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Appendix

This appendix provides comprehensive background knowledge on gate-based quantum computing
and its derivations from quantum physics (see Sec. A).

A BACKGROUND

A.1 PRELIMINARIES OF GATE-BASED QUANTUM COMPUTING

Figure 9: Bloch sphere visualisation of qubit
states. Qubit 0: |ψ⟩ = 1√

2
(|0⟩ + |1⟩), qubit 1:

|ψ⟩ = |1⟩.

Qubits. The fundamental information blocks
of a quantum processing unit (QPU) are qubits,
i.e., the analogues of bits in classical comput-
ing. Unlike classical bits deterministically rep-
resenting one possible state (0 or 1), qubits can
statistically represent two distinct information
states at the same time, denoted in the bra–ket
notation as |0⟩ and |1⟩.
Superposition is a fundamental property distin-
guishing qubits from bits: It grants qubits the
capacity to exist in a combinatorial state |ψ⟩ of
|0⟩ and |1⟩ such that:

|ψ⟩ = α |0⟩+ β |1⟩ , (12)

with α, β ∈ C and |α|2 + |β|2 = 1. Qubit states |ψ⟩ can be visualised on Bloch spheres (see Fig. 9)
or expressed in vector forms:

|0⟩ =
[
1
0

]
, |1⟩ =

[
0
1

]
, |ψ⟩ = α |0⟩+ β |1⟩ =

[
α
β

]
. (13)

Measurement in quantum mechanics inherently adopts a statistical approach to extract numerical in-
formation. For a qubit state |ψ⟩ = α |0⟩+ β |1⟩ measured with operator Ô (that must be Hermitian,
i.e., Ô† = Ô), this implies probabilities |α|2 and |β|2, respectively, for measuring the informa-
tion (i.e., eigenvalue of the measurement operator Ô) stored in states |0⟩ and |1⟩:

Ô |0⟩ = κ |0⟩ and Ô |1⟩ = δ |1⟩ . (14)

κ and δ are the statistical information that can be measured, i.e., eigenvalue of the measurement
operator |O⟩. A key aspect of measurement is the phenomenon known as wave function collapse,
i.e., the projective measurement causes |ψ⟩ to collapse to the operator’s eigenstate, |0⟩ or |1⟩, con-
ditioned on the measurement, i.e., κ or δ.

Entanglement is considered to be another potential advantage of quantum computing over classical
computing. In classical computing, information stored in bits is independent, i.e., measuring one bit
does not affect others. In the quantum realm, qubits can be highly correlated, exhibiting entangle-
ment such that the information of one qubit can be interrelated with another despite distance. For
instance, a general information state of a 2-qubit system |ψ⟩2 can be expressed as:

|ψ⟩2 = a |00⟩+ b |01⟩+ c |10⟩+ d |11⟩ . (15)

With a, b, c, d ∈ C such that |a|2+ |b|2+ |c|2+ |d|2 = 1. The 2-qubit system is considered entangled
if |ψ⟩2 cannot be expressed as a tensor product of two qubits |ψ⟩a1 and |ψ⟩a2, indicating that their
information cannot be independently measured without disturbing each other, i.e.,

|ψ⟩2 ̸= |ψ⟩a1 ⊗ |ψ⟩a2 . (16)

1
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Rotation Operators. The operators responsible for rotating quantum states |ψ⟩ of qubits along
x, y, z axes on a Bloch sphere are referred to as rotation operators. Any single qubit operator
R̂ can be expressed as a combination of such rotation operators R̂x, R̂y, R̂z , i.e., R̂(θ, τ, γ) =

R̂x(θ)R̂y(τ)R̂z(γ) with angles θ, τ and γ:

R̂x(θ) =

[
cos( θ2 ) −isin( θ2 )

−isin( θ2 ) cos( θ2 )

]
, (17)

R̂y(τ) =

[
cos( τ2 ) −sin( τ2 )
sin( τ2 ) cos( τ2 )

]
, (18)

R̂z(γ) =

[
e−i γ

2 0
0 ei

γ
2

]
. (19)

The Pauli operators X̂, Ŷ , Ẑ represent specific instances of rotation operators, inducing rotations by
π radians along the x, y, z axes, respectively. These operators can also be expressed as matrices in
the computational basis |0⟩ , |1⟩ as follows:

