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1. Overview001

The supplementary material is organized as follows: First,002
we provide an extended discussion on the limitations of the003
CLIP score evaluation protocol for 3D scene generation.004
We explicitly show that it is insensitive to geometric incon-005
sistencies, motivating the need for our SSG-3D benchmark006
(Sec. 2). Second, we provide further details for our SSG-007
3D benchmark and specific choices of hyperparameters for008
the fine-tuning process of DINe. We also detail how we009
replaced the depth prediction and fusion components of ex-010
isting methods (for the experiments in Section 5.3.1), the011
specifics of our minimal pipeline, and an exhaustive abla-012
tion study of DINe (Sec. 3). Third, we provide further qual-013
itative results produced by our scene generation pipeline,014
including a new set of scenes for different real-world im-015
ages (Sec. 4). Finally, we briefly discuss the limitations of016
DINe that will hopefully inspire future research to further017
this field (Sec. 5).018

We invite the reader to consider the accompanying019
scenes and videos that are part of the supplementary ma-020
terials. The scenes1 were created with our minimal pipeline021
(see Section 5.3.2), dog-DINe.ply using DINe and022
dog-zoedepth-aligned.ply with ZoeDepth, where023
the predicted depth is aligned with the existing scene with024
a global scale-and-shift optimization (similar to existing025
methods). Please be aware that we reduced the output res-026
olution of the generated scenes due to file size constraints.027
The videos show renderings of further 3D scenes generated028
with DINe.029

We publish the code to train our depth completion model,030
the trained checkpoint, as well as our minimal pipeline to031
generate 3D scenes.032

1The PLY files may be opened with any viewer that supports Gaus-
sian splat scenes. Please note that we directly export the point cloud and
only use this file format for convenience. No Gaussian splat optimiza-
tion is performed. We suggest using the SuperSplat viewer: https:
//playcanvas.com/supersplat/editor/.

2. CLIP Score & Geometric Inconsistencies 033

In Section 5.3, we demonstrate that DINe can extend scenes 034
more faithfully than existing depth prediction-and-fusion 035
components. However, as discussed in Section 5.3.1, the 036
CLIP score does not reflect these improvements. This 037
aligns with our observation in Figure 3, where replacing the 038
depth prediction-and-fusion component in LucidDreamer 039
improves geometry but not the CLIP score. 040

In Table S1, we further demonstrate the inability of the 041
CLIP score to evaluate the structural quality of a generated 042
3D scene through a controlled experiment. Specifically, we 043
show that geometric inconsistencies in a 3D scene cannot 044
be captured by the CLIP score. 045

To this end, we utilize an intentionally misaligned scene. 046
If the CLIP score is sensitive to the geometric qualities of 047
a scene, we expect it to decrease with increasing misalign- 048
ment. 049

For this experiment, we build a scene by starting from 050
the kyoto input image seen in Figure 5 and project it with a 051
depth prediction from DINe. Then, we render a novel view 052
point Vi, extend the scene with Stable Diffusion, and use 053
DINe again, conditioned on the existing depth, to obtain a 054
depth map D ∈ RH×W . Here, we introduce our interven- 055
tion, offsetting D with increasingly larger values to create 056
a misalignment between the starting image and the newly 057
generated frame. Now, from a different novel view point 058
Vj , we obtain a rendering of the scene where the misalign- 059
ment is clearly visible and query Stable Diffusion to out- 060
paint the scene. This image is then evaluated with the CLIP 061
score, mirroring the evaluation protocol for scene genera- 062
tion methods. 063

The results of this experiment are shown in Table S1. 064
First, we render the view Vj , clearly showing this pur- 065
posefully introduced geometric inconsistency. Second, we 066
present the outpainting result of Stable Diffusion, and eval- 067
uate it with the CLIP score. Third, we show the point cloud 068
of the generated scene. 069

