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This appendix is organized as follows.

• In Section A, we describe the processing of our text augmentation.

• In Section B, we introduce implementation details of the our experiment.

• In Section C, we list the prompt templates used for zero-shot classification experiments.

• In Section D, we provide more experiments to explore components of DS-CLIP.

• In Section E, we offer more visualization results of augmented text for DS-CLIP.

• In Section F, we show the distribution of visual embedding space with CLIP and DS-CLIP
on 10 classification datasets.

A DETAILS OF TEXT AUGMENTATION

Figure 1 shows processing of text augmentation from LLaMA (Touvron et al. (2023)) and LLaVA
(Liu et al. (2023)).

For LLaMA-based Text2Text rewritten, firstly, following LaCLIP (Fan et al. (2023)), we randomly
select some texts from pre-training image-text datasets and then generate modified text through
ChatGPT (Sardana et al.) as follows. A prompt “Rewrite this caption in detail and no more than 77
words.” is defined. The selected texts are then inputted into ChatGPT with the prompt to generate a
refined caption. Secondly, we randomly sampled five origin-rewrite text pairs as instances. Given a
text sample to be processed, the instances, the prompt “Rewrite this caption in details and no more
than 77 words.” and an especial symbol “==>” are together inputted into LLaMA to generate refined
text.

For LLaVA-based Image2Text generating, the processing is shown as follows. Given an image
sample to be generated text, firstly, we design a sentence prompt that informs LLaVA about the
task of generating image descriptions, such as “Tell me in detail what is main object description in
this picture.”. This serves as an initial contextual clue for the LLaVa to understand the objective at
hand. Then, the prompt combined with the corresponding image further enables the LLaVA model
to generate more semantic texts.

B IMPLEMENTATION DETAILS

Model Architecture. The proposed framework is a general dual-encoder architecture, which con-
sists of an image encoder and a text encoder similar to the origin CLIP (Radford et al. (2021)). By
default, the image encoder is a random initialized ViT-B/32 (Dosovitskiy et al. (2020)), which has
12 layers of transformer blocks. Each transformer block has 12 attention heads and the hidden size
is set to 768. The text encoder is BERT-base (Devlin et al. (2019)), which shares a similar scale
with the image encoder, e.g. 12 layers of transformer blocks, 12 attention heads in each transformer
block, and 768 hidden sizes. The output of the text encoder and image encoder is projected to 384-
dim by linear projection. We adopt the unsupervised model DINO-S/8 (Caron et al. (2021)) as the
image encoder to pre-compute image features for clustering. We truncate the input text tokens so
that they have a maximum length of 77. The input image is resized to 224×224, and results in 7×7
image patches when the patch size is 32× 32 for ViT-B/32.
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LLaVA 
Tell me in details what is main 
object description in this 
picture.

Humana Bike for Health NYC

(a) Language Rewriting from Text 

(b) Language Augmenting from Image 

Caption GeneratingSource Image-Text pair

Source Captions

1. a player with the american flag draped over 
his shoulder is looking down field during a 
game
2. A man stands up from a bench at an 
airport
                                    …
N. Humana Bike for Health NYC

Caption Rewriting

1. A quarterback in football uniform looks 
toward the end zone from the middle of the 
field.
2. A man stood up on a bench at the airport
                                       …
N. Bike is for Health, a program that 
encourages New Yorkers to bike to work.

LLaMA
Rewrite this caption in 
details and no more than 
77 words.

Image:

Text:

The main object description in this picture is 
that it features a man wearing a helmet, 
riding a bike.

Figure 1: Text Augmentation through LLM and VLLM.

