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A. Contribution, Novelty, and Limitation
We reiterate our contribution, novelty, and limitations.

A.1. Contribution and Novelty

Our main contribution lies in a new direction: enabling
non-professional users to create and edit 3D garment with
single-view input. While existing works have made strides
in reconstructing clothed humans [1, 3, 6, 7] or garment [4]
from a single image, they mainly rely on optimizing pre-
defined garment or human templates. In contrast, we tar-
get a more flexible, template-free garment reconstruction
framework. Specifically, we propose to progressively syn-
thesize depth-accurate novel view images with enhanced
cross-view consistency. Moreover, our method enables
single-view 3D editing, including part-based or local sur-
face edits — capabilities that are absent in the aforemen-
tioned methods.

A.2. Scope and Limitations

As discussed in Section 5 of the main paper, our method has
certain limitations. We mainly focus on garment in a rest
pose. As will be shown in Section D.7, our method may

struggle to accurately capture the geometry of garments in
non-rest poses. With that said, this scope is a deliberate
choice, as rest poses provide a consistent and intuitive base-
line that aligns well with the needs of garment editing ap-
plications.

B. Ethics and Social Impacts
We focus on advancing garment digitization. We do not
foresee any ethical concerns or negative societal impacts
arising from our work. Our training and evaluation pro-
cesses do not involve any sensitive data, human identities, or
personal information. All experiments and datasets used in
this study are compliant with ethical research practices. By
advancing template-free garment reconstruction for non-
professional users, our method avoids potential biases asso-
ciated with specific body or garment templates, promoting
inclusiveness in digital garment reconstruction.

C. Additional Implementation Details
In this section, we provide additional implementation de-
tails of our method omitted in the main text.

C.1. Conditional Image Generation

Our image generation model is finetuned from the Stable
Zero-1-to-3 checkpoint1. To account for the additional pro-
jected image as input, we add 4 additional channels to the
input convolution layer of the denosing UNet and initialize
the weights to be zeros. The training resolution is 512×512.
We train the mode on 4 NVIDIA A6000 GPUs with a total
batch size of 256 for 20k iterations for 2 days.

C.2. Conditional Depth Generation

Our conditional image generation model is finetuned from
the Sapiens-0.3B depth checkpoint2. To add the projected
partial depth map as the additional condition, we add 1 ex-
tra channels to the input projection layer of the vision trans-
former backbone and initialize its weights to be zeros. The
training resolution is 512×512. We train the model on 4
A6000 GPUs with a total batch size of 24 for 3 days.

C.3. Computational Efficiency

The inference time and memory consumption of our method
are approximately 1 minute and 10 GB, respectively, on a
single A6000 GPU. These values are comparable to those of
most baseline methods, which have inference times ranging
from 10 seconds to 1 minute.

C.4. Measures to Reduce Error Accumulation

Since our method synthesizes novel views in sequential
steps, it is susceptible to error accumulation. To address

1https://huggingface.co/stabilityai/stable-zero123
2https://huggingface.co/facebook/sapiens-depth-0.3b
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Figure S1. Open hole detection in garments. We note that inte-
rior regions of open holes in a garment exhibit greater depth values
compared to the boundary pixels. Leveraging this observation, we
propose a simple yet effective algorithm to detect open holes and
exclude these regions during point cloud completion, improving
the robustness of the pipeline.

this, we incorporate a series of techniques aimed at mitigat-
ing such errors and improving overall robustness.

C.4.1 Point Cloud Outlier Removal.

Depth predictions near the edges of discontinuities (with
large jumps in depth values) are occasionally inaccurate, re-
sulting in some floating points in the point cloud. To address
this, we apply a classical outlier removal method at each
step to eliminate these floating points, ensuring a cleaner
and accurate point cloud.

C.4.2 Open Hole Detection.

We observe that depth predictions are less reliable in open-
hole regions of a garment surface, such as holes in collars
and sleeves. Additionally, the surface orientation derived
from the estimated depth map in these areas can be reversed.
These errors can propagate and lead to artifacts in subse-
quent steps. To address this issue, we develop a simple
algorithm to detect open holes and exclude these regions
during point cloud completion, improving the robustness of
the pipeline.

