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1. Overview

The supplementary material is organized as follows: First,
we provide an extended discussion on the limitations of the
CLIP score evaluation protocol for 3D scene generation.
We explicitly show that it is insensitive to geometric incon-
sistencies, motivating the need for our SSG-3D benchmark
(Sec. 2). Second, we provide further details for our SSG-
3D benchmark and specific choices of hyperparameters for
the fine-tuning process of DINe. We also detail how we
replaced the depth prediction and fusion components of ex-
isting methods (for the experiments in Section 5.3.1), the
specifics of our minimal pipeline, and an exhaustive abla-
tion study of DINe (Sec. 3). Third, we provide further qual-
itative results produced by our scene generation pipeline,
including a new set of scenes for different real-world im-
ages (Sec. 4). Finally, we briefly discuss the limitations of
DINe that will hopefully inspire future research to further
this field (Sec. 5).

We invite the reader to consider the accompanying
scenes and videos that are part of the supplementary ma-
terials. The scenes' were created with our minimal pipeline
(see Section 5.3.2), dog-DINe.ply using DINe and
dog-zoedepth-aligned.ply with ZoeDepth, where
the predicted depth is aligned with the existing scene with
a global scale-and-shift optimization (similar to existing
methods). Please be aware that we reduced the output res-
olution of the generated scenes due to file size constraints.
The videos show renderings of further 3D scenes generated
with DINe.

We publish the code to train our depth completion model,
the trained checkpoint, as well as our minimal pipeline to
generate 3D scenes.

IThe PLY files may be opened with any viewer that supports Gaus-
sian splat scenes. Please note that we directly export the point cloud and
only use this file format for convenience. No Gaussian splat optimiza-
tion is performed. We suggest using the SuperSplat viewer: https:
//playcanvas.com/supersplat/editor/.

2. CLIP Score & Geometric Inconsistencies

In Section 5.3, we demonstrate that DINe can extend scenes
more faithfully than existing depth prediction-and-fusion
components. However, as discussed in Section 5.3.1, the
CLIP score does not reflect these improvements. This
aligns with our observation in Figure 3, where replacing the
depth prediction-and-fusion component in LucidDreamer
improves geometry but not the CLIP score.

In Table S1, we further demonstrate the inability of the
CLIP score to evaluate the structural quality of a generated
3D scene through a controlled experiment. Specifically, we
show that geometric inconsistencies in a 3D scene cannot
be captured by the CLIP score.

To this end, we utilize an intentionally misaligned scene.
If the CLIP score is sensitive to the geometric qualities of
a scene, we expect it to decrease with increasing misalign-
ment.

For this experiment, we build a scene by starting from
the kyoto input image seen in Figure 5 and project it with a
depth prediction from DINe. Then, we render a novel view
point V;, extend the scene with Stable Diffusion, and use
DINe again, conditioned on the existing depth, to obtain a
depth map D € R¥>*W_ Here, we introduce our interven-
tion, offsetting D with increasingly larger values to create
a misalignment between the starting image and the newly
generated frame. Now, from a different novel view point
V;, we obtain a rendering of the scene where the misalign-
ment is clearly visible and query Stable Diffusion to out-
paint the scene. This image is then evaluated with the CLIP
score, mirroring the evaluation protocol for scene genera-
tion methods.

The results of this experiment are shown in Table S1.
First, we render the view Vj, clearly showing this pur-
posefully introduced geometric inconsistency. Second, we
present the outpainting result of Stable Diffusion, and eval-
uate it with the CLIP score. Third, we show the point cloud
of the generated scene.

We find that the CLIP score remains quite stable despite
the presence of major misalignment. While both the 3D
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scene and the rendered views show visible breaks, the views
inpainted by Stable Diffusion appear to sufficiently counter-
act these breaks, thus the CLIP score remains unaffected.
However, we note that inpainting only improves the 2D vi-
sual quality while concealing— not fixing— any flaws in
the 3D scene. Consequently, we deduce that this protocol is
not suitable to assess the geometric qualities of scene gen-
eration methods.

Our proposed SSG-3D benchmark fills this void, provid-
ing a rigorous tool to assess the geometric qualities of the
depth prediction and fusion components in scene generation
methods.

3. Further Implementation Details

In the following, we provide a more extensive of descrip-
tion of the implementation details for our proposed SSG-3D
benchmark (Section 3.1), the procedure to fine-tune DINe
from ZoeDepth [3] (Section 3.2), and how we replaced the
depth prediction and fusion components of existing meth-
ods (Section 3.3). We also provide an exhaustive ablation
of our training procedure for DINe (Section 3.4).

3.1. SSG-3D

Scenes in ScanNet are described by highly-overlapping se-
quential frames. Thus, we chunk them into blocks of 50
frames and consider the first and tenth frames in each block
for our evaluation. This allows us to yield ample views from
each scene and maintains diversity while limiting the num-
ber of evaluations to run. As the sequential frames are nat-
urally highly overlapping, we refrain from setting a specific
threshold 7. To maintain reasonable evaluation times, we
only consider the first 50 scenes, which yields a total of
7,832 view pairs.

