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A A SHORT REVIEW TO STRUCTURED CAUSAL MODELS

Causal modeling. A Structural Causal Model (SCM) (Peters et al., 2017) over a finite number
M of random variables X; is a function that maps from the jointly-independent noise N; and
parents (direct causes) X,,(;,c) of X; to X;. The matrix C' € {0, 1}M>*M represents the adjacency
matrix (structure) of the graph, such that ¢;; = 1 if node ¢ has node j as a parent (equivalently,
Xj € Xpa(i,c)s 1-e. X is a direct cause of X;).

Xi = fi(Xpa(i,C)7Ni) 5 V’L € {0, .. .,M — 1} (])

Causal structure discovery is the recovery of ground-truth C' from observational and/or interventional
studies.

Interventions. An intervention on a variable X; changes the function f; that maps from the causal
parents of X; and the independent noise ((Xpa(i}(;)7 N;)) to X;. There are several common types of
interventions available (Eaton & Murphy, 2007): No intervention: only observational data is obtained
from the ground truth model. Perfect: the value of a single or several variables is fixed and then
ancestral sampling is performed on the other variables. Imperfect: the conditional distribution of the
variable on which the intervention is performed is changed. All our experiments are performed with
perfect interventions (aka. setting the state of a variable to a particular value, for example location or
color), as they are the most common type of interventions in RL.
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B RANKING BASED EVALUATION

Apart from standard reconstruction loss, we also provide ranking results based on the evaluation
metrics followed by Kipf et al. (2019). Given observations at two different time steps, these metrics
capture how close is the predicted transition in the embedding space to the embedding of the true
observation obtained through the true environment transitions. Here the notion of closeness is defined
as ranking from a large buffer of states under euclidean norm.

B.1 HITS ATRANK 1 (H@1)

This score is 1 for a particular example if the predicted state representation is nearest to the encoded
true observation and 0 otherwise. Thus, it measures whether the rank of the predicted representation
is equal to 1 or not, where ranking is done over all reference state representations by distance to the
true state representation. We report the average of this score over the test set.

B.2 MEAN RECIPROCAL RANK (MRR)
N 1

n=1 rank,,
nt" sample of the test set where ranking is done over all reference state representations.

This is defined as the average inverse rank, i.e, MRR = % > where rank,, is the rank of the

C REWARD PREDICTION EVALUATION

Below, we provide the methodology of training the reward predictor and doing evaluation based on it
as well as further implementation details relevant to our particular set of environments.

C.1 METHODOLOGY

For downstream RL evaluation, we consider learning a reward predictor and then performing planning
based on taking greedy actions in the direction of immediate highest reward (inspired from Watters
et al. (2019)). For our tasks, the reward is a function of the next state and the target state but not the
action. For example, in physics environment the reward is the average distance between the objects
in their current configuration and a target configuration. Similarly, for chemistry environment it is the
number of color matches between the current state and the target state.

More concretely, we learn a reward predictor function (parameterized by a single layered MLP) that
takes as input the current state as well as the target state of the world and tries to predict the reward
for the current state. This reward predictor is learned in a supervised way and all the other weights
(encoder, decoder, transition models) are kept fixed during this training. Thus, it is only possible to
learn a good reward predictor if the encoder model captures the important aspects of the objects from
the raw image.

Given the current encoded state of the world, we consider all possible actions and transitions according
to them in the latent space (using the learned transition model). After the transition, we use the
learned reward predictor to predict the reward for the (new state, target state) pair. This gives us
the immediate reward obtained from each action. Having obtained those rewards, our policy is to
just greedily take the action that gives us the best immediate reward. Note that in our reward setting
(dense and/or partial rewards) this is typically a good policy as can be seen in the oracle (greedy)
performance (where we take actions according to the true reward).

For training, we consider the supervised L; loss optimized using the Adam Optimizer -

»CReward Predictor(g) = ”f& (3t7 Starget) - T(mt; xtarget) || 1
s¢ = Encoder(z;)

Starget = EnCOder(xtarget)

where 7(-, -) is the true reward function.
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For evaluation, we consider the true final reward as well as the success rate obtained under policy 7
where 7 is implicitly defined using the learned reward function fy as follows -

(8¢, Starget) = arg rrjlax fo(Transition(sy, @), Starget)
ac

We leave the formulation of training a value function estimator using a TD-learning objective as an
important future work.

C.2 IMPLEMENTATION DETAILS

For all the environments, when training a reward predictor we consider a starting state of the
environment and the state of the environment obtained after doing 10 random actions. Given the
starting state and the target state, we use the dense reward obtained in the configuration to act as the
supervision signal for training of the reward predictor model.

For physics environment, we consider the reward to be the average distance of objects from their
target configurations. Whereas, for the chemistry environment we consider the number of partial
matches between the two states as the reward function.

For evaluation on downstream RL tasks, for k*" step prediction, we consider targets that are generated
from %k random actions in the environment. We also report baseline performances of a random
policy as well as an optimal policy. For the physics environment, we set the optimal policy to be the
one step greedy policy based on the true reward while for the chemistry environment, we consider
the same actions that led to the target configuration to be the optimal policy. Note that since the
chemistry environment is stochastic, the same actions may not lead to the same state. Hence any loss
in performance even after performing optimal actions is due to the data uncertainty that arises due to
the stochasticity.

D MODEL SETUPS AND TRAINING PROCEDURE

D.1 MODEL BASED EXPERIMENTS
For our model based experiments, we consider four models that encode different inductive biases -

e Autoencoders (AE) - Monolithic model that compresses everything into a single entity.

e Variational Autoencoders (VAE) - Similar to Autoencoders but with regularization to stay
close to a prior distribution in latent space.

e Modular Model (Modular) - Has a separate representation for each object and can be used
to capture interactions between multiple sets of objects.

e Graph Neural Networks (GNN) - Also has an object-wise representation but can capture
only pairwise interactions between objects.

Each model has an encoder-decoder model as well as a transition model. The encoder-decoder model
is aimed at inferring the high level causal variables from raw pixel data whereas the transition model
is tasked with controlling how the encoded state transitions based on the actions taken. We build all
our models on the architectural backbone provided by Kipf et al. (2019).

The encoder model is a convolutional neural network followed by a 3-layered MLP (Table 1). It
outputs a single representation in case of monolithic models and an object-wise representation (i.e.
separate for each object) in case of modular networks and graph neural networks.

The decoder model (if used - refer Appendix D.2) takes either a single representation (in case of
monolithic models) or object-wise representations (in case of modular networks / GNNs) and outputs
an image as close as possible to the input image. The structure of the decoder is detailed in Table 2.

We follow the medium encoder-decoder structure followed by Kipf et al. (2019). For embedding
dimension, we use a fixed embedding dimension of 32 per object where the number of objects are
specified by the environment description. For example, if we have 3 objects in the environment,
then the embedding dimension of Autoencoder based models is 96 while it is 32 per object for
Modular/GNN models.
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Type channels activation | stride
Conv2D 9 x 9 512 Leaky Relu 1
BatchNorm2D - - -
Conv2D 5 x 5 | M (number of objects) Sigmoid 5

Table 1: Architecture of the encoder used for the world models.

