
Original Prototypes

Domain B

Prototype Translation Apply Hungarian Algorithm 
to Pair Prototypes

Decide Whether 
to Merge 

Domain A ✓ ✗

✓

Final Prototypes

Figure 1: The visualization of Cross-Domain Prototype Conversion in the UEM framework, which involves the following steps: 1)
As an example, for prototype conversion of domain A, we first translate all prototypes of domain B along the vector connecting
the centers of the two domains to domain A. 2) Next, all prototypes in domain A use the Hungarian algorithm to find the nearest
translated domain B prototypes. 3) For each prototype pair determined by the Hungarian algorithm, we check if they satisfy the
merging condition (Eq.9 in the paper). If they do, the prototypes are merged by averaging; if not, they remain unchanged. 4)
Finally, the prototype set for domain A is composed of the merged prototypes, the unmerged original domain A prototypes, and
the unmerged translated domain B prototypes.

Original Prototypes

Domain B

Domain A

Prototype Translation 
and Merging

Search for the nearest 
in-domain prototype and 
cross-domain instance

Search for the nearest in-
domain prototype of the 
cross-domain instance

Decide the Prototype 
Consistency

Case 1: an instance and its cross-domain nearest instance belong to consistent prototypes. 

Case 2: an instance and its cross-domain nearest instance belong to inconsistent prototypes. 

Figure 2: The visualization of Switchable Nearest Neighboring Match in the UEM framework, which involves the following steps:
1) The prototypes of domains A and B are transformed according to the previously described prototype conversion strategy. 2)
For an instance xA in domain A, we first find its nearest domain A prototype pAxA based on the product of cosine similarity and
Euclidean distance. We also find xA’s nearest domain B instance xB

xA using the same criteria (refer to Eq.15 and Eq.16 in the
paper). 3) For the nearest domain B instance xB

xA , we then find its nearest domain B prototype pB
xB

xA

. 4) If pB
xB

xA

matches pAxA

across domains (i.e., if we translate pAxA from domain A to B, the translated p̃A
xA is the same as pB

xB

xA

), we consider xA and xB
xA as

a positive pair in contrastive learning (Eq.17). Otherwise, we only consider xA and p̃A
xA as a positive pair in contrastive learning.