With Hypersim, we compute ¢ across all views of a sin-
gle camera trajectory within each scene and set 7 := 0.8.
We exclude scenes rendered with non-standard projection
matrices’. The resulting number of view pairs that we eval-
uate on is 19,243.

3.2. DINe Fine-Tuning

We base our model on ZoeDepth, which uses a dense pre-
diction transformer (DPT) [10] with a BeiT (Bidirectional
Encoder representation from Image Transformers) [2] back-
bone at a resolution of 512 x 384. We fine-tune the model
for 5 epochs with batch size 8, using a low learning rate
of 0.00025 with a weight decay of 0.01. We train on four
NVIDIA Tesla P40 GPUs.

3.3. Drop-In Replacements

In the following, we briefly describe how we replaced the
depth prediction and fusion components of existing meth-

2See https :
issues/24

/ / github . com / apple / ml - hypersim /

ods with DINe, as presented in Section 5.3.1.

WonderJourney. This method uses the depth estimation
model MiDaS v3.1 [11], using a global scale-and-shift op-
eration to align the depth, and fine-tuning the model to fur-
ther improve the alignment. Further, segments discovered
by Segment Anything [8] are grouped if they have similar
disparity. Further, the sky is separated.

We replaced all of these individual steps with a single
prediction of DINe, directly attaching the predicted frame
to the existing scene.

LucidDreamer. Here, ZoeDepth [3] is utilized to predict
depth for newly generated frames. A global-scale-and shift
operation is run for coarse alignment. Then, to eliminate
seams, the connecting edges of a new frame receive depth
values of the existing scene, which are then extrapolated to
eventually match the predicted depth (post-alignment).
This entire procedure is dropped in favor of a single pre-
diction by DINe to immediately attach a frame to the scene.

Text2Room. To attach newly generated frames to the ex-
isting mesh, IronDepth [1], which is a depth inpainting
model, is utilized, prior to a mesh fusion process, which en-
sures holes are eliminated by connecting existing vertices.
We replace IronDepth with DINe, keeping the mesh fusion
intact, which cannot be replicated by our model.

3.4. Ablations

To validate the effectiveness of the design choices in our
training pipeline, we ablate them and provide their results
on our scene geometry evaluation benchmark SSG-3D in
Table S3.

3.4.1 Distillation of High-Resolution Models

In our training procedure, we utilize a teacher model to ob-
tain dense pseudo-ground truth depth maps. Marigold [7]
is our model of choice, which was (also) trained on the Hy-
persim dataset. Due to the simulated nature of this dataset,
Hypersim has ground-truth depth maps with notably finer
structures than ScanNet, which was captured with less pre-
cise real-world tools, that are reproduced by Marigold. As
we observe improved performance for this dataset once
we use Marigold predictions as ground-truth, we deem our
knowledge distillation setup to be effective.

3.4.2 Inpainting Task Probability

We observe that there is merit to not allocating barely any
or most training steps to learning the inpainting task (see
Section 3.2 for the specifics of our training procedure). Not
dedicating any steps to the original depth estimation task
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Rendered View

CLIP Score

27.97 £ 0.55 27.87 £ 0.56

27.78 £0.74

27.91+£0.73 28.11£0.75

Table S1. CLIP score for increasingly misaligned 3D scenes. We show a scene that has been extended with a newly generated frame
from Stable Diffusion, aligning it with DINe. The predicted depth is perturbed, creating a misalignment between both frames. For the
CLIP score, we report the mean and standard deviation across ten samples with different seeds. Despite the presence of these geometric
inconsistencies in the three-dimensional scene, the reported CLIP score remains essentially unchanged.

without any sparse input appears to negatively impact the
performance. We find that spending between 50-75% (i.e.,
p € [0.25,0.5]) of the time in the fine-tuning process train-
ing the inpainting task yields performant models.

3.4.3 Masking Strategy

We observe that using warped masks that mimic the charac-
teristic inpainting patterns that occur when changing view-
points is critical to yield a high-performing depth inpainting
model for depth inpainting in a scene generation setting. A
naive patch-based masking approach produces inferior re-
sults, where regions of varying size are randomly masked.
Masking patterns generated with much smaller viewpoint
changes than encountered during scene generation (< 5°,
indicated by o in Table S3) also lead to inferior perfor-
mance. We show that our design yields a method that gen-
eralizes to viewpoint changes not encountered during train-
ing by presenting qualitative results for SceneScape [5]-like
camera trajectories.

3.4.4 Original Task Preservation

In our fine-tuning setup, we can set a probability p to zero
out the sparse depth input to the model, effectively revert-
ing to the monocular depth estimation task. In this setting,
our model is highly competitive with the original ZoeDepth
model (see Table 1), suggesting the inpainting ability has
been bolted onto the network in our fine-tuning setup with
only minor degradation of the original task. However, this
setting cannot reach the performance of a network that is
given sparse depth input. This supports our hypothesis that
adding sparse depth information of the existing scene leads
to geometrically more coherent predictions and more faith-
ful to observed depth.