Type channels activation | stride
Linear 512 Relu -
Linear 512 Relu -
Linear M %10 x 10 - -
ConvTranspose2D 5 x 5 512 Relu 5
BatchNorm2D - - -
ConvTranspose2D 9 x 9 50 - 1

Table 2: Architecture of the decoder used for the world models.

Mathematically, given an observation x, the encoder maps the observation to its latent representation
s¢ which is either monolithic or modular. Further, the decoder (if used) maps the latent representation
back to the input space.

s¢ = Encoder(z;)
24 = Decoder(s;)

Each architecture also has a transition model to model how a particular action affects the state of the
world. Based on the current state of the world and an action taken, the transition model predicts the
next state of the world. For monolithic models (AE and VAE), the transition model is a 3-layered
MLP. For GNN, it is a graph neural network with only one node-to-edge and one edge-to-node
information propagation, that is, it encodes only pairwise interactions. For modular models, it is a
separate MLP for each object, that allows it to encode higher order interactions between multiple
objects.

Mathematically, the transition (prediction of next state) from a given state s; based on an action a;
can be shown as -

$441 = Transition(s, a;)

D.2 TRAINING DETAILS
We consider two methods of training for all our baseline models -

e Negative Log Likelihood (NLL)
e Contrastive Loss (Decoder Free)

For the models trained using NLL, we perform training in 3 stages. First, we do pretraining where
only the encoder and decoder are trained to reconstruct the given image. Second, we learn the
transition where the encoder and decoder are fixed and the transition function is trained to optimally
predict the next state given the current state and action. Finally, we do finetuning where we train both
the encoder-decoder model as well as the transition model on combined objectives of reconstructing
the current images, reconstructing the images in next step as well as doing correct transitions in the
latent space.

For the reconstructions, we use the binary cross entropy loss (BCE loss) while for the transitions, we
use the mean squared error loss (MSE loss).

Mathematically, given the current observation x;, the action taken a; and the next observation
obtained x; 1, we first encode both the observations into the latent space as -

s¢ = Encoder(z;)
st+1 = Encoder(z¢41)
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We then perform a transition from the current step using the transition model as well as use the
decoder to perform reconstructions based on the current encoded state as well as the predicted state -

8¢11 = Transition(sg, az)
&+ = Decoder(s;)
Z44+1 = Decoder(5;41)
Given these variables, the pretraining, transition training and the finetuning can be characterized as -

Pretraining :  argmin BCE(zy, )
Encoder,Decoder

Transition : arg min MSE(sy41, §141)
Transition

Finetuning : arg min BCE(x¢, ) + MSE(s¢41, St41) + BCE(441, T41)

Encoder, Decoder, Transition

For models trained with contrastive loss, we follow the same setup as in Kipf et al. (2019). In this setup
we don’t use a decoder and instead learn everything in encoded state end-to-end. Mathematically,
this can be described as the following -

Contrastive Training : argmin H + max(0,v — ﬁ)

Encoder, Transition
H = MSE(8¢+1, 5t41)
H = MSE(§t+17 St+1)
S¢+1 : Negative state obtained from random shuffling of batch

We train each stage for 100 epochs using Adam optimizer (Kingma & Ba, 2014) with a learning rate
of 5e-4 and batch size 512.

E PHYSICS ENVIRONMENT

E.1 DETAILED SETUPS

We provide an environment which consists of objects of different shapes and potentially different
colors. Each object has a unique weight associated with it and only heavier objects can push lighter
ones. This induces an acyclic tournament causal graph with sparse two-way interactions between the
objects, which form the nodes of the graph.

More precisely, the physics environment with M objects (eg. 3) and colormap C' (eg. blues) can be
considered as the set {o; = {s;,w;,c;,p;} | i = 1to M} where o; denotes the i object which is
characterized by its position p;, its shape s;, its color ¢; and its weight w;. An edge exists from o, to
o; if and only if w; > w;. We consider the weight of each object to be unique, thereby getting rid of
cycles. The specifics of the environment are determined by how the shape, color and weight of an
object are related. For our experimentation, we consider two different settings which are outlined
below. However, we emphasize that the physics environment is not limited to just these specifications
and can be easily extended to form more complicated relationships between the three properties.

E.2 IDENTITY OF OBJECTS

Since we are proposing RL environments, we need to make sure that the mapping from the action
space to the object space is well defined and observable / learnable. Here, we briefly discuss that it is
the case in the settings of the physics environment proposed in this paper. We also discuss that in the
Unobserved environment this mapping can be very hard to learn and for this reason, we proposed
another variant known as FixedUnobserved environment.

Our mapping from action space to object space is such that given an initialization of the environment,
the first action dimension always corresponds to the heaviest object. Similarly, the second to the
second heaviest and so on.

Now, in the Observed environment case, the heaviest object is also the darkest object in the scene so
it is relatively easy for a model to infer the action to object mapping once it has learned the fact that
intensity of color represents the weight of the object.
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On the other hand, in the Unobserved case, the colors of the objects are sampled without replacement
from a larger set of colors. For example, consider a 3 object environment with the set of colors to be
red < green < orange < yellow where the ordering defines the ordering of the weight. Then if in one
initialization has the colors (red, green, yellow) then here the first action dimension corresponds to
the color red. However, another initialization of the same environment can be (green orange, yellow)
and then the first action dimension would correspond to the green object. Thus, for a model to learn
the action to object mapping, it has to learn this global ranking of colors. We found that this was
typically hard for the models to do.

To alleviate the above complexity, we consider another setting FixedUnobserved where we keep the
shapes of the objects fixed and unique. Here, there is an additional constraint that apart from the
colors following a global ordering of weights, the unique shapes also follow a global ordering of
weights and hence, this creates an easily learnable mapping.

E.3 ALL VARIABLES ARE OBSERVED

In this setting, we consider all the objects to be of the same color but different shades, eg. different
shades of the color blue. The weight of each object is a monotonic function of its color intensity,
meaning that darker objects are heavier.

Mathematically, given a colormap C' (single color; continuous in intensity of the color), ¢; € [0, 1]
denotes the intensity of the color C' for object 7 (1 being darkest; 0 lightest). Moreover, the weight of
that object is given by w; = g(c;), where g is a strictly monotonic function. Thus, darker objects are
given heavier weights and thus can push lighter objects.

This setting easily allows for zero shot generalization since a model that has been trained on a subset
of shades of a particular color can generalize to do well across different shades of the same color.
Moreover, the shape of an object here is a distractor since the dynamics of the objects are only
controlled by their colors.

E.4 SOME VARIABLES ARE UNOBSERVED

In this setting, all objects are of distinct discrete colors drawn from a discrete colormap c. Each color
is associated with a unique weight and here, too, heavier objects can push lighter ones but not vice
versa.

