
Appendix1

A Architecture2

MπFormer uses PointNet++ [1] to encode the point cloud and a transformer [2] to fuse the point cloud3

features with a representation of the current joint state. The input point cloud has a feature vector of4

length 4 for every point. All obstacles are assigned the same feature, all target points are assigned5

the same feature, and each robot point, which are sampled deterministically from the robot’s mesh, is6

assigned a unique feature to disambiguate points on the arm. Our PointNet++ encoding architecture7

consists of three Set Aggregation (SA) layers. SA layers are a sparse 3D analog to convolutional8

layers. Each layer receives a point cloud where each point has a feature and outputs a smaller point9

cloud by using furthest point sampling to select 1
4 of the points. Then, each sampled point is used as10

the center of a ball query. The ball query samples up to 64 points inside the ball and concatenates the11

ball center’s coordinates to each point’s feature vector. A four-layer MLP is then run on each point12

and MaxPool [3] collects the points inside the ball to produce a single feature per ball. The layers’13

ball queries have radii of 5, 30, and 50 centimeters respectively. Our input point cloud always has14

6,272 points–4,096 obstacle points, 2,048 robot points, 128 target points. The downsampled point15

cloud after the third set aggregation layer has 98 points. Finally, we add 3D positional encoding to16

each of these 98 points, similar to [4].17

The transformer takes a sequence of tokens as input, consisting of the 98 output features of the third18

SA layer, a token for the current joint configuration, and a learned constant token, similar to the19

decoder tokens in [5]. We get the joint angle token by passing the joint angles, which are normalized20

to be between -1 and 1, through a single linear layer. Our transformer has 8 layers with an embedding21

dimension of 512 and a feed-forward dimension of 2,048. To produce the final output ∆q, we take22

the last token of the output sequence and map it through a single linear layer.23

B Data24

Out environments are similar to those demonstrated in MπNets, but they differ in two key ways:25

we augmented the cubby design to encourage reasonable expert behavior by adding a floor beneath26

the robot, and we increased the complexity of the tabletop environment by adding more objects27

and increasing the range of reachable poses. Within these constructed environments, we randomly28

sample end effector poses and their corresponding inverse kinematics (IK) solutions, which we29

compute using IKFast [6]. For the cubby environments, the poses are all grasping positions inside a30

cubby. For the tabletop, the poses are grasps pointing toward the lower hemisphere and placed either31

near the table’s surface or on top of the objects. We also add neutral configurations drawn from32

uniform distribution around the robot’s default pose to the tabletop data. These poses, for both types33

of environments, must be at least 5mm away from obstacles. We then use AIT* [7] with a path-length34

objective combined with a spline-based shortcutting [8] to generate expert demonstrations. In our35

planning pipeline, we impose a 20 second time limit in which we sample uniformly from the robot’s36

configuration space, marking any sample that is either in self-collision or within 5mm of an obstacle37

as invalid. During the smoothing stage, we fit a collision and dynamics-aware spline to the planned38

path while shortcutting. We then sample from the spline at a fixed timestep, leading to paths with39

similar velocities, but varying lengths.40

We chose this sampling-based pipeline because it enables us to produce expert demonstrations that41

lie precariously close to obstacles. Previously, MπNets [9] demonstrated strong performance when42

trained with a so-called Hybrid Expert, which uses a reactive controller [10] to follow a planned43

end effector path. While this expert is effective for learning, it is highly conservative, preferring to44

stay far away from obstacles. In their experiments, the authors demonstrated that the hybrid expert45

demonstrations are insufficient to learn to solve problems that lie very close to obstacles. With our46

sampling expert, we chose a 5mm buffer from obstacles because this is sufficiently close for most47

tasks. As we designed our expert, we observed that increasing the collision margin improves learned48
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collision avoidance, but this limits the expert’s ability (and thus, the policy’s ability) to plan to targets49

near obstacles.50

When generating partially observed point clouds during inference, we captured depth information51

from randomized camera positions placed in the scene. In these scenes, we placed the robot at a fixed52

neutral starting configuration and segmented the robot out of the image. To randomize the camera,53

it was first placed in the scene at a predefined location facing the robot and obstacles, and was then54

rotated randomly by up to 30° about the z-axis (rotating side to side), then again by up to 10° about55

the camera’s local x-axis (tilting up and down). Both of these rotations were applied using a fixed56

pivot point directly in front of the camera. Finally, the camera was translated randomly along the57

global z axis and y axes by up to 25cm.58

To generate our expert dataset, we used a single desktop with a AMD Ryzen Threadripper 3990X59

64-Core Processor. Generating the cubby and tabletop data took four and six days respectively.60