We find that the CLIP score remains quite stable despite 070
the presence of major misalignment. While both the 3D 071
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scene and the rendered views show visible breaks, the views072
inpainted by Stable Diffusion appear to sufficiently counter-073
act these breaks, thus the CLIP score remains unaffected.074
However, we note that inpainting only improves the 2D vi-075
sual quality while concealing — not fixing — any flaws in076
the 3D scene. Consequently, we deduce that this protocol is077
not suitable to assess the geometric qualities of scene gen-078
eration methods.079

Our proposed SSG-3D benchmark fills this void, provid-080
ing a rigorous tool to assess the geometric qualities of the081
depth prediction and fusion components in scene generation082
methods.083

3. Further Implementation Details084

In the following, we provide a more extensive of descrip-085
tion of the implementation details for our proposed SSG-3D086
benchmark (Section 3.1), the procedure to fine-tune DINe087
from ZoeDepth [3] (Section 3.2), and how we replaced the088
depth prediction and fusion components of existing meth-089
ods (Section 3.3). We also provide an exhaustive ablation090
of our training procedure for DINe (Section 3.4).091

3.1. SSG-3D092

Scenes in ScanNet are described by highly-overlapping se-093
quential frames. Thus, we chunk them into blocks of 50094
frames and consider the first and tenth frames in each block095
for our evaluation. This allows us to yield ample views from096
each scene and maintains diversity while limiting the num-097
ber of evaluations to run. As the sequential frames are nat-098
urally highly overlapping, we refrain from setting a specific099
threshold τ . To maintain reasonable evaluation times, we100
only consider the first 50 scenes, which yields a total of101
7,832 view pairs.102

With Hypersim, we compute ϕ across all views of a sin-103
gle camera trajectory within each scene and set τ := 0.8.104
We exclude scenes rendered with non-standard projection105
matrices2. The resulting number of view pairs that we eval-106
uate on is 19,243.107

3.2. DINe Fine-Tuning108

We base our model on ZoeDepth, which uses a dense pre-109
diction transformer (DPT) [10] with a BeiT (Bidirectional110
Encoder representation from Image Transformers) [2] back-111
bone at a resolution of 512 × 384. We fine-tune the model112
for 5 epochs with batch size 8, using a low learning rate113
of 0.00025 with a weight decay of 0.01. We train on four114
NVIDIA Tesla P40 GPUs.115

3.3. Drop-In Replacements116

In the following, we briefly describe how we replaced the117
depth prediction and fusion components of existing meth-118

2See https : / / github . com / apple / ml - hypersim /
issues/24

ods with DINe, as presented in Section 5.3.1. 119

WonderJourney. This method uses the depth estimation 120
model MiDaS v3.1 [11], using a global scale-and-shift op- 121
eration to align the depth, and fine-tuning the model to fur- 122
ther improve the alignment. Further, segments discovered 123
by Segment Anything [8] are grouped if they have similar 124
disparity. Further, the sky is separated. 125

We replaced all of these individual steps with a single 126
prediction of DINe, directly attaching the predicted frame 127
to the existing scene. 128

LucidDreamer. Here, ZoeDepth [3] is utilized to predict 129
depth for newly generated frames. A global-scale-and shift 130
operation is run for coarse alignment. Then, to eliminate 131
seams, the connecting edges of a new frame receive depth 132
values of the existing scene, which are then extrapolated to 133
eventually match the predicted depth (post-alignment). 134

This entire procedure is dropped in favor of a single pre- 135
diction by DINe to immediately attach a frame to the scene. 136

Text2Room. To attach newly generated frames to the ex- 137
isting mesh, IronDepth [1], which is a depth inpainting 138
model, is utilized, prior to a mesh fusion process, which en- 139
sures holes are eliminated by connecting existing vertices. 140
We replace IronDepth with DINe, keeping the mesh fusion 141
intact, which cannot be replicated by our model. 142

3.4. Ablations 143

To validate the effectiveness of the design choices in our 144
training pipeline, we ablate them and provide their results 145
on our scene geometry evaluation benchmark SSG-3D in 146
Table S3. 147