X̂ =

[
0 1
1 0

]
, Ŷ =

[
0 −i
i 0

]
, Ẑ =

[
1 0
0 −1

]
. (20)

Schrödinger’s Equation. Quantum computing involves the manipulation of information according
to the principles of quantum mechanics, with its foundation rooted in time-dependent Schrödinger’s
equation:

iℏ
d

dt
|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩ , (21)

where ℏ is Planck’s constant while |ψ(t)⟩ and |ψ(0)⟩ are the quantum states after and before evolu-
tion, respectively. Ĥ is the Hamiltonian operator of the quantum system. Therefore, the evolution
of quantum states can be described by the following relationship:

|ψ(t)⟩ = T̂ e−
i
ℏ
∫ t
0
Ĥ(t)dt |ψ(0)⟩ , (22)

with T̂ denoting the time ordering operator. This simplifies to e−
it
ℏ Ĥ |ψ(0)⟩ for time-independent

Ĥ . Using a more compact notation, Schrödinger’s Equation can also be equivalently written as:

|ψ(t)⟩ = Û(Ĥ, t) |ψ(0)⟩ , with (23)

Û(Ĥ, t) = e−
it
ℏ Ĥ . (24)

To perform rotation operations on qubits, the system Hamiltonian Ĥ can be set to Eσ̂ with σ̂ ∈
{X̂, Ŷ , Ẑ} and by setting η = 2Et/ℏ, we have:

Û(Ĥ, t) = e−
it
ℏ Ĥ = e−

iα
2 σ̂ = R̂σ(η). (25)

A.2 BARREN PLEATAU

When training a quantum ansatz Ŝ(θ), employing a native unbiased random initialisation could
potentially lead to training issues due to the concentration of measure, as argued by McClean et
al. 2018:

“...for a wide class of reasonable parameterised quantum circuits, the probability that the gradi-
ent along any reasonable direction is non-zero to some fixed precision is exponentially small as a
function of the number of qubits.”

This observation is also known as “barren plateau” which can be expressed mathematically for a
system with n qubits as:

Ew[∂wL(w)] = 0, (26)

Varw[∂wL(w)] ∈ O(
1

νn
), ν > 1. (27)
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This poses challenges, particularly for gradient-based learning strategies. Identified factors con-
tributing to the barren plateau phenomenon include the locality of observables Cerezo et al. (2021);
Thanasilp et al. (2023), specific noise models Wang et al. (2021), and ansatz close to a 2-design,
i.e., matching Haar random unitaries up to the second moment McClean et al. (2018); Holmes et al.
(2022). This highlights the importance of selecting appropriate initialisation protocols, quantum
ansatz designs, and observables.

To relieve the trainability problem, Grant et al. 2019 proposed to boost the gradient flow through
reducing effective circuit depth initially by employing identity blocks. Zhang et al. 2022 suggested
that with proper Gaussian initialisation, the gradient norm decays at most polynomially as a function
of qubit count and circuit depth applicable to both local and global observables. Cerezo et al. 2021
theoretically analysed this phenomenon from the locality view of information extraction and demon-
strated barren plateaus could be avoided by using cost functions that only have information extracted
from part of the circuit.

A.3 QUANTUM MACHINE LEARNING (QML)

The expectations that quantum computing can enhance machine learning algorithms have given rise
to Quantum Machine Learning (QML) Schuld et al. (2015). QML integrates principles of quan-
tum mechanics into machine learning to tackle computationally intensive or inherently challenging
problems. By replacing classical artificial network modules with parametrised quantum circuits,
QML aims to enhance information processing efficiency and alleviate biases inherent in classical
models Biamonte et al. (2017). A QML approach includes two stages, i.e. input encoding or a fea-
ture map and parametrised quantum circuit or an ansatz. To learn optimal parameters in the circuit,
hardware-dependent gradient-based or gradient-free strategies can be used Bergholm et al. (2018);
Mitarai et al. (2018); Guerreschi & Smelyanskiy (2017). Similar to classical neural networks, quan-
tum networks are shown to be universal function approximators Benedetti et al. (2019); Schuld et al.
(2021). Various quantum analogues of machine learning algorithms have been explored, including
quantum principle component analysis Lloyd et al. (2014), quantum support vector machine Reben-
trost et al. (2014), quantum Boltzmann machine Amin et al. (2018) and quantum k-means Kerenidis
et al. (2019). Quantum gates are applied on an input quantum state generated by a feature map Kwak
et al. (2021).

