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ABSTRACT

Bi-level optimization plays a key role in a lot of machine learning applications.
Existing state-of-the-art bi-level optimization methods are limited to smooth or
some specific non-smooth lower-level problems. Therefore, achieving an efficient
algorithm for the bi-level problems with a generalized non-smooth lower-level
objective is still an open problem. To address this problem, in this paper, we
propose a new bi-level optimization algorithm based on smoothing and penalty
techniques. Using the theory of generalized directional derivative, we derive new
conditions for the bilevel optimization problem with nonsmooth, perhaps non-
Lipschitz lower-level problem, and prove our method can converge to the points
satisfying these conditions. We also compare our method with existing state-of-
the-art bi-level optimization methods and demonstrate that our method is superior
to the others in terms of accuracy and efficiency.

1 INTRODUCTION

Bi-level optimization (BO) (Bard, 2013; Colson et al., 2007) plays a central role in various machine
learning applications including hyper-parameter optimization (Pedregosa, 2016; Bergstra et al., 2011;
Bertsekas, 1976), meta-learning (Feurer et al., 2015; Franceschi et al., 2018; Rajeswaran et al., 2019),
reinforcement learning (Hong et al., 2020; Konda & Tsitsiklis, 2000). It involves a competition
between two parties or two objectives, and if one party makes its choice first it will affect the optimal
choice for the other party. Several approaches, such as Bayesian optimization (Klein et al., 2017),
random search (Bergstra & Bengio, 2012), evolution strategy (Sinha et al., 2017), gradient-based
methods (Pedregosa, 2016; Maclaurin et al., 2015; Swersky et al., 2014), have bee proposed to solve
BO problems, among which gradient-based methods have become the mainstream for large-scale BO
problems.

The key idea of the gradient-based method is to approximate the gradient of upper-level variables,
called hypergradient. For example, the implicit differentiation methods (Pedregosa, 2016; Rajeswaran
et al., 2019) use the first derivative of the lower-level problem to be 0 to derive the hypergradient.
The explicit differentiation methods calculate the gradient of the update rules of the lower-level based
on chain rule (Maclaurin et al., 2015; Domke, 2012; Franceschi et al., 2017; Swersky et al., 2014)
to approximate the hypergradient. Mehra & Hamm (2019) reformulate the bilevel problem as a
single-level constrained problem by replacing the lower level problem with its first-order necessary
conditions, and then solve the new problem by using the penalty method. Obviously, all these methods
need the lower-level problem to be smooth.

However, in many real-world applications, such as image restoration (Chen et al.; Nikolova et al.,
2008), variable selection (Fan & Li, 2001; Huang et al., 2008; Zhang et al., 2010) and signal processing
(Bruckstein et al., 2009), the objective may have a complicated non-smooth, perhaps non-Lipschitz
term (Bian & Chen, 2017). Traditional methods cannot be directly used to solve the bilevel problem
with such a lower-level problem. To solve the BO problems with some specific nonsmooth lower-level
problems, researchers have proposed several algorithms based on the above-mentioned methods.
Specifically, Bertrand et al. (2020) searched the regularization parameters for LASSO-type problems
by approximating the hypergradient from the soft thresholding function (Donoho, 1995; Bredies &
Lorenz, 2008; Beck & Teboulle, 2009). Frecon et al. (2018) proposed a primal-dual FMD-based
method, called FBBGLasso, to search the group structures of group-LASSO problems. Okuno et al.
(2021) used the smoothing method and constrained optimization method to search the regularization
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Table 1: Representative gradient-based bi-level optimization methods.

Method Reference Problem Method type
FMD Franceschi et al. (2017) Smooth Bi-level
RMD Franceschi et al. (2017) Smooth Bi-level
Approx Pedregosa (2016) Smooth Bi-level
Penalty Mehra & Hamm (2019) Smooth Single-level
FBBGL Frecon et al. (2018) Group LASSO Bi-level
SparseHO Bertrand et al. (2020) LASSO-type Bi-level
SMNBP Okuno et al. (2021) p-norm Single-level
SPNBO Ours Generalized Single-level

parameter of q-norm (0 < q ≤ 1) and provided the convergence analysis of their method. We
summarize several representative methods in Table 1. Obviously, all these methods and their theoretic
analysis only focus on some specific problem and can not be used to solve the bilevel problem with
a generalized nonsmoothed lower-level problem. Therefore, how to solve the BO problem with
a generalized non-smooth lower-level objective and obtain its convergence analysis are still open
problems.