3.4.1 Distillation of High-Resolution Models 148

In our training procedure, we utilize a teacher model to ob- 149
tain dense pseudo-ground truth depth maps. Marigold [7] 150
is our model of choice, which was (also) trained on the Hy- 151
persim dataset. Due to the simulated nature of this dataset, 152
Hypersim has ground-truth depth maps with notably finer 153
structures than ScanNet, which was captured with less pre- 154
cise real-world tools, that are reproduced by Marigold. As 155
we observe improved performance for this dataset once 156
we use Marigold predictions as ground-truth, we deem our 157
knowledge distillation setup to be effective. 158

3.4.2 Inpainting Task Probability 159

We observe that there is merit to not allocating barely any 160
or most training steps to learning the inpainting task (see 161
Section 3.2 for the specifics of our training procedure). Not 162
dedicating any steps to the original depth estimation task 163
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Rendered View

Outpainted View

Point Cloud

CLIP Score

27.97± 0.55 27.87± 0.56 27.78± 0.74 27.91± 0.73 28.11± 0.75

Table S1. CLIP score for increasingly misaligned 3D scenes. We show a scene that has been extended with a newly generated frame
from Stable Diffusion, aligning it with DINe. The predicted depth is perturbed, creating a misalignment between both frames. For the
CLIP score, we report the mean and standard deviation across ten samples with different seeds. Despite the presence of these geometric
inconsistencies in the three-dimensional scene, the reported CLIP score remains essentially unchanged.

without any sparse input appears to negatively impact the164
performance. We find that spending between 50-75% (i.e.,165
p ∈ [0.25, 0.5]) of the time in the fine-tuning process train-166
ing the inpainting task yields performant models.167

3.4.3 Masking Strategy168

We observe that using warped masks that mimic the charac-169
teristic inpainting patterns that occur when changing view-170
points is critical to yield a high-performing depth inpainting171
model for depth inpainting in a scene generation setting. A172
naive patch-based masking approach produces inferior re-173
sults, where regions of varying size are randomly masked.174
Masking patterns generated with much smaller viewpoint175
changes than encountered during scene generation (≤ 5◦,176
indicated by ◦ in Table S3) also lead to inferior perfor-177
mance. We show that our design yields a method that gen-178
eralizes to viewpoint changes not encountered during train-179
ing by presenting qualitative results for SceneScape [5]-like180
camera trajectories.181

3.4.4 Original Task Preservation 182

In our fine-tuning setup, we can set a probability p to zero 183
out the sparse depth input to the model, effectively revert- 184
ing to the monocular depth estimation task. In this setting, 185
our model is highly competitive with the original ZoeDepth 186
model (see Table 1), suggesting the inpainting ability has 187
been bolted onto the network in our fine-tuning setup with 188
only minor degradation of the original task. However, this 189
setting cannot reach the performance of a network that is 190
given sparse depth input. This supports our hypothesis that 191
adding sparse depth information of the existing scene leads 192
to geometrically more coherent predictions and more faith- 193
ful to observed depth. 194

4. Additional Qualitative Results 195

We present an additional set of generated scenes from real- 196
world images in Figure S2. As in Figure 4, we provide in- 197
dividual images of the hallucinated views, a rendering of 198
the entire generated 3D scene, as well as a cut-away that 199
provides more detail. 200

To show that our method generalizes to other camera tra- 201
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kyoto nc prague indoor0
,,a street with traditional
buildings in Kyoto,
Japan”

,,A suburban street in
North Carolina on a
bright, sunny day”

,,Prague during the
golden hour”

,,a living room filled with
furniture and a large
window”

indoor1 indoor2 indoor3
,,a living room with
couches and a coffee
table”

,,a living room filled
with furniture and a fire
place”

,,a living room filled
with furniture and a fire
place”

Table S2. Input images and prompts used in Table 2. The names are solely used to identify these image in the original table. All images
have the dimensions 512x512. indoor0-3 are taken from the GitHub repository associated with Text2Room [6].