Input Encoding (Feature Map). Classical data x must be encoded into quantum states |ψ(x)⟩
through a feature map to enable processing within the quantum circuit. Various established methods
exist for achieving this, including basis encoding, time-evolution encoding, amplitude encoding,
Hamiltonian encoding, and others. However, the question of optimal encoding across different
problems is still open.

Parametrised Quantum Gates (Ansatz). Quantum states |ψ(x)⟩ with embedded classical infor-
mation need to be processed by unitary quantum gates Û ∈ C2n×2n parametrised by θ acting on
n qubits. In real devices, a quantum circuit (or ansatz) is composed of such unitary operations in a
certain order Û(θ) = T (

∏t
i=1 Ûi(θ)); T is the ordering operator. A quantum circuit Û(θ) maps a

quantum state |ψ(x)⟩ to a new state |ϕ(x)⟩, i.e., |ϕ(x)⟩ = Û(θ) |ψ(x)⟩.
Measurement. With the evolution of quantum states under the ansatz, classical data can be extracted
statistically from a quantum state |ϕ(x)⟩ using Hermitian measurement operators Ô. Due to the
inherent statistic process, the output V (x) is normally defined as the expectation value of statistical
measurements: V (x) = ⟨ϕ(x)| Ô|ϕ(x)⟩. Typically, this step occurs at the end, as it collapses the
embedded information conditioned on the measured value; there are rare exceptions for special
purposes Gili et al. (2023); Cong et al. (2019).

Quantum Model Training. In line with all learning-based methodologies, QML follows a similar
paradigm. It involves adjusting the parameters of the quantum ansatz either on quantum hardware
or classical simulators to minimise a predefined cost function L(θ) using optimisation techniques;
see supplement A.2 for details. However, efficient training in this domain remains a nascent field,
undergoing active research and development.

An alternative option is the finite difference method, which provides an approximate rather than
analytical gradient. However, limited by the higher computational expense associated with gradi-

3
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ent calculation on real quantum devices, simulating such a process is often preferable for exploring
medium-to-large scale problems. When using simulators, quantum information can be extracted in
a single shot, making it plausible to use conventional gradient calculation methods like backpropa-
gation.

B IMAGE INPAINTING RESULTS

Similar to 3D shape completion experiment results as shown in Fig. 7-b, such experiments can also
be performed for 2D image inpainting. We provide noisy images and formulate the search for a latent
vector that best explains the provided noisy field values as an optimisation problem, and restore the
complete noiseless field. Partial results are shown in Fig. 10.

Figure 10: Image inpainting results from partial field values using QNF-Net.

C SHAPE COMPLETION FROM PARTIAL AND NOISY INPUT DEPTH MAPS

To further evaluate our method, we introduce zero-mean Gaussian noise to the clean depth maps and
assess its impact on shape completion performance. We vary the perturbation ratio denoted as α,
across the following values: 0, 0.005, 0.01, 0.02, and 0.03. The corresponding completion results
are illustrated in Fig. 11. As evident from the figure, the quality of shape completion progressively
deteriorates with the increasing noise levels.

Figure 11: Shape completion results from partial and noisy input depth maps using QNF-Net.

D MORE RESULTS

In this section, we present further empirical results to complement those provided in the main text.
From the outset, we designed our experimental framework to ensure scalability, allowing us to han-
dle large datasets, including 3D shapes, despite the current limitations of reliable quantum hardware
and efficient software simulators. While our QNF-Net model enables us to scale up experiments
to 3D datasets, however, the number of available 3D shapes remains constrained, depending on the
dataset size, i.e., sampling density and number of shapes, as explained in the main text (see Sec. 4.2).
Since the results in the main text reflect the average performance across these experiments, we also

4
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Table 3: Detailed numerical reconstruction results for more 2D images.

