Table R1: Analyzing the contributions of \hat{z}_c and a_r with and without VAE Features. Stable Diffusion 2-1, using text-only conditions, outperforms random \hat{z}_c . Using both \hat{z}_c and a_r yields the best performance, showing their complementarity.

Method	# Models	PixCorr 1	L SSIM↑.	ow-Level AlexNet(2)	↑ AlexNet(5) ↑	Inception	High- ↑ CLIP ↑ 1	Level EffNet-B	¢ SwAV ↓		
		w/o VAE Feature									
$\hat{z}_c \sim N(0, 1)$	1	.016	.203	58.6%	70.6%	87.0%	90.5%	.839	.455		
$\hat{z}_c = 0$	1	.033	.209	67.5%	83.1%	93.1%	94.7%	.717	.359		
a_r only, SD-2-1	1	.046	.264	72.3%	86.4%	93.8%	96.4%	.693	.414		
w/o VAE feature	1	.093	.263	84.5%	90.6%	93.6%	95.7%	.684	.398		
					w/ VAE Fe	ature					
$\overline{\hat{z}_c \sim N(0,1)}$	1	.203	.324	91.6%	96.3%	95.3%	93.9%	.713	.378		
$\hat{z}_c = 0$	1	.216	.336	91.8%	96.9%	96.1%	95.3%	.694	.339		
a_r only, SD-2-1	1	.257	.358	92.9%	97.3%	96.6%	96.1%	.656	.332		
Our Method	1	.265	.357	93.1%	97.1%	96.8%	97.5%	.633	.321		

Table R2: Performance on the QA task declines without fMRI embeddings, notably in Brain Caption and Detail Description, and to a lesser extent in Complex Reasoning. This highlights the importance of fMRI embeddings despite some contextual information leakage in Complex Reasoning.

Method	BLEU1	BLEU2	BLEU3	BLEU4	METEOR	ROUGE	CIDEr	SPICE	CLIP-S
	Brain Caption								
$\overline{a_r \text{ Only}}$ Original Model	39.06 57.19	21.87 37.17	12.36 23.78	08.01 15.85	11.90 18.60	31.64 36.67	03.32 49.51	03.18 12.39	27.88 65.49
					Detail Desc	ription			
a _r Only Original Model	27.15 38.91	11.57 24.02	4.40 15.24	1.42 12.41	12.21 18.44	21.72 27.83	1.17 42.58	2.56 18.41	25.98 56.16
	Complex Reasoning								
a_r Only Original Model	55.70 65.41	43.52 59.61	32.25 50.68	24.61 36.46	21.32 34.46	38.41 62.60	136.41 217.83	43.21 60.29	63.24 80.96

Table R3: Top: Different cross-subject alignment methods minimally impact stimulus reconstruction, showing our method's robustness. Bottom: Comparison with contemporary work, MindEye2. Our method outperforms MindEye2's cross-subject baseline and is compatible with MindEye2's subject-specific models.

Method									↓ SwAV ↓
		Comparison of different cross-subject alignment methods							
Nearest	1	.259	.354	93.2%	96.7%	96.6%	97.3%	.636	.334
Area	1	.264	.358	92.8%	97.1%	96.4%	97.6%	.634	.318
Nearest-Exact	1	.262	.353	93.1%	96.9%	96.7%	97.3%	.636	.336
Trilinear (Original)	1	.265	.357	93.1%	97.1%	96.8%	97.5%	.633	.321
		Comparison with MindEye2							
MindEye2	4	0.322	0.431	96.1%	98.6%	95.4%	93.0%	0.619	0.344
MindEye2 (unrefined) 1	0.278	0.328	95.2%	99.0%	96.4%	94.5%	0.622	0.343
Our Method	1	0.265	0.357	93.1%	97.1%	96.8%	97.5%	0.633	0.321