To address this problem, in this paper, we propose a new algorithm, called SPNBO, based on
smoothing (Nesterov, 2005; Chen et al., 2013) and penalty (Wright & Nocedal, 1999) techniques.
Specifically, we use the smoothing technique to approximate the original non-Lipschitz lower-level
problem and generate a sequence of smoothed bi-level problems. Then, a single-level constrained
problem is obtained by replacing the smoothed lower-level objective with its first-order necessary
condition. For each given smoothing parameter, we propose a stochastic constraint optimization
method to solve the single-level constrained problem to avoid calculating the Hessian matrix of
the lower-level problem. Theoretically, using the theory of generalized directional derivative, we
derive new conditions for the bilevel optimization problem with nonsmooth, perhaps non-Lipschitz
lower-level problem, and prove our method can converge to the points satisfying these conditions.
We also compare our method with several state-of-the-art bi-level optimization methods, and the
experimental results demonstrate that our method is superior to the others in terms of accuracy and
efficiency.

Contributions. We summarize the main contributions of this paper as follows:

1. We propose a new method to solve the non-Lipschitz bilevel optimization problem based on
the penalty method and smoothing method. By using the stochastic constraint method, our
method can avoid calculating the Hessian matrix of the lower-level problem, which makes
our method a lower time complexity.

2. Based on the Clarke generalized directional derivative, we propose new conditions for the
bilevel problem with a generalized non-smoothed lower-level problem. We prove that our
method can converge to the proposed conditions.

2 PRELIMINARIES

2.1 FORMULATION OF NON-SMOOTH BI-LEVEL OPTIMIZATION PROBLEM

In this paper, we consider the following non-smooth bi-level optimization problem:

min
λ
f(w∗,λ) s.t. w∗ ∈ argmin

w
g(w, λ̄) + exp(λ1)φ(h(w)), (1)

where λ := [λ1, λ2, · · · , λm]T ∈ Rm, λ̄ := [λ2, · · · , λm]T and w ∈ Rd. f : Rd × Rm 7→ R and
g : Rd × Rm 7→ R are twice continuously differentiable on w and λ. φ(·) : Rn 7→ R is twice
continuously differentiable. h(·) : Rd 7→ Rn is continuous, not necessarily convex, not differentiable,
or even not Lipschitz at some points. Assume h(w) := (h1(D

T
1 w), h2(D

T
2 w), · · · , hn(DT

nw)),
where Di ∈ Rd×r and hi : Rd 7→ R (i = 1, 2, · · · , n) is continuous. For a fixed point w̄, assume
we have an index set Iw̄ = {i ∈ {1, 2, · · · , n} : hi is not Lipschitz continuous atD

T
i w̄} and if

i ̸∈ Iw̄, hi is twice continuously differentiable.
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2.2 EXAMPLES OF NON-SMOOTH NON-LIPSCHITZ LOWER-LEVEL PROBLEMS

The non-smooth non-Lipschitz optimization problems widely exist in image restoration (Chen et al.;
Nikolova et al., 2008), variable selection (Fan & Li, 2001; Huang et al., 2008; Zhang et al., 2010) and
signal processing (Bruckstein et al., 2009). Here, we give two examples as follows.

1. lp-norm (Chen et al., 2013): minw g(w, λ̄) + exp(λ1)
∑d

i=1 |wi|p, where p ∈ (0, 1].

2. OSCAR penalty (Bondell & Reich, 2008): minw g(w, λ̄) + exp(λ̂)∥w∥1 +
exp(λ̌)

∑
i<j max{wGi

,wGj
}, where Gi denotes the group index.

Note that Okuno et al. (2021) only considered the bilevel problem with the lower-level problem given
in Example 1. Their theoretical analysis is not suitable for the problem in Example 2 or even more
complicated formulation.

3 PROPOSED METHOD

In this section, we give a brief review of the smoothing method and then propose our stochastic
gradient algorithm based on the penalty method and single-level reduction method to solve the bilevel
problem.

3.1 SMOOTHING TECHNIQUE

Here, we give the definition of smoothing function (Nesterov, 2005; Chen et al., 2013; Bian & Chen,
2017) which is widely used in nonsmooth non-Lipschitz problems.