Mathematically, given a colormap C' (multiple discrete options), ¢; € C denotes the color for object ¢
such that ¢; # ¢; Vi # j. Moreover, the weight of that object is given by w; = g(h;), where g is an
injective function and g : C' — R.

This setting does not allow for zero shot generalization in the colors since whenever a new color is
introduced, the agent will have to perform interventions on it to infer its place in the graph. However,
similar to the observed case, the shapes of the objects act as distractors since the dynamics is only
controlled by the colors.

E.5 UNOBSERVED VARIABLES BUT FIXED SHAPES

In this setting, all objects are of distinct discrete colors and shapes where the set of shapes is kept
constant across different episodes. Here, the weight of an object can be reflected either from its shape
or its color. For example, the lightest object in the episode will always be of a fixed unique shape and
it will always have the lightest color (where lightest color is defined according to the order on the
color in the colormap - eg. red < blue < green)

This setting does not allow for zero shot generalization in either the colors or the shapes since
whenever a new color or shape is introduced, the agent will have to perform interventions on it to
infer its place in the graph.

E.6 EXPERIMENTAL RESULTS

We perform experiments on a wide range of settings for the underlying causal graph for the physics
environment. We categorize our findings below -
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o Graph Neural Networks (GNNs) generally don’t perform well compared to Modular models
and Autoencoders (AEs) on a wide variety of metrics (ranking metrics, reconstruction loss,
downstream RL task) in the setting of likelihood based loss (refer to Figures 7 - 18 and
Tables 3 - 14)

e Models trained with contrastive loss are generally better at predictions made over longer
time scales in terms of ranking metrics (refer to Figures 7 - 12 and Tables 3 - 8)

e Models trained with contrastive loss are also generally better at downstream RL tasks as
compared to those trained with likelihood based loss. In particular there are some settings
where the former were able to do almost perfect planning while the latter weren’t able to do
good planning in any setting (refer to Figures 15, 17, 18 and Tables 9, 13, 14)

e Modular models and Graph Neural Networks scale better than the monolithic counterparts
when the number of objects in the causal graph increases. Further, while the ranking metrics
still remain good, we see that the planning metrics suffer by a large margin (refer to Figures
7 - 18 and Tables 3 - 14)

e While Autoencoder models perform decently based on ranking metrics, they generally don’t
perform as well on downstream RL tasks when compared to Graph Neural Networks and
Modular models (refer to Figures 13 - 18 and Tables 9 - 14)

e While ranking metrics on the unobserved environment are still decent (refer to Figures 9, 10
and Tables 5, 6), we see that in terms of downstream RL planning, none of the models do
much better than a random policy (refer to Figures 15, 16 and Tables 15, 16)

e We see a case where models that have very good ranking metrics over long time horizons
(AE with NLL Finetune; Table 11 Figure 17) perform much worse on downstream RL tasks
than GNNs and Modular models which had lower ranking metrics (Table 13 and Figure 17).

1 Step 5 Steps 10 Steps
Model | H@1 MRR Rec. Hel " MRR Rec. Hel MRR Rec.
AE 97231037 98231028 0.04100 7278405 77744014 Odpoor | 40464348 474435 0224001
NLL GNN | 64864443 73394408 O.114001 | 17731615 254441775 0.33005 6.4 35 11.054517 0441006
Modular | 97.13 1055 9822404  0.04109 70.7 49,01 76461705  0.131002 | 36.6619ss 442511014 0.261003
VAE | 4952451 58981179 0251002 1.71013 341016 1.04-0.11 0.164-0.03 0.561006 1181014
AE 98.08+0» 98811015 0.03100 80.951,, 84.54 1 g 0.07+00 51984412 57964384 0.164001
. NLL GNN | 74.644+ 1103 788811019 0.04100 | 324341624 393941745  0.141005 8.231715 12.034929 0281007
Finetuned |04 1ar 98.164040  99.01033  0.03100 | 814941007 86.171366 0.071002 | 48711619 564811641  0.17 1004
VAE | 77.61 41675 83.274 1368 004400 | 18964130 25541707 0294008 | 134108 2874196 0514007
AE 82.11492 88.54 161 - 50.046.43 65.24504 - 34364540 51.22447 -
Contrastive| GNN | 93.864050 95.99. 4.4 - 78.28 13030  82.29 415655 - 72.0643958 75.464 3565
Modular | 98.73 4105  99.31 4058 - 94.7 440 97.02 1535 - 90.6 1 657 94.45 1 408

Table 3: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error (lower is better) for different models
and training losses for 1, 5 and 10 step prediction for the Observed Physics environment setting with 3 objects.

F CHEMISTRY ENVIRONMENT

F.1 DETAILED SETUP

The chemistry environment consists of objects of different shapes and colors. Each object forms a
node of a directed acyclic graph. The shapes and positions of the objects are fixed across episodes
while the color of each object is sampled from a conditional probability table and depends on the
colors of its ancestors.

Considering a set of M objects: (X; = {s;,¢i,pi} Vi€ {l,...,M}). Here, s;, ¢; and p; denote
the shape, color and position of the object respectively. As mentioned previously, the shapes and the
positions are fixed across episodes but different for each object. The color of an object is a categorical
variable that can take one of the K possible values. To model the CPT we use an MLP for each
object, the input to an object’s MLP is the current state of each of its parent nodes and the outputs
is a probability distribution over k colors out of which one color is sampled for that object. We
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Figure 7: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error (lower is better) for different
models and training losses for 1, 5 and 10 step prediction for the Observed Physics environment setting with 3 objects.
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Figure 10: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error (lower is better) for different
models and training losses for 1, 5 and 10 step prediction for the Unobserved Physics environment setting with 5 objects.
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Figure 13: Negative Return (lower is better) and Success Rate (higher is better) for different models and training losses for 1, 5 and 10 step
prediction for the Observed Physics environment setting with 3 objects.

Steps =1 Steps =5 Steps = 10

14

1.2

1.0
c
3 . Random
Zos - Greedy
_g NLL
2 NLL Finetune
g 06 Contrastive
z

0.4

0.2 =

0.0 — - — - —

VAE Modular GNN AE VAE Modular GNN AE VAE Modular GNN
Steps =1 Steps =5 Steps = 10

1.0 B

0.8
£ o6 ~= Random
x — - Greedy
ﬁ W NLL
9 mmm NLL Finetune
B o4 [ Contrastive

°
o

II' Ii. I RS FRpE et o —_— .
NN

Modular Gl AE VAE Modular GNN AE VAE Modular GNN

0.0 II' I'
AE VAE

Figure 14: Negative Return (lower is better) and Success Rate (higher is better) for different models and training losses for 1, 5 and 10 step
prediction for the Observed Physics environment setting with 5 objects.
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Figure 15: Negative Return (lower is better) and Success Rate (higher is better) for different models and training losses for 1, 5 and 10 step
prediction for the Unobserved Physics environment setting with 3 objects.
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Figure 16: Negative Return (lower is better) and Success Rate (higher is better) for different models and training losses for 1, 5 and 10 step
prediction for the Unobserved Physics environment setting with 5 objects.