Image Batch Epoch Ours (Gaussian)
(MSE ↓ / PSNR ↑)

Ours (Identity)
(MSE ↓/ PSNR ↑)

MLP Baseline
(MSE ↓/ PSNR ↑)

Batch 1
100 0.0183 / 17.37 0.0164 / 17.85 0.042 / 13.76
200 0.012 / 19.21 0.0138 / 18.6 0.0198 / 17.03
co. 0.001 / 30.2 0.001 / 29.8 0.0017 / 27.69

Batch 2
100 0.0165 / 17.82 0.021 / 16.77 0.048 / 13.18
200 0.01 / 19.3 0.015 / 18.24 0.017 / 17.69
co. 0.0012 / 29.21 0.0012 / 29.07 0.002 / 26.9

Batch 3
100 0.0159 / 17.98 0.023 / 16.38 0.035 / 14.56
200 0.013 / 18.86 0.011 / 19.58 0.0186 / 17.3
co. 0.0017 / 27.69 0.0015 / 28.24 0.0022 / 26.57

Batch 4
100 0.0192 / 17.16 0.017 / 17.69 0.04 / 13.97
200 0.0176 / 17.54 0.013 / 18.86 0.017 / 17.69
co. 0.0014 / 28.53 0.001 / 30.44 0.0016 / 28.95

Batch 5
100 0.0223 / 16.51 0.02 / 16.9 0.037 / 14.32
200 0.007 / 21.55 0.018 / 17.44 0.0176 / 17.54
co. 0.0008 / 30.97 0.001 / 29.5 0.0019 / 27.21

Avg. performance
100 0.0184 / 17.37 0.0195 / 17.12 0.04 / 13.96
200 0.012 / 19.29 0.014 / 18.54 0.018 / 17.45
co. 0.0012 / 29.32 0.001 / 29.41 0.0019 / 27.46

Table 4: Detailed numerical reconstruction results for more 3D shapes.

3D Shapes Batch Epoch Ours (Gaussian)
(MAE ↓)

Ours (Identity)
(MAE ↓)

MLP Baseline
(MAE ↓)

Batch 1
100 0.0018 0.002 0.0024
200 0.00156 0.0015 0.0018
co. 0.0009 0.0012 0.0015

Batch 2
100 0.002 0.0018 0.0026
200 0.0016 0.00143 0.00163
co. 0.001 0.0011 0.0011

Batch 3
100 0.0016 0.0021 0.0026
200 0.0015 0.0016 0.00194
co. 0.001 0.001 0.0014

Batch 4
100 0.002 0.0019 0.00276
200 0.0016 0.0017 0.002
co. 0.0008 0.0009 0.00135

Batch 5
100 0.0017 0.0018 0.0025
200 0.00153 0.00167 0.0019
co. 0.0009 0.0012 0.00156

Avg. performance
100 0.00182 0.00192 0.00257
200 0.00156 0.00158 0.0018
co. 0.0009 0.0011 0.0014

include numerical details for all training images and shape batches in Tables 3 and Tab. 4. They
provide further insights into the model’s behaviour.
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E ADDITIONAL 3D SHAPE VISUALISATIONS

Figure 12: (a): Single shape, i.e., a sofa, reconstructed by our approach and the classical baseline
from different views. The ground truth is presented at the bottom; (b) comparison of classically
reconstructed 3D shape (bottom) against our approach (top) visualized via Hausdorff distance from
various perspectives. The rendered image employs a colour gradient (blue>green>yellow>red)
denoting descending Hausdorff distance levels.

F VISUALIZATION OF WEIGHTS EVOLUTION FOR THE QUANTUM MODULES

Figure 13: Histogram showing the tunable param-
eters of the quantum layer after (left) and before
(right) training.

To quantify the changes in the tunable parame-
ters of the quantum layer during training and
evaluate their significance within the overall
model pipeline, we present a detailed visual-
ization of the weight distributions in the quan-
tum layer before and after training, as shown
in Fig. 13, with Gaussian initialization as the
starting point. This analysis offers insights into
the role of the quantum component and the dy-
namics of training, complementing our previ-
ous experimental findings. During training, we
observed that the initialized tunable parameters in the quantum layer begin to de-concentrate around
the Gaussian mean while maintaining relatively stable distribution bounds.
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