Definition 1. Let ψ : Rd 7→ R be a continuous nonsmooth, non-Lipschitz function. We call
ψ̃ : Rd × [0,+∞] 7→ R a smoothing function of ψ, if ψ̃(·, µ) is twice continuously differentiable for
any fixed µ > 0 and limŵ 7→w,µ→0 ψ̃(ŵ, µ) = ψ(w) holds for any w ∈ Rd.

Here, we give two examples of smoothing functions. The smoothing function of ψ1(w) =
∑d

i=1 |wi|
is ψ̃1(w, µ) =

∑d
i=1(w

2
i + µ2)1/2 and the smoothing function of ψ2(w) =

∑
i<j max{wi, wj} is

ψ̃2(w, µ) =
∑

i<j

1

2
(
√
(wi + wj)2 + µ2 +

√
(wi − wj)2 + µ2).

According to Definition 1, the non-smooth lower level problem in problem (1) could be approximated
by using a sequence of the following parameterized smoothing functions,

w∗ = argmin
w

g(w, λ̄) + exp(λ1)φ(h̃(w, µ
k)) (2)

where µk > 0 is the smoothing parameter and h̃(w, µk) :=

(h̃1(D
T
1 w, µ

k), h̃2(D
T
2 w, µ

k), · · · , h̃n(DT
nw, µ

k)).

For each given smoothing parameter µk > 0, we can replace the smoothed lower-level objective with
its first-order necessary condition and derive the following single-level problem:

min
w,λ

f(w,λ) s.t. c(w,λ;µk) = 0, (3)

where c(w,λ;µk) := ∇wg(w, λ̄) + exp(λ1)∇wφ(h̃(w, µ
k)) and ∇wφ(h̃(w, µ

k)) =
φ′(z)z=h(w,µk)∇wh(w, µ

k).

3.2 STOCHASTIC CONSTRAINT GRADIENT METHOD

In this subsection, we discuss our method to solve the subproblem (3). Obviously, we can use the
gradient method to solve its corresponding penalty function to solve the single-level constrained
problem. However, calculating the gradient of the penalty functions needs to calculate the Hessian
matrix. If the dimension of w, calculating the Hessian matrix is very time-consuming. To solve this
problem, we introduce a stochastic layer into the constraint such that we only need to calculate the
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Algorithm 1 Smoothing and Penalty Method for Non-Lipschitz Bi-level Optimization (SPNBO)

Input: K, µ1, β1, δµ, δϵ ∈ (0, 1).
Output: wk+1 and λk+1.
1: for k = 1, ...,K do
2: Find (wk+1,λk+1,pk+1) := minw,λ maxp∈∆d L(wk,λk,pk, µk) using the SCG method.
3: µk+1 = δµµ

k.
4: ϵk+1 = δϵϵk.
5: end for

gradient of the sampled element of the constraint. Specifically, we reformulate the subproblem (3) as
the following minimax problem

min
w,λ

max
p∈∆d

L(w,λ,p, µk) = f(w,λ) + β

d∑
i=1

pic
2
i (w,λ;µ

k)− τ

2
∥p∥22, (4)

where β > 0, λ > 0, p ∈ ∆d := {p|
∑d

i=1 pi = 1&0 ≤ pi ≤ 1}, ci(w,λ;µk) denote the
i-th elements of c(w,λ;µk). The last term is used to ensure L is strongly-concave on p. Such a
reformulation is widely used in many methods (Cotter et al., 2016; Narasimhan et al., 2020; Shi et al.,
2022) to solve the constrained problem.

In each iteration, we sample an element wi of w according to distribution p and calculate the
corresponding value of ci and its gradient w.r.t w. Then, we can obtain the stochastic gradient of L
w.r.t w as follows,

∇̂wL(wt,λt,pt, µ
k; ξt) =∇wf(wt,λt) + 2βci(wt,λt;µ

k)∇wci(wt,λt;µ
k). (5)

Using the same method, we can obtain the stochastic gradient ∇̂λL(wt,λt,pt, µ
k; ξt). Then,

Algorithm 2 Stochastic constraint gradient (SCG)
Input: γ, σ, ηt, at+1,1, at+1,2

Output: w and λ.
1: Initialize m1,1, m1,2, m1,3, m̂t,1, m̂t,2, m̂t,3, η1.
2: while Not satisfy the conditions (10) do
3: w̃t+1 = wt − γA−1

t,1mt,1.
4: wt+1 = wt + ηt(w̃t+1 −wt).
5: λ̃t+1 = λt − γA−1

t,2mt,2.
6: λt+1 = λt + ηt(λ̃t+1 − λt).
7: p̃t+1 = P∆

(
pt + σA−1

t,3mt,3

)
.