C Loss Functions61

Task Space Loss The aim of this loss is to compare the physical positions of the policy’s predicted62

robot joint space configuration and the expert’s joint space configuration. For both configurations,63

we use forward kinematic functions ϕ{i}(·) to map joint angles of the robot q to 1,024 points x{i}64

on the robot’s surface, represented in 3D coordinates.65

LBC(∆̂q) =

1,024∑
i=0

∥x̂i − xi∥2 + ∥x̂i − xi∥1 (1)

Like MπNets, we sum L1 and L2 distances in the loss because the sum penalizes both large and66

small errors. We use a task space loss following MπNets, which demonstrated it to be more effective67

when reasoning about collision avoidance as small perturbations along the kinematic chain can lead68

to large deviations for the end effector.69

Collision Avoidance Loss The training data was generated in simulation, giving us access to70

privileged information unavailable during inference, including a signed-distance representation of71

the scene. To avoid collisions, we use a hinge-based loss on D(x), the signed distance from a point72

x on the robot to the nearest surface in the scene. Inspired by motion optimization [11, 12, 13], this73

loss effectively pushes the robot out of regions of collision. As in Equation 1, we use 1,024 points74

x{i} on the robot’s surface to measure collision.75

Lcollision =
∑
i

h(x̂i), where

h(x̂i) =

{
−D(x̂i), if D(x̂i) ≤ 0

0, if D(x̂i) > 0

(2)

D ROPE76

Our expert-guided fine tuning algorithm Refining on Optimized Policy Experts (ROPE) refines a77

pretrained model to reduce the collision rate using automated labeling of online data generated by78

the learning agent. This algorithm rolls out short-horizon sequences s′ using the current model,79

and then if these collide, we generate a corrected sequence ŝ′ by optimizing the trajectory out of80

collision. This optimization uses the collision avoidance loss in Equation 2 to push the sequence81

out of collision. We use AdamW to perform this optimization for simplicity, although we expect82

other methods typical to motion optimization such as Gauss-Newton or Levenberg-Marquardt may83

lead to a faster fine-tuning procedure. Once enough corrected data has been collected, the model is84

fine tuned using the task space and collision avoidance losses outlined in Appendix C. Algorithm 185

provides pseudocode. During fine-tuning, we continually use the latest policy to perform rollouts,86

even as it is updated. In our best-performing fine-tuning experiment, we reached peak performance87

after 21 hours of training.88
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Algorithm 1: Refining on Optimized Policy Experts
Result: π

1 π ← πpretrained
2 b← Batch Size
3 r ← Correction Ratio
4 Dexpert ▷ Dataset containing expert demos
5 Bcoll ← {} ▷ Collision correction demos
6 Bfree ← {} ▷ Collision-free expert demos
7 for {state, next_state, tgt, scene} in Dexpert do
8 s← state
9 for j ← 1 to N do

10 s′ ← π(s, tgt)
▷ If s′ collides, correct & add to buffer

11 if collides(s′, scene) then
12 s̄′ ← correct(s′, scene) ▷ Apx Eqn 2
13 add(Bcoll, {s, s̄′, tgt, scene})
14 break
15 end

▷ If rollout finishes without collision, add original example to buffer
16 if reached(s′, tgt) or j = N then
17 add(Bfree, {state, next_state, tgt, scene})
18 break
19 end
20 s← s′

21 end
22 if |Bcoll| > rb and |Bfree| > (1− r)b then

▷ Make batch & clear buffers
23 B ← {pop(Bcoll, rb), pop(Bfree, (1− r)b)} ▷ Compute loss, gradient update
24 π ← update(π,B)
25 end

▷ Reached validation accuracy or timeout
26 if termination_condition(π) then
27 terminate
28 end
29 end

E Training Implementation89

Avoid Everything was trained on an NVIDIA 4090 in batches of 50 using AdamW [14] with a90

learning rate of 5e−5 and a linear warmup of 5000 steps from 1e−5. On the cubby environment,91

the model was trained for 1.2 million steps, which took approximately four days.92

During training, we add small amounts of random noise to the input configurations, which [15]93

showed leads to improved robustness. Like MπNets, the training scenes are constructed from94

primitives, so point clouds can be generated on the fly during training by sampling points from the95

surfaces of these primitives. Robot points are sampled deterministically from the mesh of the robot.96

When Avoid Everything runs on the real robot, we mask out the robot points in the depth cloud and97

re-insert them using the same deterministically sampled points from training.98

F Partial Observability for Analytic Planners99

Figure 1 show examples of the perceptual pipelines we used for both RRTConnect [18] and100

cuRobo [19]. We evaluated RRTConnect with the commonly used motion planning library101

