

T∑
t=1

∥ℓt∥∞ + 2ℓ∞

√√√√n

T∑
t=1

∥ℓt∥∞.

The second inequality is by using Jensen’s inequality. The fourth inequality is because E
[
|ℓ̂′t|

]
= |ℓ′t| and the

magnitude of the truncation loss is not more than that of the original loss, i.e., |ℓ′t| ≤ |ℓt|. The last inequality
is due to ⟨|ℓt|, |ct|⟩ ≤ ∥ℓt∥∞∥ct∥1 ≤ 2n∥ℓt∥∞. The whole proof is completed.

D.2.3 PROOF OF LEMMA 6

Recall
T∑

t=1

⟨ℓ̂t − ℓ̂′t,p
′
t − p†⟩ ≤

T∑
t=1

∥ℓ̂t − ℓ̂′t∥1 ≤
T∑

t=1

∥ℓ̂t∥11(ℓ̂t ̸= ℓ̂′t).
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where the last inequality is due to ∥ℓ̂t − ℓ̂′t∥1 ≤ ∥ℓ̂t∥1 by the clipping property. We note that the clipping
occurs only if ℓ̂t ≤ 0 and ℓ̂t,kt

≤ ℓt,kt
/ρt for every t ∈ [T ] by extra exploration. Thus,

T∑
t=1

∥ℓ̂t∥11(ℓ̂t ̸= ℓ̂′t) ≤
T∑

t=1

|min(ℓt,kt
, 0)|

ρt
1(ℓ̂t ̸= ℓ̂′t) ≤

ℓ−∞
ρT+1

T∑
t=1

1(ℓ̂t ̸= ℓ̂′t).

It suffices to prove
∑T

t=1 1(ℓ̂t ̸= ℓ̂′t) ≤ log2(1 + ℓ∞). Notice that ℓ̂t ̸= ℓ̂′t will happen if and only if

ℓt,kt
≤ 2Ct.

In this case, we have

Ct+1 = 2Ct.

Now we need to get an upper bound on the size of CT . In Algorithm 2, Ct will be updated (i.e., Ct ̸= Ct+1)
if and only if the received loss ℓt,kt

< Ct. When Ct is updated, we can note that Ct+1 ≥ ℓt,kt
holds, which

also means |Ct+1| ≤ |ℓt,kt
|. Thus, we have

|CT | ≤ max
t∈[T ]

(1, |ℓt,kt
|) ≤ 1 + ℓ∞.

Since |Ct| is non-decreasing with t, it suffices to say that ℓt,kt
̸= ℓ′t,kt

(k1:t−1) will happen at most log2(1 +
ℓ∞) times. This completes the proof.

D.2.4 PROOF OF LEMMA 7

We first note that for every α ∈ R,

arg min
p∈∆n

(
⟨L,p⟩+ 1

η
Ψ(p)

)
= arg min

p∈∆n

(
⟨L+ α1n,p⟩+

1

η
Ψ(p)

)
Thus, without loss of generality, we can assume that L = [L1, . . . , Ln]

⊤ satisfies
n∑

k=1

1

ηLk
= 1; Lk ≥ 0, ∀k ∈ [n].

Notice that under such conditions, there is

arg min
p∈∆n

(
⟨L,p⟩+ 1

η
Ψ(p)

)
= arg min

p∈Rn

(
⟨L,p⟩+ 1

η
Ψ(p)

)
by KKT conditions.

Now we start the proof. By the optimality of x, there is

ηLk +
1

xk
= 0, ∀k ∈ [n].

Then we have
l

xk
≥ − 1

2ηxk
= −Lk

2
,

thus

Lk +
l

xk
≥ L1

2
.
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By the optimality of x′, there exists Lagrangian multiplier λ′ such that

ηLk − η
l

xk
+ λ′ − 1

x′
k

= 0,

ηLk′ + λ′ − 1

x′
k′

= 0, ∀k′ ∈ [n]\{k}.

and satisfies ∑
k′∈[n]\{k}

1

ηLk′ + λ′ +
1

ηLk + η l
xk

+ λ′
= 1.