The detection algorithm is based on the observation that
the interior regions of open holes typically exhibit greater
depth values compared to the boundary pixels. As shown
in Figure S1, after synthesizing the completed image and
depth maps from a novel viewpoint, we first detect edges in
the depth map and identify connected regions enclosed by
these edges using classical methods. A connected region R
is classified as an open hole if more than a threshold ϵ of its
boundary pixels have depth values smaller than the average
depth of the region. For all our experiments, we found that
ϵ can be robustly set to 0.85.

C.4.3 Clipping Distant Depth Values.

Our observations indicate that synthesized images and
depth maps are more robust in regions closer to the camera
compared to those farther away. At steps 3 and 4 (corre-
sponding to azimuth angles of 120◦ and −120◦), the en-
tire back side of the garment is synthesized from a side
view. For these steps, we only use pixels with smaller depth
values for point cloud completion, disregarding pixels with
larger depth values.

C.5. Scope of Single-View 3D Editing

As introduced in Section 3.3 of the main paper, Gar-
mentCrafter enables single-view editing through a simple
workflow: identify the edited 3D region, remove the orig-
inal mesh in the identified area, and reconstruct the edited
components. We support two types of editing operations,
differentiated by their assumptions about the edited regions.

The first category is local surface editing. Given a cam-
era viewpoint and a mask, this approach assumes that only
the visible surface intersected by the camera rays corre-
sponding to the masked pixels will be edited. Occluded sur-
faces are ignored, even if their mesh vertices project within
the mask. To facilitate reconstruction, we remove the mesh
vertices of the selected surface. Additionally, internal ver-
tices near the external surface are also removed to account
for surface thickness.

The second category, part-based editing, involves modi-
fying a 3D garment part, including not only the “front” sur-
face but also the “back” and “internal” surfaces within a
masked region. For ease of implementation, we always use
the frontal view as the editing perspective and remove all
mesh vertices whose 2D projections fall within the mask.

Our editing pipeline is designed under the assumption
that both the geometry and the texture will be edited. There-
fore, it is not optimized for cases where (1) surface texture
is modified while preserving the geometry, or (2) the geom-
etry or pose is altered while preserving the texture.

C.6. 2D Editing Assumptions

In theory, our method is agnostic to the tools used for 2D
editing. The edits can be created using deep learning-based
image editing models or traditional tools like Photoshop.
However, our approach requires the edits to be confined
to regions specified by masks in the 2D input. Therefore,
global edits such as style transfer that alters the entire im-
age, are not recommended.

D. Additional Results and Analyses
D.1. Intermediate Results of Progressive NVS

In Figure 2 of the main paper, we showed results at one
specific camera rotation step during the progressive novel
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Figure S2. Intermediate results of progressive novel view synthesis along a full camera trajectory. From an input RGB image (top-
left), GarmentCrafter progressively synthesize novel view RGB and depth maps following a zigzag camera trajectory.

view synthesis. Here, we illustrate the whole process and
show the intermediate results in Figure S2.

D.2. P-NVS for Cross-view Consistency

We demonstrate the effectiveness of P-NVS on improving
cross-view consistency in Figure S3. Using our method, the
synthesized novel view image aligns more closely with the
ground-truth projected image, indicating less inconsistency.
This collaborates with our quantitative results reported in
Table 2 of the main paper.

D.3. Trimming Operation in Mesh Reconstruction

We apply trimming operation after Screened Poisson sur-
face reconstruction to preserve the correct garment topol-
ogy. See Figure S4 for an example.

D.4. Comparison with SoTA NVS methods

We present additional quantitative comparisons for novel
view synthesis against state-of-the-art methods (Zero-1-to-
3++ [5] & MVD-Fusion [2], fine-tuned with same data).
For each object in the held-out test set of 150 garment as-
sets, we sample six camera viewpoints with an elevation of
20 degrees and evenly spaced azimuth angles covering 360
degrees. Each method takes a frontal image as input and
generates six corresponding novel views, which we evaluate
against ground truth images using image similarity metrics
(LPIPS, PSNR, and SSIM). We also report our proposed
CVCS score. Table S1 shows that our method achieves su-
perior performance across all metrics.
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Figure S3. Analysis of projected image conditioning. Left: we
show original input and projected RGB images. Middle: com-
pleted RGB images with and without Progressive Novel View Syn-
thesis (P-NVS). Right: difference between completed and pro-
jected images, showing our novel view aligns more closely with
the ground-truth projected RGB. Zoom-in for details.