26



Under review as a conference paper at ICLR 2021

Steps = 1 Steps = 5 Steps = 10

175

1.50

1.25
€
g == Random
& 1.00 — - Greedy
v —NLL
3 we NLL Finetune
go7s W Contrastive
z

0.50

000 ,,,.-L B o - o -

AE VAE Modular GNN AE VAE Modular GNN AE VAE Modular GNN
Steps =1 Steps =5 Steps = 10

1.0 B L

0.8
)
206 == Random
< — - Greedy
@
8 - NLL
9 mmm NLL Finetune
B o4 [ Contrastive

N -II -II _ I b

00 - el --- - ,.I ~ — i L

AE VAE Modular GNN AE VAE Modular GNN AE VAE Modular GNN

Figure 17: Negative Return (lower is better) and Success Rate (higher is better) for different models and training losses for 1, 5 and 10 step
prediction for the FixedUnobserved Physics environment setting with 3 objects.
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Figure 18: Negative Return (lower is better) and Success Rate (higher is better) for different models and training losses for 1, 5 and 10 step
prediction for the FixedUnobserved Physics environment setting with 5 objects.
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Figure 19: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error (lower is better) for different
models and training losses for 1, 5 and 10 step prediction for the Observed Physics environment Zero Shot setting with 3 objects.
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Figure 20: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error (lower is better) for different
models and training losses for 1, 5 and 10 step prediction for the Observed Physics environment Zero Shot setting with 5 objects.
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Figure 21: Plots for Observed Physics Environment with 3 objects. Note that (a) the ranking metric (H@ 1) does not always correspond to good
RL performance. In particular, the ranking metric is good across multiple steps but RL performance generally degrades. (b) and (c) Ranking

metric and success rate seem to be a bit negatively correlated with test loss.
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Figure 22: Plots for Observed Physics Environment with 5 objects. Note that (a) the ranking metric (H@ 1) does not always correspond to good
RL performance. In particular, the ranking metric is good across multiple steps but RL performance generally degrades. (b) and (c) Ranking

metric and success rate seem to be a bit negatively correlated with test loss.
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1 Step 5 Steps 10 Steps
Model H@1 MRR Rec. H@l "MRR Rec. H@l " MRR Rec.
AE 9777 +145  9838+105  0.081001 63.88 1977 69.551 90 0254003 | 27.18+7.09 33.64+771 0.451 003
NLL GNN 951313500 96951504 019100 | 41491395  50.631303  0.47 1005 19281557  26.591306 0.631007
Modular | 99.57 016 99731012 0.09100 | 79141450 84.06La09 0281001 | 35.681609 43821755 048100
VAE | 793541045 8438104 0.34100 6.18 1176 10681005  1.6240, 0.28 10,09 0971020 2214013
AE 98.29 1077 987841053  0.07ro0r | 69581725 74591645 024000 | 317541660 38224697  0.394002
NLL GNN | 97711551 98431015 007100 | 683611560 737811715 0241005 | 265241353 32944165 0464013
Finetuned
Modular | 99.65+05  99.774014  0.06+00 | 77214681  82.084583 021400 | 23.154627 29244715  0.534012
VAE 68.44 15 7452416 0.09 100 84243 12424015 0751003 0.5810.14 1.34 005 1.07 40,05
AE | 9612, 9771410 - 673612012 76981156 } 44.65 123 55381200 }
Contrastive| GNN | 9928055  99.61031 - 7885175  84.81 162 - 50.1£004  60.254 1011 -
Modular| 99.714+015  99.84 1 0s - 8434584  89.354+226 - 52364400  63.28 1408 -

Table 4: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error (lower is better) for different models
and training losses for 1, 5 and 10 step prediction for the Observed Physics environment setting with 5 objects.

1 Step 5 Steps 10 Steps
Model | H@1 MRR Rec. H@l " MRR Rec. Hel MRR Rec.

AE 65.69 1103 7344166 012400 17.98 1005 25.841 1.5 0.34001 6.5610.6 11.64 1003 0.39400
NLL GNN 6227437 70.16435  0.154 00 19324 164 2621014 034100 8.87 1135 14.094505 04200,
Modular | 75231760 82734201 012400 | 24934264 33964308 0314001 | 10394167 16714231  0.39400
VAE | 52831095 61.681155 0.28 100 1.9610.16 3921026  0.881005 0.19-10.04 0.62-+0.03 1.040.07
AE 95354113 97.024075  0.06400 | 40.92.175 49.77 704 021400 9.41+436 13.924564  0.3540.03
Firitllllned GNN | 74.194585  80.081504 0.07400 | 20134508 26324043  0.16400; 234097 3941406 025100
Modular| 9492 ,g1  96.79+124  0.07+10o 27.62 653 347175 021100 2.524 10 416474 0.3210.03
VAE 49654414 59584300  0.07100 7.824 104 1234148 0.25-40.03 0.8310.16 2.0540.29 0.364-0.04

AE | 89771,  9401.. - 37571015 5353157 - 1387 1001 265421018 :

Contrastive| GNN | 89.5815;5 93.4.:5. - 40331100 50.141 4019 - 17741609 25.674526 -

Modular | 96.55+300 97.964 196 - 621511259 71.494116 - 31.024+ 1004 42394126 -

Table 5: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error (lower is better) for different models
and training losses for 1, 5 and 10 step prediction for the Unobserved Physics environment setting with 3 objects.

1 Step 5 Steps 10 Steps
Model H@1 MRR Rec. H@l MRR Rec. H@1 MRR Rec.

AE 89491065 92154062 015100 | 3778417 45921175 0354001 | 15.041174 21524551 0464100
NLL GNN | 95764207 9734153 0174001 | 49464105 57924014 0424004 | 2854258 36754200  0.541005
Modular | 98.19£126 98.931051 0.151001 | 57514546 6634516 03741003 | 31.67+£413 40841455 0491004
VAE | 772143091 81444350 0334001 | 26014063 32414570  0.894004 | 9.184 03 13.74 1155 1184007
AE 95791058 97274043  O011u00 | 27774172 35194188 0.22400; 3.73 4045 5921057 0.3210.02
. NLL GNN 99.041070 9943144 0.1+100 58451706 65.861656 0.240.01 10.34 1374 15.38+ 431 0.281+-0.01
Finetuned Modular | 99.87 005 99.93 1003 0.1100 42154003 49.12404 0224001 | 4354047 6.32.4335 0.36-0.04
VAE | 65.67457:2 72424511 011400 | 15.62435 20414405  03410m 3.55415 5.57 4215 0.42 10,03

AE 97.23 1003  98.381054 - 56.624 566  68.68 1446 - 22.86455  35.881¢53 -

Contrastive| GNN | 99.67.0  99.81101 - 82524675 8694533 - 55124118  63.044 1074 -

Modular | 9981014  99.89 1008 - 82.98 13505 8744157 - 50924473 59.51 4465 -

Table 6: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error (lower is better) for different models
and training losses for 1, 5 and 10 step prediction for the Unobserved Physics environment setting with 5 objects.

can control the skewness of the distribution of each object by controlling the initialization of the
MLP parameters. It is more hard for a model to learn the correct probability distribution when the

distribution is less skewed.