Using the above, we note that

x′
k =

1

ηLk + η l
xk

+ λ′
≤ 1

ηLk

2 + λ′
.

It suffices to prove that λ′ ≥ 0. Define function

f(λ′) =
∑

k′∈[n]\{k}

1

ηLk′ + λ′ +
1

ηLk + η l
xk

+ λ′
,

we note that ∑
k′∈[n]\{k}

1

ηLk′
+

1

ηLk + η l
xk

≥
n∑

k=1

1

ηLk
= 1,

due to l ≤ 0, which implies f(0) ≥ 1, Since f decreases with λ′, it suffices to conclude λ′ ≥ 0. Thus,

x′
k ≤ 1

ηLk

2 + λ′
≤ 2

ηLk
= 2xk.

completes the proof.

D.2.5 PROOF OF LEMMA 8

Similar to the proof of Lemma 7, it suffices to choose L = [L1, . . . , Ln]
⊤ such that

ηLk − 1

xk
= 0, ∀k ∈ [n].

By the optimality of x′, there exists Lagrangian multiplier λ′ such that

η′Lk + λ′ − 1

x′
k

= 0, ∀k ∈ [n],

n∑
k=1

1

η′Lk + λ′ = 1.

Similar to the above, it suffices to show that λ′ ≥ 0 considering η′ ≤ η. Thus,

x′
k =

1

η′Lk + λ′ ≤
1

η′Lk
≤ C

ηLk
= Cxk.

This completes the proof.
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D.2.6 PROOF OF LEMMA 9

We denote by

ht = min
(

max
s∈[t−1]

(as), at

)
, bt = at − ht.

It suffices to say that
T∑

t=1

bt = max
t∈[T ]

(at).

The proof can be completed as follows.
T∑

t=1

at√
2
∑t−1

s=1 as + 1
≤

T∑
t=1

at√∑t−1
s=1 as +maxs∈[t−1](as) + 1

=

T∑
t=1

ht + bt√∑t−1
s=1 as +maxs∈[t−1](as) + 1

≤
T∑

t=1

ht√∑t
s=1 hs + 1

+

T∑
t=1

bt

≤ 2

√√√√ T∑
t=1

ht + 1 +max
t∈[T ]

(at)

≤ 2

√√√√ T∑
t=1

at + 1 +max
t∈[T ]

(at)

D.2.7 PROOF OF LEMMA 10

|⟨ℓ̂′t, ct⟩| ≤
n∑

k=1

|ℓt,k|1(k = kt)

pt,k + ρtct,k
|ct,k|

≤ ℓ∞
1(k⋆t = kt)

pt,k⋆
t
+ ρtct,k⋆

t

|ct,k⋆
t
|+ ℓ∞

∑
k∈[n]\{k⋆

t }

1(k = kt)

pt,k + ρtct,k
|ct,k|

≤ ℓ∞
1(k⋆t = kt)

1/n− 1/2n
n+ ℓ∞

∑
k∈[n]\{k⋆

t }

1(k = kt)

ρt

≤ ℓ∞ max(2n2, 1/ρt)

≤ ℓ∞ max(2n2, 1/ρT+1) = ℓ∞

(
2n2 +

√√√√2

T∑
t=1

|⟨ℓ̂′t, ct⟩|
)
,

where the first inequality is by the definition of ℓ̂′t and p′
t, the second inequality is by the definition of ℓ∞.

The third inequality is due to 1). pt,k⋆
t

is one of the largest entries in pt, which implies pt,k⋆
t
≥ 1/n. 2).

ct,k⋆
t
≥ −n and ρt ≤ 1/2n2 for all t ∈ [T ]. 3). pt,k + ρtct,k ≥ ρt for all k ∈ [n]\{k⋆t } by Algorithm 3. The

last inequality is because ρt is nonincreasing.
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