Without trim With trim

Figure S4. Trimming operation preserves the garment topology
during mesh reconstruction.

Table S1. Quantitative comparison for novel view synthesis.
Our method outperforms all state-of-the-art novel view synthesis
methods cross both image similarity and consistency metrics.

LPIPS ↓ PSNR ↑ SSIM ↑ CVCS↑

Zero123++ 0.1611 18.023 0.7979 0.8957
MVD-Fusion 0.1528 18.529 0.8026 0.9090

Ours 0.1052 22.776 0.8557 0.9512

D.5. Comparison with Garment3DGen

We provide qualitative comparison with Garment3DGen [4]
on the reconstructed mesh geometry in Figure S5. Our
method reconstructs 3D garments with much richer geomet-
ric details and much less inference time (1 min vs. 3 hours).

Garment3DGen OursInput Ours (texture)

Figure S5. Qualitative Comparison with Garment3DGen. Gar-
mentCrafter reconstructs garment meshes with richer details with
much lower computational costs.

Table S2. Analysis of the degree of zigzag camera trajectory.
In our experiments, we use a 60◦ trajectory as it provides a good
balance between view coverage and efficiency. While the choice of
degree slightly affects the ability to synthesize side-view garments
(i.e., 90◦), our analysis indicates that the overall performance is
not highly sensitive to this parameter.

Degree
Appearance Geometry

SSIM↑ LPIPS↓ PSNR ↑ Chamfer↓

30◦ 0.8044 0.1675 20.62 0.0051
60◦ 0.8066 0.1638 20.62 0.0050
90◦ 0.8003 0.1709 20.19 0.0070

120◦ 0.8053 0.1654 20.51 0.0050

D.6. Additional Analyses and Applications

D.6.1 Degree of Zigzag Camera Trajectory

We have studied all major design choices in our pipeline
in the main paper, including the effect of progressive novel
view synthesis and camera trajectory. Here, we analyze the
impact of the degree of Zigzag Camera Trajectory and show
the results in Table S2. In our experiments, we use a 60◦ tra-
jectory as it provides a good balance between view coverage
and efficiency. While the choice of degree slightly affects
the ability to synthesize side-view garments (i.e., 90◦), our
analysis indicates that the overall performance is not highly
sensitive to this parameter. We do not notice any other sig-
nificant hyperparameters in our framework.

D.6.2 Digitizing AI-generated Apparel

We explore the potential of combing GarmentCrafter with
AI-generated garment image and show examples in Fig-
ure S9. Using a text-to-image generative model, we pro-
duce synthetic garment images and apply GarmentCrafter
to digitize them. The results demonstrate the broad appli-
cability of our method in handling diverse inputs, including
AI-generated designs.

Input RGB Novel View Recon. Mesh

Figure S6. Failure case. GarmentCrafter may fail to reconstruct
the garment with arbitrary poses.



D.7. Failure Cases

The focus of our work is on reconstructing and editing gar-
ments in their rest pose. Consequently, our method strug-
gles with input images in arbitrary poses as such instances
lie outside of the training data distribution. As illustrated in
Figure S6, an input garment image in a non-resting pose re-
sults in the failure of our model to synthesize coherent novel
view images, leading to nonsensical reconstructions.

D.8. More Qualitative Results

Reconstruction. Please see more results in Figure S7.
Editing. We provide more qualitative results in Figure S8.
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Input RGB Recon. Mesh Novel Views
Figure S7. More qualitative result on single-view 3D garment reconstruction.
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Figure S8. More results on single-view 3D garment editing. The top row illustrates how GarmentCrafter effectively handles surface edits,
even for regions with complex textures. The middle row demonstrates the capability of GarmentCrafter to support full garment changes
and swaps, showcasing the potential in virtual try-on scenarios. The bottom row presents an example of removing an entire garment part.
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Figure S9. Compatibility with generative apparel. By reconstructing both geometry and texture from synthetic garment images, Gar-
mentCrafter demonstrates its adaptability to AI-generated designs. The results showcase the ability of GarmentCrafter to handle diverse
and complex inputs, expanding its potential applications to generative fashion and virtual apparel workflows.
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