4. Additional Qualitative Results

We present an additional set of generated scenes from real-
world images in Figure S2. As in Figure 4, we provide in-
dividual images of the hallucinated views, a rendering of
the entire generated 3D scene, as well as a cut-away that
provides more detail.

To show that our method generalizes to other camera tra-
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kyoto nc prague indoor0

,,a Street with traditional ,,A suburban street in ,,Prague during the ,aliving room filled with
buildings in  Kyoto, North Carolina on a golden hour” furniture and a large
Japan” bright, sunny day” window”

indoorl indoor2 indoor3

,a living room with ,a living room filled ,a living room filled
couches and a coffee with furniture and a fire  with furniture and a fire
table” place” place”

Table S2. Input images and prompts used in Table 2. The names are solely used to identify these image in the original table. All images
have the dimensions 512x512. indoor(0-3 are taken from the GitHub repository associated with Text2Room [6].

Input Depth Annot. p  Warped Masks Align. ScanNet [4] Hypersim [12]
RGB+sd Original 0.5 - - 0.7734 2.2913

RGB+sd Original 0.5 v - 0.1015 0.7615
RGB+sd  ZoeDepth 0.5 v - 0.0793 0.7555
RGB+sd Marigold 0.0 v - 0.0864 0.7547
RGB+sd Marigold 0.25 v - 0.0791 0.7301
RGB+sd Marigold 0.75 v - 0.0869 0.7578
RGB+sd Marigold 0.5 o - 0.1373 0.8732

RGB Marigold 0.5 v - 0.2553 1.1536

RGB Marigold 0.5 v v 0.1335 0.8152
RGB+sd Marigold 0.5 v - 0.0816 0.7295

Table S3. Scene geometry evaluation results for ablations of our method. We consider the input for our model (image-only or supple-
mented with sparse depth), the source of depth annotations in our fine-tuning process to learn the inpainting task, the probability p that we
mask out the sparse depth input, whether we use warped masks during the fine-tuning process that mimic characteristic inpainting patterns
in scene generation, and if the final depth prediction is aligned with the existing point cloud through a global scale-and-shift operation.

jectories, we adopt those used in SceneScape [5], which lating the camera focused on the scene center while being
generate tunnel-like scenes. Starting from a single image, pulled back, thus leading to different inpainting patterns
we translate and rotate the camera with each step, simu- than encountered in training. In Figure S1, we show that
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our method creates believable 3D scenes despite not being
trained for these particular trajectories. For this task, we use
a visual question answering model [9] to reject poor image
inpainting results (e.g., the image is framed or borders ap-
pear), following previous works [13]. We utilize the query
“does the image have a frame?”, which yields “yes” or “no”
responses.

5. Discussion & Limitations

The performance of our depth inpainting model may be lim-
ited by a shift in the data distribution between training and
inference. The data the model is trained on (such indoor
scenes from NYU Depth or the datasets used to pre-train
DPT [10], which forms the core of ZoeDepth [3]), differ
from the data it is typically applied to during 3D scene gen-
eration (i.e., synthetic images generated by Stable Diffu-
sion). The differences may be due to the type of imagery
(e.g., landscapes such as the Mountains in Peru in Fig-
ure S2), but also due to imperfections or artifacts caused
by image generators that the depth network has never en-
countered during training.

Another challenge lies in the inherently limited resolu-
tion of all depth estimation networks, which constrains the
model’s ability to accurately predict the depth of fine struc-
tures, especially around object boundaries. Consequently,
these fine details might become detached from their cor-
responding objects during projection, affecting the image
inpainting step. An example is shown in Figure S3.
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“an alley in rural Spain on a bright, sunny day”

“a foggy morning in Tuscany”

“a long, narrow street fully engulfed in shadows in Valencia, Spain”

Figure S1. Qualitative results of our method on SceneScape [5]-like trajectories. Despite not being trained with the distortion patterns
resulting from these trajectories, our method is able to generate convincing scenes.
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Beautiful buildings in View over Cairo. Eevpt Mountains in Peru
a quaint UK village - BEYP on an overcast day

Prompt

Input

25°

50°

75°

100°

125°

175°

225°

272.5°

316.25°

Cut-Away

Figure S2. Qualitative results of our method on additional real-world images. It is able to generate convincing, immersive scenes for a
wide range of input images and associated prompts.
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Projection based on depth prediction,
after depth snapping

Input image

Figure S3. Loss of fine object details after projection. Due to the limited resolution of depth predictions, fine details might be detached
from their corresponding objects and become part of the background. We present an example of this for the given image, showing the
resulting projection after applying our depth snapping to remove floating points (as outlined in Section 5.3.2). The fine hairs of the dog at
its boundary have become part of the background.
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