In the chemistry environment, an intervention corresponds to changing the color of an object to a
particular color from fixed set of K colors. When an intervention is performed on an object, a new
color is sampled for each of its descendants using their respective MLPs as mentioned above. Each
object changes its color to the newly sampled color at the same instant.
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1 Step 5 Steps 10 Steps
Model H@1 MRR Rec. H@1 MRR Rec. H@l MRR Rec.
AE 99.0-t0.1 99441006  0.04100 [ 9501041 968141031  0.06400 | 84.5415 89.24112  0.dtom
NLL GNN | 70.68.+105 79431415 0111002 | 23.824774 33281914 0271005 | 10.111508 16.651 6901  0.3610.06
Modular | 98.03 1020  98.841017 0.05100 | 88.121265 91.8.42> 0.08 10,01 68.6.1001 76121706 012100
VAE | 53.124576 63424058 0214001 224004 453104  0.614005 0.21004 0.82100s  0.76.1007
AE 99.24 1008  99.59+005 0.04400 | 96734037 98.024020  0.05400 90.56+ 1.0 93724060  0.07400
'NLL GNN | 75.164 1045 799741199  0.054+00 | 347841454  42.841643 0114004 | 12764733 17.88 1047 0214007
Finetuned | \jogular | 98765015 99351000 0.04s0p | 913iais  9454ii 006100 | 667170 T515ii  Odagg
VAE | 68.5311305 76.5541071 0.05400 | 21.3841049 29.7641047  0.184003 1.72110 38541166 029400
AE | 776711051 86214708 - 534940305 68.11411757 - 43.6512631  59.1340153 -
Contrastive| GNN | 84.94_ g 90.1-+56> - 428849535 S1.7540448 - 28.06+3518 3419413768 -
Modular | 88.42 1643 93321448 - 71541175 83.0711272 - 66.07 12034  79.36 11562 -

Table 7: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error (lower is better) for different models
and training losses for 1, 5 and 10 step prediction for the FixedUnobserved Physics environment setting with 3 objects.

1 Step 5 Steps 10 Steps
Model H@1 MRR Rec. H@l MRR Rec. Hel MRR Rec.
AE 98.51 1014 988541000 0.07100 | 8434155 87341155 016400 | 5814405 64571251  0.26100
NLL GNN | 9561407 97134001 0.134002 | 53.8941158  62.054000  0.3241005 | 28.6441156 369641045 0441007
Modular | 99.48 025 99.631021 0.07100 | 94131131 95541124 0.154001 | 78.184317 82764205 0.2310m
VAE 7421000 78721005 0231001 | 22.18 1093  27.691001  0.631004 | 5681055 9.0410 0834006
AE 99.18 4006 99374011 0.07400 | 91484186 93.194141  0.124001 | 73284390  77.994336 024100,
. NLL GNN | 95.86+339 97364031 0.06L00 | 65.561160 717141400 0131003 | 35262076 41.6310099  0.261007
Finetuned
Modular | 99.854012 99914008 0.06400 | 95.04 4185 9659413 O.114001 | 61.724028  68.6458: 023100
VAE | 54281450 62551359 0.07100 | 1007134 14124144 028100 1.91.453 33117 041002
AE 92.83 11260 949110, - 79.39 1553 854615136 - 72.04 4637 80.2842074 -
Contrastive| GNN | 99.93.0;1  99.97 1006 - 96.21 1660  9741ta64 - 88.83 1150 913411456 -
Modular | 99.86+007  99.931 004 - 98361049 98.94. 0.4 - 93441591 95.634+1094 -

Table 8: Hits at Rank 1 (H@ 1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error (lower is better) for different models
and training losses for 1, 5 and 10 step prediction for the FixedUnobserved Physics environment setting with 5 objects.

1 Step 5 Steps 10 Steps

Model Reward Success Reward Success Reward Success

. Random Baseline -0.37 0.22 -1.26 0.01 -1.78 0.00

Baselines K

Greedy Baseline 0.00 1.00 -0.00 0.99 -0.01 0.98
AE -0.26 1001 0.44 1003 -0.73 10,04 0.121002 -1.02 1006 0.08 10,02
NLL GNN 0341002 0.2940.03 -1.041007 0.04£001 -1.49 10, 0.0240.01
Modular -0.25 1002 0.46 10,04 -0.67 +0.06 0.1510.02 -0.97 £ 0.09 0.08 10,02
VAE -0.33 002 0.321003 -1.040.03 0.04 1001 -1.37 1004 0.01100
AE 022400 0.5240.03 -0.624004 0.17 0.0 -0.9400s 0.11 400
NLL GNN -0.364+0.06 0.340.11 -1.0640.24 0.064+0.04 -1.57 4033 0.03 10,03
Finetuned Modular 01641005 0.641008 048401 0.27+£0.00 0794017 0.15+006
VAE -0.2610.07 0431013 -0.85 10> 0.08+0.05 -1.28-4021 0.03 400
AE -0.27 £o.02 0.42 1003 -0.97 40,04 0.05+-0.01 -1.44 1005 0.024-00
Contrastive GNN -0.1140.17 0.77+0.36 -0.3610.52 0.681+0.43 -0.51072 0.6610.43
Modular 024007 0.54 1013 -0.76 1023 0.13 1008 -1.06 008 0.07 +0.05

Table 9: Negative Return (lower is better) and Success Rate (higher is better) for different models and training losses for 1, 5 and 10 step

prediction for the Observed Physics environment setting with 3 objects.