Dataset and Downstream Tasks. We have 13 widely used downstream datasets: ImageNet (Deng
et al. (2009)), ImageNetV2 (Recht et al. (2019)), CIFAR10 (Krizhevsky et al. (2009)), CIFAR100
(Krizhevsky (2009)), Caltech101 (Fei-Fei et al. (2005)), Oxford Pets (Parkhi et al.), SUN397 (Xiao
et al. (2014)), Food101 (Bossard et al. (2014)), DTD (Cimpoi et al. (2013)), Stanford Dogs (Khosla
et al. (2011)), COCO (Chen et al. (2015)), ADE20K (Zhou et al. (2019)), Flickr30K (Young et al.
(2014)) and MSRVTT (Xu et al. (2016)). Table 1 summarizes the details of these datasets. For Ima-
geNetV2, we use the same training data of ImageNet for the linear probe classification experiments.
For COCO, Flicker30K, and MSRVTT for the image-text and video-text retrieval task, we only eval-
uate the zero-shot top-K retrieval items, thus we don’t need training data. The pre-trained model is
used to extract embeddings from images, videos, and texts separately. Similarity scores between
image/video embeddings and text embeddings are used for ranking. We use the R@K to report
the recall of top-K retrieval items. There are 30,000 images and each image has corresponding five
text on Flickr30K. COCO and ADE20K are used for detection and segmentation evaluation. The
classification datasets use classification accuracy as an evaluation metric, except for Caltech101 and
Oxford Pets, which use averaged per-class accuracy. The detection datasets use mean average pre-
cision as the evaluation metric. The segmentation datasets use mean Intersection over Union(mIoU)
as an evaluation metric.

Table 1: Details of downstream datasets.

Dataset #Classes #Train #Test Metric

ImageNet 1,000 1,281,167 50,000 accuracy
ImageNetV2 1,000 – 50,000 accuracy
CIFAR10 10 50,000 10,000 accuracy
CIFAR100 100 50,000 10,000 accuracy
Caltech101 102 3,060 6,085 mean-per-class
Oxford Pets 37 3,680 3,669 mean-per-class
SUN397 397 19,850 19,850 accuracy
Food 101 102 75,750 25,250 accuracy
DTD 47 3,760 1,880 accuracy
Stanford Dogs 120 12,000 8,580 accuracy
COCO 81 118287 5,000 mean average precision
ADE20K 150 25574 2000 mean Intersection over Union
Filcker30K – – 30000 recall of top-K retrieval item
MSRVTT – – 1000 recall of top-K retrieval item
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Training Settings. We implement our framework with Pytorch (Paszke et al. (2019)). All pre-
training experiments with ViT-B are conducted on 8 NVIDIA Tesla A100 GPUs, and experiments
with ViT-L are conducted on 96 NVIDIA Tesla A100 GPUs. The batch size is set to 4096. The
framework is trained for 32 epochs with LAMB optimizer (You et al. (2020)) and an initial learning
rate of 2.5e-3. The learning rate follows a cosine decay schedule with 5 epochs of linear warm-up.
Weight decay is set to 0.2. For data augmentation, we random crop a 224×224 patch from the input
image, then conduct random horizontal flip, random color distortions, random Gaussian blur, and
RandAugment (Cubuk et al. (2020)), following previous works (Mu et al. (2022); You et al. (2022);
Radford et al. (2021)). α and β are equal to 1 in training loss.

Training Details of Linear Probe. We freeze the pre-trained image encoder and append a linear
classifier after it for linear probe classification. During training, we apply data augmentation to the
input image. Concretely, we randomly crop a 224×224 patch from the input image, then conduct a
random horizontal flip. During testing, we resize the shorter size to 224 then center crop a 224×224
patch as input image. We train the classifier for 90 epochs except for the ImageNet dataset, for which
we train 10 epochs in total due to the large data volume. The learning rate follows a cosine decay
schedule with an initial learning rate equal to 0.1. We use SGD with momentum for optimization.
Weight decay is not used in our experiments. The batch size is set to 128.

C PROMPT ENGINEERING

Following previous works (Radford et al. (2021); Mu et al. (2022)), we extend the category names
into sentences with prompts such as “a photo of {label}.” before feeding them into the text encoders.
For a fair comparison, we adopt the same prompts used in CLIP (Radford et al. (2021)). Specifically,
for Oxford Pets, we use “a photo of a {label}, a type of pet.”, while for the Food101 dataset, we use
“a photo of a {label}, a type of food.”. For the other datasets, we use 80 prompt templates as shown
in Figure 2. For a given category name, we average the embeddings of different prompted sentences
and conduct L2 normalization to obtain the final category embedding.

a bad photo of a {label}.

a photo of many {label}.

a sculpture of a {label}.

a photo of the hard to see {label}.

a low resolu7on photo of the {label}.

