Original Prototypes Prototype Translation Apply Hungarian Algorithm Decide Whether Final Prototypes

to Pair Prototypes to Merge
——— S S ———
et ‘\\ Rad ‘\\ ~ ,-f‘\ 7 ~\\
’ ’ VNN /
J] ® \ ! & \ ! “@)g L 2 \ N ! @ ®
. ‘ H ‘ “~/ 1 1 ‘ ‘
I .] 3 \
Domain A | ! YA @ !] kS @ H] !
\\ 7 \\ : 1 1 \\ N 1 \\ E 7
I PV
“ A/ L iy N N4 W A /
AN s N 1 R SOERLS e S ’
Sam” it SSL--” Se—-
1 1
1
o
1.
mTESS 1 ==
,,/ \\ e |= : 1'\\
V4 1 1
f® N S TR
ll \ ll [i \
i . 1 1 1
Domain B] B] ! i @]
A S Y
4 4
\\ ,/ \\ o’

~

/4

Figure 1: The visualization of Cross-Domain Prototype Conversion in the UEM framework, which involves the following steps: 1)
As an example, for prototype conversion of domain A, we first translate all prototypes of domain B along the vector connecting
the centers of the two domains to domain A. 2) Next, all prototypes in domain A use the Hungarian algorithm to find the nearest
translated domain B prototypes. 3) For each prototype pair determined by the Hungarian algorithm, we check if they satisfy the
merging condition (Eq.9 in the paper). If they do, the prototypes are merged by averaging; if not, they remain unchanged. 4)
Finally, the prototype set for domain A is composed of the merged prototypes, the unmerged original domain A prototypes, and
the unmerged translated domain B prototypes.

Som=

e ~

Original Prototypes Prototype Translation 7 Search for the nearest Search for the nearest in- Decide the Prototype \
and Merging in-domain prototype and domain prototype of the Consistency |
| cross-domain instance cross-domain instance |
,,,——-~\\\ ’/’——-~‘\\ : RN - -~‘\\ /’—--~‘s\ :

4 \ 4 \ 4 \ 4 \
;@ ¢ N /e e ;® & /@ @
Domain A ! 1 ! 1 | ! 1 ! [

1 1 1 I 1 A I | 1
‘\ II \\ E II | \ZT A A@ II \\:E A Aﬁ ,[|
N A 7 oA 7 | s A 7 N A; Dy ¢ I
Seaca” Scao-” | Seee- Sede-” I

1
I i :
RN ,II‘—-N\\ : ,4""\\ ,II‘F-N\\ |
N N N N

4 \ 4 \ 4 \ ’ 1 \
,l @ \‘ ll @ @ \‘ : ,l @ @ \‘ ,l @i @ \‘ :

: I I I I 1 1

Domain B H H H \ ! \ B

. S N TN DRV N

/ / / Y /

S ’ A / S Py, NDoAMBPB, s

\\A R \\ R | \\ zl‘L/ ’?\2 mA,/ |
(|
/

\Case 1: an instance and its cross-domain nearest instance belong to consistent prototypes.
R I I —E——————— -~
_____________________________ <
{/ TN P \
\ \

/ \ / \ |
| e e e |
|] 1] 1 |

1 A I 1 A 1
| “LIZ A E II \\LL‘ A A@ ,[|
| . Al s . &rd S
| ~——e? Sedooee |
| | |
| ,’—E-;_~\\ ’,—5-5\\ |

,’ szA \\ / pFB \\ |
| / @ \ / @' I@ \ |
[] \] ! \

| 25, I | o |
x I A]
: \ & / \ ooy & / :
| \\ A S \?z,« ,l
| \\~_—f’ S’ l
\Case 2: an instance and its cross-domain nearest instance belong to inconsistent prototypes. /,

Figure 2: The visualization of Switchable Nearest Neighboring Match in the UEM framework, which involves the following steps:
1) The prototypes of domains A and B are transformed according to the previously described prototype conversion strategy. 2)
For an instance z* in domain A, we first find its nearest domain A prototype pfA based on the product of cosine similarity and
Euclidean distance. We also find z’s nearest domain B instance fo using the same criteria (refer to Eq.15 and Eq.16 in the

paper). 3) For the nearest domain B instance z5,, we then find its nearest domain B prototype pZ%; . 4) If p%; matches pZ,
2A 2A
across domains (i.e., if we translate pfA from domain A to B, the translated pﬁA is the same as pr), we consider x4 and fo as
2A

a positive pair in contrastive learning (Eq.17). Otherwise, we only consider z# and p;“A as a positive pair in contrastive learning.