Note that all our experiments for this environment were run for a setting of 5 objects and 5 colors

unless specified otherwise.
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1 Step 5 Steps 10 Steps
Model Reward Success Reward Success Reward Success
Baselines | Random Bascline 2022 022 087 0.00 131 0.00
Greedy Baseline 0.00 1.00 -0.00 0.99 -0.00 0.98
AE -0.240.01 0.3240.03 -0.66--0.04 0.04 0.0 -1.04 4004 0.01100
NLL GNN -0.22.40.02 0.2510.04 -0.74 0,04 0.02.400 -1.164.0.06 0.0100
Modular -0.21 4001 0.29 10,03 -0.651+0.02 0.04_0.01 -1.0240.03 0.01 1001
VAE -0.2240.01 0.2640.00 -0.73 1000 0.0210,0 -1.08 0.2 0.0400
AE -0.18+0.01 0.364-0.02 -0.6210.02 0.04 .01 -1.04002 0.01 100
Fil:{:ll;led GNN -0.26.10.03 0.18+0.06 -0.84 1010 0.024-0.01 -1.27 108 0.0-00
Modular -0.17 4001 0414003 -0.6+0.03 0.05+0.01 -1.0240.04 0.01 400
VAE -0.23 1004 02240, -0.79 £0.08 0.02.0.01 -L17 404 0.0400
AE -0.2210.03 0.24 1008 -0.74 £o.04 0.02_0.01 -1.09+0.07 0.0100
Contrastive GNN 023400 0.221 007 -0.74 1 0.06 0.02-0.01 -1.08 1005 0.000
Modular -0.21+0.05 0.284+0.12 -0.68-0.00 0.02+0.02 -1.01+0.00 0.01+0.01

Table 10: Negative Return (lower is better) and Success Rate (higher is better) for different models and training losses for 1, 5 and 10 step
prediction for the Observed Physics environment setting with 5 objects.

1 Step 5 Steps 10 Steps

Model Reward Success Reward Success Reward Success

Baselines Random Basel'ine -0.37 0.22 -1.26 0.01 -1.78 0.00

Greedy Baseline 0.00 1.00 -0.00 0.99 -0.01 0.98
AE -0.3140.01 0.35-+0.02 -0.95 1002 0.06--0.01 -1.394 004 0.02_£0.01
NLL GNN -0.36 10,01 0.27 1001 -1.13 4002 0.03 100 -1.64 1003 0.01400
Modular -0.3240.01 0.34 1001 -0.94 1002 0.06-+0.01 -1.3640.04 0.02-0.01
VAE -0.37+0.01 0.264+0.03 -1.06-+0.06 0.04-+0.01 -1.4840.05 0.01 100
AE -0.2640.02 0.44 1003 -0.83 10,06 0.08+0.02 -1.23 4007 0.03 40,01
NLL GNN -0.37 0.0 0.26 10,03 -L.13 1005 0.03 0,01 -L71 400 0.01 4001
Finetuned Modular -0.27 4003 0431005 -0.89+0.07 0.07 002 -1.32.40.09 0.0240.01
VAE -0.394003 0.22 1003 -L18 Lo.07 0.02 001 -1.61 1009 0.0400
AE -0.31 002 0.36-+0.04 -0.96-£0.04 0.05-£0.01 -1.36_L0.05 0.01 001
Contrastive GNN -0.3940.00 024004 -1.2210.06 0.02-0.01 -1.64 4004 0.0400
Modular -0.31£003 0.37+£0.06 -1.07 0,07 0.04-10.01 -1.54 L0090 0.0100

Table 11: Negative Return (lower is better) and Success Rate (higher is better) for different models and training losses for 1, 5 and 10 step
prediction for the Unobserved Physics environment setting with 3 objects.

1 Step 5 Steps 10 Steps

Model Reward Success Reward Success Reward Success

. Random Baseline -0.22 0.22 -0.87 0.00 -1.31 0.00

Baselines .

Greedy Baseline 0.00 1.00 -0.00 0.99 -0.00 0.98
AE -0.22 1001 0.26 1003 -0.74 1003 0.02 0,01 -L14 1003 0.0400
NLL GNN -0.22001 0.2540.0 -0.76 0.0 0.020.01 -1.19£0.03 0.0100
Modular -0.21 4001 0284003 -0.7 +0.03 0.02 00 -1.08.40.04 0.01 00
VAE 0231001 0.22.40.00 -0.78 +0.03 0.02 10,01 -L1840.06 0.0+00
AE -0.18 4.0.0 0.35-£0.04 -0.59 1005 0.04 1.0 -0.96-0.07 0.01100
. NLL . GNN -0.23 100 0.22 100 -0.840.04 0.02-£0.01 -1.28 +0.07 0.0100
inetune Modular -0.21400 0.28+0.03 -0.69 .04 0.03+0.01 1114007 0.01+00
VAE -0.21 4005 0.2540.11 -0.73 1013 0.03-£0.01 -Ll4003 0.0-0.0
AE -0.25 100 0.240.06 -0.760.07 0.02+0.01 -L12 4009 0.0+00
Contrastive GNN -0.21 40,02 0.25+0.06 -0.71 0,07 0.02400 -1.08 10,07 0.0+00
Modular -0.24 1002 0.21004 -0.76 0,05 0.02100 -1.12£0.06 0.0+00

Table 12: Negative Return (lower is better) and Success Rate (higher is better) for different models and training losses for 1, 5 and 10 step
prediction for the Unobserved Physics environment setting with 5 objects.
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1 Step 5 Steps 10 Steps

Model Reward Success Reward Success Reward Success

Baselines Random Basel'ine -0.37 0.22 -1.26 0.01 -1.78 0.00

Greedy Baseline 0.00 1.00 -0.00 0.99 -0.01 0.98
AE -0.23 1001 0.48 1003 -0.59 +0.03 0.18 1002 -0.78 £0.05 0.12 4002
NLL GNN -0.3440.02 0.3 4003 -1.03 10,09 0.05£0.01 -L51 4004 0.0210.01
Modular -0.1940.02 0.5640.04 -0.481-0.06 0.2540.05 -0.67 4-0.08 0.18 40,04
VAE -0.33 1001 0.32100 -0.98 10,04 0.05 0,01 -1.44004 0.01400
AE -0.2Lo01 0.54 1003 -0.49 1003 0.23 1003 -0.64 1004 0.18 4002
NLL GNN -0.33 4007 0.3340.11 -0.93 402 0.08-+0.04 -1.42403 0.0240.01
Finetuned Modular -0.11-4002 0.73 1005 -0.340.06 0.38-10.07 -0.5810. 0.240.06
VAE -0.311003 0.34 1005 -0.94 1 .09 0.06.0.02 -1.34 1011 0.0240.01
AE -0.09+0. 0.78 4023 -0.38 1033 0.454031 -0.55 046 0.36.1031
Contrastive GNN -0.31015 04403 -0.96+ (.48 0.21 1038 -1.32 1065 0.19 37
Modular -0.07 £o.11 0.85+0.24 -0.24 4033 0.73 041 -0.34 1051 0.7 1043

Table 13: Negative Return (lower is better) and Success Rate (higher is better) for different models and training losses for 1, 5 and

prediction for the FixedUnobserved Physics environment setting with 3 objects.