a rendering of a {label}.

graffi7 of a {label}.

a bad photo of the {label}.

a cropped photo of the {label}.

a tattoo of a {label}.

the embroidered {label}.

a photo of a hard to see {label}.

a bright photo of a {label}.

a photo of a clean {label}.

a photo of a dirty {label}.

a dark photo of the {label}.

a drawing of a {label}.

a photo of my {label}.

the plastic {label}.

a photo of the cool {label}.

a close-up photo of a {label}.

a black and white photo of the {label}.

a painting of the {label}.

a painting of a {label}.

a pixelated photo of the {label}.

a sculpture of the {label}.

a bright photo of the {label}.

a cropped photo of a {label}.

a plastic {label}.

a photo of the dirty {label}.

a jpeg corrupted photo of a {label}.

a blurry photo of the {label}.

a photo of the {label}.

a good photo of the {label}.

a rendering of the {label}.

a {label} in a video game.

a photo of one {label}.

a doodle of a {label}.

a close-up photo of the {label}.

a photo of a {label}.

the origami {label}.

the {label} in a video game.

a sketch of a {label}.

a doodle of the {label}.

a origami {label}.

a low resolution photo of a {label}.

the toy {label}.

a rendition of the {label}.

a photo of the clean {label}.

a photo of a large {label}.

a rendition of a {label}.

a photo of a nice {label}.

a photo of a weird {label}.

a blurry photo of a {label}.

a cartoon {label}.

art of a {label}.

a sketch of the {label}.

a embroidered {label}.

a pixelated photo of a {label}.

itap of the {label}.

a jpeg corrupted photo of the {label}.

a good photo of a {label}.

a plushie {label}.

a photo of the nice {label}.

a photo of the small {label}.

a photo of the weird {label}.

the cartoon {label}.

art of the {label}.

a drawing of the {label}.

a photo of the large {label}.

a black and white photo of a {label}.

the plushie {label}.

a dark photo of a {label}.

itap of a {label}.

graffiti of the {label}.

a toy {label}.

itap of my {label}.

a photo of a cool {label}.

a photo of a small {label}.

a tattoo of the {label}.

Figure 2: The prompt templates used for zero-shot classification.

D MORE EXPERIMENTS

In this section, we further explore the impact of different hyper-parameters and design choices of
DS-CLIP with more experiments.
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Table 2: Different design choices of D3 and SE. All models are trained on YFCC15M and evaluated
on zero-shot ImageNet classification.

(a) Clustered features.

Clustered Top-1Feature Type

IMAGE 34.6
TEXT 32.8

(b) Ablating sample type.

Sample Type Top-1

WEIGHTED 34.3
SORTED 31.6

UNIFORM 34.6

(c) Ablating SE on multi-scale sample data.

Number SE Top-1

10% ✗ 18.3
✓ 22.5

30% ✗ 28.6
✓ 30.4

Number SE Top-1

50% ✗ 34.6
✓ 37.9

70% ✗ 37.6
✓ 40.2

(d) Ablating sample number.

Sample Number Top-1

10% 18.3
30% 28.6
50% 34.6
70% 37.6

(e) Ablating clustered number.

Clustered Top-1Prototypes Number

1000 34.2
10000 34.6

100000 34.7

(f) Ablating text augmentation.

LLaVA LLaMA Top-1

✗ ✗ 34.6
✗ ✓ 36.5
✓ ✗ 37.6
✓ ✓ 37.9
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Figure 3: Zero-shot classification performance on ImageNet with different sampling strategies.

Different clustered features and numbers in pre-training. We cluster image-text pairs by dif-
ferent features (image feature and text feature) as references. Specifically, we utilize unsupervised
model DINO-S/8 (Caron et al. (2021)) to extract image features for clustering, and adopt sentence
transformer (Reimers & Gurevych (2019)) as the text encoder to encode text respectively. Experi-
mental results are shown in Table 2a, CAM provides stable performance with different features for
clustering, but the model with the clustering feature of the image performs better than the other.

Clustering number is another important factor, we explore three experiments of different clustering
numbers. We observe a small improvement in classification accuracy as the number of clusters
increased(34.2%, 34.6%, 34.7%), which had little impact as in Table 2e. We choose the number of
clustering (10000) as default.