MoveIt! [20] paired with Octomap [16] for perception. We used an Octomap with a resolution102

of 5mm and RRTConnect [18] (with a 5s timeout) as the planner. In the cubby settings, we found103
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Figure 1: A typical failure case for classical planners is that they do not account for collisions in
unobserved regions. In this example, the reconstructions from both Octomap [16] and NvBlox [17]
leave large holes due to occlusion. Avoid Everything is able to leverage learned priors to produce
safe movement without an explicit reconstruction.

that the planner found a solution in 99.52% of the problems and we attribute the remaining to noise104

that could be addressed with a longer timeout. However, of these successful plans, over 67% of them105

had collisions. RRTConnect produced fewer collisions (53%) in the tabletop setting, likely due to106

fewer or smaller holes in the point cloud.107

We ran a similar test using a trajectory optimization method designed to produce smooth trajectories,108

cuRobo [19] and NvBlox [17]. This technique finds a path in 94.74% of of cubby problems, but109

22.88% of these trajectories have collisions. We set the nvBlox resolution to 1cm for this test after110

consulting with the authors of cuRobo [19]. While cuRobo also performed better in the tabletop111

setting, the difference was not as large as RRTConnect (see Table 2). An advantage of these classical112

methods is that they did not require special tuning or training for either environment. Despite Avoid113

Everything having stronger performance in both environments, we do not expect it to generalize to114

wholly new settings as classical methods can.115

G Point Cloud Completion with Classical Pipeline116

When capturing point clouds with a depth camera, obstructions in the scene create holes in the117

point cloud. As discussed in section 5.1.3, classical methods often produce a valid path through118
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Figure 2: Learned Point cloud completion is a common technique to address unobserved regions
of a point cloud. However, when we used the pretrained state-of-the-art point cloud completion
network AdaPoinTr [21], we found that it produced highly inaccurate results for our scenes, likely
due to distribution shift. In the cubby scene (top), the point cloud completion adds volume to the
front of the cubby, making it hard to plan. In the tabletop scene (bottom), the completion misses a
large portion of the scene and fails to capture the geometry of the objects.

the observed point cloud but collide with the scene in the unobserved regions. This problem is119

particularly pronounced in our RRTConnect [18] baseline because the planner searches for any120

valid feasible path by sampling in free space. Since the unobserved regions are registered as free121

space, the planner is just as likely to plan through these regions as any other free space in the122

scene. Instead of using OctoMap to directly represent the points captured from the camera, we could123

instead use a point cloud completion network, such as the state-of-the-art method AdaPoinTr [21],124

to estimate the completed shape of the point cloud before constructing the OctoMap and using it125

for planning. However these techniques are subject to their training distribution and are typically126

trained on specialized datasets such as ShapeNet [22] and do not generalize. We attempted to use127

this strategy as a baseline, but found that when pretrained with the Projected ShapeNet-55 dataset,128

the AdaPoinTr model cannot accurately complete our scenes (see Figure 2), leading to low success129

rates for the planner. This was particularly pronounced in the cubby setting, where the RRTConnect130

planner’s reaching success rate (RSR) was 8.84% and among these solutions, the scene collision131

rate (SCR) was 80.09%. This is a significant degredation from using OctoMap without completion132

where RSR is 99.52% and SCR is 67.16%. The low planning success rate after completion is133

largely due to the fact that the completed point clouds obscured either the starting configuration or134
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Figure 3: Fine-tuning can be run with different proportions r of hard negative examples. As r
increases, the collision rate goes down and target error increases. We attribute this phenomenon to
the model overfitting to the hard negatives and forgetting the original behavior cloning objective.

target pose, making it impossible to find a valid plan. Point cloud completion performed better in135

the tabletop settings, where the RSR is 74.14% and SCR is 41.03%. However, these metrics are136

still significantly lower than OctoMap without completion, where RSR was 99.62% and SCR was137

53.30%. Given the performance demonstrated in the original AdaPoinTr publication [21], we suspect138

that this performance could be significantly improved by retraining the model on a selection of our139

scenes, but due to resource constraints, we leave this investigation to future work.140

H Maintaining Reaching Performance After Fine Tuning141

ROPE We aimed to determine the efficacy of ROPE by varying the ratio of hard negative examples142

in each fine-tuning batch. We set this parameter r as a constant value for the entire fine-tuning143

procedure and studied how different values change the performance (see Figure 3). For these144

experiments, we looked only at the cubby setting and used fully observed point clouds, similar to145

those used during training. We observed a monotonic decrease in collision rate as r increased.146