1 Step 5 Steps 10 Steps
Model Reward Success Reward Success Reward Success
. Random Baseline -0.22 0.22 -0.87 0.00 -1.31 0.00
Baselines .
Greedy Baseline 0.00 1.00 -0.00 0.99 -0.00 0.98
AE -0.21 4001 0.28 1001 -0.66-0.02 0.04-0.01 -0.98 £0.03 0.014+00
NLL GNN -0.23 100 0224002 -0.76 10,04 0.02-100 -1.17 4007 0.0-£0.0
Modular -0.19+40.01 0.36-10.03 -0.51+0.03 0.08-0.01 -0.79+0.05 0.03-£0.01
VAE -0.214003 0.27 4-0.06 -0.7540.00 0.02-40.01 -1.16.410 0.0100
AE -0.19-+1001 0.351001 -0.55 1002 0.06+0.01 -0.83 1003 0.02100
NLL GNN -0.2540.03 021008 -0.78 10,14 0.02-£003 -1.17 4019 0.01 1001
Finetuned Modular -0.13 4001 0.5210.05 -0.44 1003 0.111002 -0.81+0.06 0.03 1001
VAE -0.24 4001 0.19 1002 -0.77 £o.04 0.02100 -L14 1007 0.0400
AE -0.13 4002 0.540.07 -0.51 4008 0.09-40.04 -0.81 4011 0.03-10.01
Contrastive GNN 0041000 0.8413 017405 074103 | 027104 0.68403
Modular -0.0£o0 0.99+0.02 -0.0610.06 0.78 £0.2 -0.14 4014 0.63 1027

10 step

Table 14: Negative Return (lower is better) and Success Rate (higher is better) for different models and training losses for 1, 5 and 10 step

prediction for the FixedUnobserved Physics environment setting with 5 objects.

1 Step 5 Steps 10 Steps
Model H@l1 MRR Rec. H@l1 MRR Rec. H@l1 MRR Rec.

AE 73411063 78.834054 0.1400 26324155 31974153 0314001 10734100 1447413 04541002
NLL GNN | 57.064149 6594126  0.154001 | 12.0841 5 18.33 4149 0.41004 3.6L067 6.97 111 0.5£0.0s
Modular| 71.67 .47 77.84+121 012109 26.7 142 33.58 1468 0.31 1002 10.84 1580 15381371 0421003
VAE 43784157 55484193 0.29400 1.5910. 3.1840. 1.0940.12 0.1240.03 0.464-0.04 1.23.00.14
AE 73784186 79354173 0.094001 | 28371155 33981165 0.294001 12.4 1088 16.094 104 0431001
Fili:{;ll;led GNN | 66421705 72431667 0.14100 18424708 24184574 024400 | 324419 5264078  0.361003
Modular| 77.33+1g3 8291467 0.11400 35.97+675 43714717 0.24 1001 15734619  21.384745  0.34 1002
VAE | 62811405 719541227 0.094001 | 9774648 14.44 1541 0.4 4005 0.69 +0.49 1.63 4102 0.6+0.06

AE 72164131 78781107 - 33235 45.72 446 - 18921456 31.024504 -

Contrastive| GNN | 92.1955  94.89.4.0s - 61.64 1940  69.7741793 - 44.51 15100 534210057 -

Modular | 85.03%;7:  88.08 s ; 58264525 6585110 ; 4583515 5469450, ;

Table 15: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error (lower is better) for different
models and training losses for 1, 5 and 10 step prediction for the Observed Physics environment Zero Shot setting with 3 objects.

F.2 RANKING LOSS AND CAUSAL STRUCTURE

Initially, our vanilla chemistry environment had objects being initialized at random positions per
episode while maintaining a fixed causal graph underneath. We call this setting the dynamic setting.
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1 Step 5 Steps 10 Steps
Model H@1 MRR Rec. H@l1 MRR Rec. H@l MRR Rec.
AE 85814115 89014105 015400 | 3264108 392240000 041100 1024174 1434450  0.581002
NLL GNN 94.67 1505 96.861 35 0.2100 39494303 48714335 0494005 17394585 24611359  0.651006
Modular | 95.68 104 97.14 15 016100 | 51191606 59251613 042100 18.94 1,4 2558153 0.5810m
VAE 7981066 85831051 0351001 | 48311 8.52.1205 1.68.40.1 0.23 40,07 0.76 1015 2261015
AE 86.52 1032 89.831020 0.15100 | 36334050 43141041 0391001 | 121241090 16721050 0561002
. NLL GNN | 96294199 97274157 0.154001 | 5144048 58.06957 0.440.06 13224504 179460 0.6440.14
Finetuned

Modular | 96.54 3 97.55100s 0.164002 | 49.09.1616 56.4 4605 0431008 | 10474155, 145745, 0.694016
VAE | 65764161 72934104 002400 | 7.394077 11184095  0.774003 | 0.43+006 1.0240, 1114006

AE 939241553  95.64473 - 58.721 1306 68.87 L1001 - 3458 15113 45.3110007 -

Contrastive| GNN | 99.63 (37 99.8-1021 - 82.164514  87.05466 - 5534 11004 641911166 -

Modular | 99844111 99.91 1006 - 86.88+310 91.02455 - 55.64 1565 65.581557 -

Table 16: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error (lower is better) for different
models and training losses for 1, 5 and 10 step prediction for the Observed Physics environment Zero Shot setting with 5 objects.

We noticed that in this case, the ranking metrics were very good but performance on downstream
RL task as well as qualitative reconstruction was very poor. On further investigation, we reached
the conclusion that under this setting, a model could do very well under the ranking metrics without
learning the causal structure at all.

If the encoder learns to encode the positions and shapes of different objects, then it already does
a great job at ranking. This is because ranking is done with respect to a large buffer of encoded
states and since objects are randomly initialized per episode, there is very little probability that two
encoded states share the exact same object shapes and positions. Thus, as long as the encoder and
the transition function exploit the fact that two encoded states should be close by iff they have the
same objects in the same positions, then it would do very well on the ranking metrics. Note that in
the above argument, the model had a way of ranking well without even learning anything about the
edges in the graph, i.e. the structure of interactions between the objects.

To alleviate this problem, we decided to keep the positions of the objects fixed across episodes too.
We call this setting the static setting. This means that models will not be able to perform well on
ranking metrics by just encoding the positions or shapes of the objects (since they are now shared
across episodes). The only way to do well on ranking metrics then is to learn the underlying causal
structure. We immediately saw a plummet in ranking metrics that confirmed our suspicions that the
models were not able to learn the underlying causal structure.

For a demonstration of the mentioned problem refer to figure 26. In the figure we can see that for the
dynamic setting, models achieve a much higher score on the ranking metrics (H@ 1 and MRR) as
compared to the static setting while doing much worse on the downstream RL task as compared the
static setting. This further reinforces the importance of using downstream RL tasks for evaluation.

This also shows that inferring the causal graph even in the case of small graphs is a complex
problem that current models are not able to solve well. We believe that the existence of this suite of
environments provides a platform for extensive study of causality in world models.