Input Depth Annot. p Warped Masks Align. ScanNet [4] Hypersim [12]

RGB+sd Original 0.5 - - 0.7734 2.2913

RGB+sd Original 0.5 ✓ - 0.1015 0.7615
RGB+sd ZoeDepth 0.5 ✓ - 0.0793 0.7555

RGB+sd Marigold 0.0 ✓ - 0.0864 0.7547
RGB+sd Marigold 0.25 ✓ - 0.0791 0.7301
RGB+sd Marigold 0.75 ✓ - 0.0869 0.7578

RGB+sd Marigold 0.5 ◦ - 0.1373 0.8732

RGB Marigold 0.5 ✓ - 0.2553 1.1536
RGB Marigold 0.5 ✓ ✓ 0.1335 0.8152

RGB+sd Marigold 0.5 ✓ - 0.0816 0.7295

Table S3. Scene geometry evaluation results for ablations of our method. We consider the input for our model (image-only or supple-
mented with sparse depth), the source of depth annotations in our fine-tuning process to learn the inpainting task, the probability p that we
mask out the sparse depth input, whether we use warped masks during the fine-tuning process that mimic characteristic inpainting patterns
in scene generation, and if the final depth prediction is aligned with the existing point cloud through a global scale-and-shift operation.

jectories, we adopt those used in SceneScape [5], which202
generate tunnel-like scenes. Starting from a single image,203
we translate and rotate the camera with each step, simu-204

lating the camera focused on the scene center while being 205
pulled back, thus leading to different inpainting patterns 206
than encountered in training. In Figure S1, we show that 207
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our method creates believable 3D scenes despite not being208
trained for these particular trajectories. For this task, we use209
a visual question answering model [9] to reject poor image210
inpainting results (e.g., the image is framed or borders ap-211
pear), following previous works [13]. We utilize the query212
“does the image have a frame?”, which yields “yes” or “no”213
responses.214

5. Discussion & Limitations215

The performance of our depth inpainting model may be lim-216
ited by a shift in the data distribution between training and217
inference. The data the model is trained on (such indoor218
scenes from NYU Depth or the datasets used to pre-train219
DPT [10], which forms the core of ZoeDepth [3]), differ220
from the data it is typically applied to during 3D scene gen-221
eration (i.e., synthetic images generated by Stable Diffu-222
sion). The differences may be due to the type of imagery223
(e.g., landscapes such as the Mountains in Peru in Fig-224
ure S2), but also due to imperfections or artifacts caused225
by image generators that the depth network has never en-226
countered during training.227

Another challenge lies in the inherently limited resolu-228
tion of all depth estimation networks, which constrains the229
model’s ability to accurately predict the depth of fine struc-230
tures, especially around object boundaries. Consequently,231
these fine details might become detached from their cor-232
responding objects during projection, affecting the image233
inpainting step. An example is shown in Figure S3.234
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“an alley in rural Spain on a bright, sunny day”

“a foggy morning in Tuscany”

“a long, narrow street fully engulfed in shadows in Valencia, Spain”

Figure S1. Qualitative results of our method on SceneScape [5]-like trajectories. Despite not being trained with the distortion patterns
resulting from these trajectories, our method is able to generate convincing scenes.

7



3DV
#387

3DV
#387

3DV 2025 Submission #387. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Prompt
Beautiful buildings in
a quaint UK village View over Cairo, Egypt Mountains in Peru

on an overcast day

Input

25◦

50◦

75◦

100◦

125◦

175◦

225◦

272.5◦

316.25◦

Cut-Away

Figure S2. Qualitative results of our method on additional real-world images. It is able to generate convincing, immersive scenes for a
wide range of input images and associated prompts.
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Input image
Projection based on depth prediction,

after depth snapping

Figure S3. Loss of fine object details after projection. Due to the limited resolution of depth predictions, fine details might be detached
from their corresponding objects and become part of the background. We present an example of this for the given image, showing the
resulting projection after applying our depth snapping to remove floating points (as outlined in Section 5.3.2). The fine hairs of the dog at
its boundary have become part of the background.
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