Different sampling type and number in pre-training. We further test different designs of sam-
pling strategy as shown in Table 2b and 2d. For WEIGHTED, we first calculate the number of samples
for each clustered category, then weighted sampling regulation by the open square proportion of the
number of samples is executed (Have (2003)). For SORTED, a perspective is that image-text pairs
with higher similar scores are more robust than those with lower similar scores. So we first compute
the similar score of each image-text pair by extracting features from the CLIP and then choose the
sample that has higher scores from the center of each cluster with corresponding proportion. We also
report our default setting UNIFORM, we uniformly select the corresponding proportion of samples
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Origin Text: website enveloped in a blue ribbon and bow on a white background

Origin Text: Second class

Refined Text: Second class.
Generated Text : There is a close-up of a car's grille, which has the word 
"Second Class" displayed on it. The image also features a few other cars.

Origin Text: 15 seconds

Refined Text: 15 seconds
Generated Text : The image is a picture of a cityscape at night, there is a 
brilliant scene of fireworks.

Generated Text : The image features a picture of a pair of tires sitting next to 
each other, with one of the tires wrapped in a blue ribbon. 

Refined Text:  Website category is wrapped in a blue ribbon and bow with a 
white background.

Origin Text: A third eye 

Generated Text : The main object description in the picture is a large, old 
statue of Buddha, which is displayed in a dark room.

Refined Text:  A third eye in buddha is a symbol of wisdom and spirituality.

(1)

(2)

(3)

(4)

Figure 4: Samples of image-text pair with misalignment problem and generated texts from LLaMA
and LLaVA.

for one epoch, and then for the next epoch, the corresponding proportion of samples are sampled
from the rest in turn. We observe that all these variants produce similar results except SORTED as
in Table 2b. The SORTED method selects the same samples with higher scores at each epoch, but
samples of other methods are different at each epoch. Diversity of data is fully guaranteed except
SORTED method.

We also test different sampling numbers during pre-training. As the number of samples increases,
the performance of the model increases as in Table 2d.

Clustering with different sample ratios. Moreover, by utilizing different sampling ratios, the
model trained according to the clustered sampling strategy outperforms the model of random sam-
pling as shown in Figure 3. We can attribute this better performance to the diversity of samples
maintained in the training epoch with the clustered dataset.

E MORE VISUALIZATION

In this section, we provide more visualization results of augmented texts. As shown in Figure 4,
most of the origin samples are inconsistent between image and text. The origin text of sample (1)
is the “word” on the image, the origin texts of sample (2) and sample (3) do not describe the main
content of the image. The origin text of sample (4) describes the image as incomplete. The refined
text based on LLaMA from samples (1) to (3) is inaccurate but the refined text in the sample (4) is a
complete supplement. However, all generated texts from LLaVA can accurately describe the content
of the image.

Although the augmented text from Text2Text rewriter sometimes may not return texts that provide
descriptions about the related-image contents, the proposed DS-CLIP is also robust to feature repre-
sentation learning. Since the proposed DS-CLIP not only depends on the origin text and augmented
texts from LLaMA but also takes generated texts from LLaVA into consideration, it is more robust
than origin CLIP (Radford et al. (2021)) trained with only one image-text pair.

F DISTRIBUTOIN OF VISUAL EMBEDDING SPACE BY T-SNE

To gain a deeper understanding of the distinctions between the features learned from DS-CLIP
and vanilla CLIP, we provide distribution of visual embedding space with CLIP and DS-CLIP on
10 classification datasets using t-SNE (Maaten & Hinton (2008)) in Figure 5. We visualize the
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SUN397

CLIP DS-CLIP

Pets

ImageNetv2

ImageNet

Food101

DTD

CIFAR100

CIFAR10

Caltech101

Dogs

CLIP DS-CLIP

Figure 5: Distribution of visual embedding space with CLIP and DS-CLIP on 10 classification
datasets using t-SNE.

features from the first 10 classes for each dataset. From Figure 5, we observe that DS-CLIP trained
with augmented texts has more distinguished boundaries and is more compact for each class. This
observation suggests that augmented text helps learning an effective image embedding space which
is also well-suited for downstream tasks.
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