F.3 EXPERIMENTAL RESULTS

We perform ablation studies on the chemistry environment with varying factors in the underlying
causal graph to study how these factors impact learning. We summarize our findings below -

e It is easier for models to learn the right causal structure when the cause-effect chains are
short. For eg., all models perform much better (under all metrics) on the collider graph
where cause-effect length can be at-most one as opposed to chain and full graph where the
cause-effect length is longer (refer to Figure 23 and Table 17)

o Modular Models generally perform better than Graph Neural Networks (GNNs) when trained
using NLL loss because the former can encode higher-order interactions while the latter
only encodes pairwise interactions (refer to Figure 23 and Table 17).
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Figure 23: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error (lower is better) for different
models trained using NLL Loss for 1, 5 and 10 step prediction for the vanilla chemistry environment with 5 objects and 5 colors.

e While models trained on the dynamic chemistry environment perform very well on ranking
metrics, they don’t do well on the downstream RL task. This is because these models don’t
actually learn the right causal structure but only encode the visual aspects of the particular
episode such as shapes and positions. To further investigate this, we decided to keep the
objects stationary. We saw that the ranking metrics immediately suffer by a large margin
because the models couldn’t cheat by just encoding the visual details and not the causal
structure (refer to Appendix F.2 and Figure 26 for details).

o [ncreased stochasticity (entropy) of the conditional probability tables (CPTs) make it harder
for the models to learn (refer to Figure 24). In the figure, we can see that almost all
models generally perform better on less stochastic (more skewed) data as compared to more
stochastic (less skewed) data.

e Modular models outperform all other models on the downstream RL task (refer to Figure 25
and Table 18) for all settings(i.e different graphs and number of steps) due to their ability
to encode higher-order interaction which monolithic models like AEs and VAEs cannot
do while Graph Neural Networks(GNNs) only en pairwise interactions. We also report 2
baselines random and optimal as described in appendix section C.2

37



Under review as a conference paper at ICLR 2021

Steps =1 Steps =5 Steps = 10

W More Skewed
0 Less Skewed

AE VAE Modular GNN AE VAE Modular GNN AE VAE Modular GNN
Model Model Model

Figure 24: H@1 performance of models for data generated at different levels of skewness(stochasticity) for the chain graph. As we see almost
all models perform better on more skewed data as the data uncertainty is less on more skewed data as compared to less skewed data.
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Figure 25: Mean reward and success rate for models trained on the chemistry environment with 5 objects and 5 colors. Modular models
outperform all other models in almost all cases which shows that introducing structure in the form of modularity is an important inductive bias
for learning causal models.
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Figure 26: This figure compares the performance of static and dynamic setting of the chemistry environment. We can see that for the dynamic
setting even though the models achieve almost perfect performance on the ranking losses(H@1 and MRR) as compared to the static setting,
their performance on the RL task is extremely low as compared to the static setting. This shows that the ranking losses are not an accurate
indicator for model performance. For a description of static and dynamic setting see section F.2. These experiments were run for collider
graph.
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Figure 27: Plots for chemistry environment with 5 objects and 5 colors for models trained using NLL Loss. We see that there seems to be a
positive correlation between H@1 and success rate for step 1 but this may not be true for longer steps.
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1 Step 5 Steps 10 Steps

Graph Type| Model H@I MRR Rec. H@l MRR Rec. H@l MRR Rec.
Chain AE | 16937 0386 23.00710133 0.07100 | 443310025 818740118 0.073100] 1481004 295710063 0.076100
NLL VAE | 1029315711 158974007 0.071100| 298710282 6983411079 0.075100] 21940184  5.78 10821 0.076100
Modular| 16.863-10.135 23.047 10027 0.07400 | 531740249 103141343 0.072400| 2.0440259 44541003 0.074400
GNN | 3.587 10412 6.934 091 0.07100 | 0.6174005 1.940.105  0.076400| 0.257£0002  0.947 10023 0.079100
Full AE 17.62 0190 23.85410065 0.071100| 5.127100ss  9.707 10084 0.072100| 2.527 0045 491310177 0.073 100
NLL VAE 9.847 10572 1540710550 0.071400| 2.747 10104  6.36340340 0.074-100| 1.957 10056 4.927 410280 0.076400
Modular| 15.977 +1066 2281340374 0.071100] 6493 10200 12.837 1060 0.071100| 423310845  9.157 12500 0.07100
GNN 2.68 10073 51510060 0.071100| 0.23 10001 0.913 10001 0.077 £00| 0.103 10001 0.503 10002 0.084 100
Collider AE | 20993 0016 2972310014 0072100 14841000 293240135 0.069100| 15.01 L0509 29.657 12029 0.067 100
NLL VAE | 984710572 15407 o550 0.071to0| 2.747 10104 636310340 0.074100| 1.957 10056 4927 10280 0.076£00
Modular| 20.891016  29.56310175 0.072100| 15.297 10063 299910062 0.068 00| 15784047 31.2110515 0.067 100
GNN | 837715355 1573714305 0.072.000| 544315700 14.527 115714 0.073 00| 4.0415073 10.607 100141 0.08 400

Table 17: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error (lower is better) for different
models trained using NLL loss for 1, 5 and 10 step prediction for the vanilla chemistry environment with 5 objects and 5 colors.

1 Step 5 Steps 10 Steps
Graph Type | Model |Mean Reward Success Mean Reward Success Mean Reward Success
Random 0.56 0.046 0.38 0.005 0.36 0.007
Chain Optimal 0.86 0.52 0.83 0.39 0.16 0.38
AE 0.81 10,001 0.37 +0.003 0.75+0.003 0261001 0.717 £o004  0.227 10,000
VAE 0.74 10005 021310002 | 0.58340005  0.0940005 | 0.557+0006  0.073+0.003
Modular | 0.82-£0.001 0.3810002 | 0-76310002 028310011 | 074310003 0.237 10007
GNN 0.673 100 0.123 100 0.60.001 0.12100 0.563 10,001 0.1+00
Random 0.45 0.027 0.27 0.005 0.25 0.004
Full Optimal 0.79 0.44 0.737 0.275 0.72 0.24
AE 0.8+00 04110001 | 077340002 0.2840007 | 0.74740003  0.243 40006
VAE | 0.707 o001 0.237 10002 | 0.55-0.001 0.067 100 | 0.523 0001 0.053 100
Modular | 0.82400 0447 o003 | 0.-807£o002 033740006 | 078410002  0-287£0.006
GNN 0.663 100 0.177 00 0.457 10,0 0.03 100 0.39.100 0.02.00
Random 0.45 0.23 0.27 0.005 0.25 0.004
Collider | Optimal 0.95 0.75 0.94 0.733 0.96 0.80
AE 0.9+0.002 0.587 o019 | 0.8640007 051340075 | 0.83310011 0477 L0004
VAE | 0.747 10004 02140007 0.543 10006 0.043 10001 | 04540011 0.02100
Modular | 0.93 0002 0.69 10018 09110007  0.69310077 | 0.907£000s  0.697 10075
GNN | 088710001 0.513100 0.827 tooos  0.39+0032 | 0.80710007 0351005

Table 18: Mean reward and Success rate (higher is better) for 1, 5 and 10 step for the vanilla setting of the chemistry environment with 5
objects and 5 colors. This table uses models trained using NLL loss.
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