However, we also observed a monotonic increase in the reaching error, i.e. the minimum distance147

from the target after rolling out for 70 time steps. With no fine-tuning, we measured an average148

reaching error of 0.58cm and a collision rate of 6.43%. At r = 20%, we observe an average149

reaching error of 0.64cm with a collision rate of 2.37%. At r = 50%, collision rate is below 1%,150

but reaching error averages 1.41cm. We chose r = 20% for our other experiments, but the choice of151

this parameter should be determined by the downstream application and the criticality of collision152

avoidance. We did not experiment with varying r during fine-tuning as a function of performance,153

but we hypothesize that setting it as a function of performance would improve results.154

DAgger One of the most common techniques for fine-tuning a learned policy is DAgger[23].155

DAgger aids in accounting for distribution shift by asking the expert to provide demonstrations at156

every state the pretrained policy would visit. Likewise, ROPE can be seen as a way to account for157

distribution shift by correcting the policy when it fails. While DAgger is a generally useful tool158

for imitation learning, it requires making many costly calls to the expert. In our case, each expert159

demonstration requires 20 seconds of computation time, which adds up quickly if a demonstration is160

needed at every state visited by the policy. We implemented two versions of DAgger as comparisons161

and show the performance in Table 3. In the first version, we ran the pretrained Avoid Everything162

through its entire training data, collected the trajectories with collisions, and requested an expert163

demonstration at every step leading up the collision. We found that this technique can improve164
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performance, reducing the pretrained collision rate of 6.43% in cubby setting to 4.08%, but it is165

not better than ROPE, which reduces the collision rate to 2.37%. We attribute this to the fact166

that the DAgger corrections use the same expert, which often veers very close (5mm) to obstacles.167

To verify this, we tested a second version of DAgger that uses a more conservative expert for168

corrections–one with a 2cm collision buffer. We label this more conservative technique Cons.169

DAgger in Table 3. As discussed in Section 4, this expert is more limited in the problems it can170

solve, e.g. not those that either start or end within 2cm of obstacles. However, we found that this171

version of DAgger significantly improves collision avoidance without negatively impacting reaching172

performance, dropping collision rate in the cubby setting to 1.28%. We observe a similar drop in the173

tabletop setting, bringing pretrained collision rate from 11.26% to 2.31%. Running DAgger, however,174

is very computationally intensive—collecting DAgger demonstrations for the policy’s failures on our175

training dataset required nearly five days on a desktop with an NVIDIA 3090 GPU and an AMD176

Ryzen Threadripper 3990X 64-Core Processor.177

When used alone, ROPE outperformed DAgger with the original 5mm expert in both the cubby and178

tabletop settings. Meanwhile, fine-tuning with Cons. Dagger outperforms both. However, we did179

not find ROPE to be to be mutually exclusive of DAgger. With both versions of DAgger, we were able180

to further improve performance by using ROPE as a second fine-tuning step. The best performance181

came from stacking the conservative DAgger technique with ROPE, with success rates of 95.71%182

and 91.97% in the cubby and tabletop settings respectively.183

I Real Robot Experiments184

We used a dual-computer setup running ROS to control our Franka Emika Panda robot. The control185

computer, which runs a real-time linux kernel, has Intel(R) Core(TM) i7-4770 CPU with 16 Gigabytes186

of RAM. The second computer, which runs Avoid Everything, has an Intel(R) Core(TM) i9-9900K187

CPU, 32 Gigabytes of RAM, and an NVIDIA Titan RTX GPU. We use a Kinect V2 for perception,188

which captures point clouds at approximately 10Hz. We use [24] for eye-on-hand calibration and189

[25] to remove the robot from the depth cloud; we then re-insert these robot points into the cloud190

using the deterministic sampling method described in Section E. We are able to run the model at191

approximately 25Hz on our hardware, which allows for reactive motion. We send each predicted192

action directly to a lower level joint controller [26].193

The model is able to react to moving obstacles in the scene, but due to speed of our camera, it can194

take up to 140ms—100ms for the camera update, 40ms for the model update—for the robot to react195

to an obstacle. We expect that this reactivity could be improved with a faster camera, a faster GPU,196

or both. We used our best performing checkpoint, which was first fine-tuned with the conservative197

DAgger pipeline and then fine-tuned with ROPE (see Section 5.1.4).198

One challenge in our setup is that the gripper of the Franka is nearly symmetric about the axis199

that points from the wrist to the midpoint of the fingers. Our training data consisted of randomly200

generated poses, but these poses typically sampled from only half of the rotations about this axis.201

When we provided an out-of-distribution pose where the 180◦ rotation about this axis would be in202

distribution, we observed the robot typically tries to exploit the symmetry of the gripper and reach203

the symmetric in-distribution pose. Depending on the application, these 180◦ rotations may or may204

not be acceptable. We believe this could be fixed by increasing the variation of target poses in the205

training set, adding a unique per-point embedding to the gripper points to distinguish orientations,206

or both.207
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