8: pt+1 = pt + ηt(p̃t+1 − pt).
9: Sample a constraint according to distribution p.

10: Calculate the stochastic gradient ∇̂wL(wt,λt,pt, µ
k; ξt) and ∇̂λL(wt,λt,pt, µ

k; ξt).
11: Randomly sample a constraint.
12: Calculate the stochastic gradient ∇̂pL(wt,λt,pt, µ

k; ξt).
13: Update mt,1, mt,2, mt,3.
14: Update m̂t,1, m̂t,2, m̂t,3 and clip to [ρ, b].
15: Calculate At,1, At,2, At,3.
16: end while

randomly sample another element wj , we can calculate the value of cj and obtain the stochastic
gradient of L w.r.t. p as follows

∇̂pL(wt,λt,pt, µ
k; ξt) =dej(c

2
j (wt,λt;µ

k)− λpj), (6)

where ej denotes a vector where its j-th element is 1 and other elements are 0. Since p is related to the
value of constraints, sampling constraint according to p helps us find the most violating conditions.

To achieve a better performance, the momentum-based variance reduction method and adaptive
method are also used. Specifically, we calculate the momentum-based gradient estimation w.r.t w, λ
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and p as follows,

mt,1 = ∇̂wL(wt,λt,pt, µ
k; ξt) + (1− at+1,1)

(
mt−1,1 − ∇̂wL(wt−1,λt−1,pt−1, µ

k; ξt)
)

mt,2 = ∇̂λL(wt,λt,pt, µ
k; ξt) + (1− at+1,1)

(
mt−1,2 − ∇̂λL(wt−1,λt−1,pt−1, µ

k; ξt)
)

mt,3 = ∇̂pL(wt,λt,pt, µ
k; ξt) + (1− at+1,2)

(
mt−1,3 − ∇̂pL(wt−1,λt−1,pt−1, µ

k; ξt)
)

Then, we calculate the adaptive matrix matrices At,1, At,2 and At,3 for updating w, λ and p,
respectively. Here, we present the calculation of adaptive matrix At,1 as an example. Specifically, we
calculate a second momentum-based estimation m̂t,1 = â∇̂wL(wt,λt,pt, µ

k; ξt)
2+(1− â)mt−1,1.

Then, we clip each element of m̂t,1 into the range of [ρ, b] and obtain the adaptive matrix At,1 =

diag
(√

clip(m̂t,1, ρ, b)
)
. Note that we can use other method to calculate the adaptive matrices,

such as AdaGrad-Norm (Ward et al., 2020), AMSGrad (Reddi et al., 2019), Adam+ (Liu et al., 2020).
Then, we can obtain the update rules as follows,

w̃t+1 = wt − γA−1
t,1mt,1, wt+1 = wt + ηt(w̃t+1 −wt), (7)

λ̃t+1 = λt − γA−1
t,2mt,2, λt+1 = λt + ηt(λ̃t+1 − λt), (8)

p̃t+1 = P∆

(
pt + σA−1

t,3mt,3

)
, pt+1 = pt + ηt(p̃t+1 − pt), (9)

where γ > 0, σ > 0, ηt > 0 and P∆(·) denotes the projection onto ∆d.

Once the following conditions are satisfied,

∥∇wL(w,λ,p, µk)∥22 ≤ ϵ2k, ∥∇λL(w,λ,p, µk)∥22 ≤ ϵ2k, ∥c(w,λ;µk)∥22 ≤ ϵ2k, (10)

where ∇wL and ∇λL denote the full gradients L w.r.t w and λ, we enlarge the penalty parameter β,
and decrease the smooth parameter µk.

The whole algorithm is presented in Algorithm 1 and 2. Note that instead of checking the conditions
in each iteration of SCD, we check the conditions after several iterations to save time.

4 THEORETICAL ANALYSIS

In this section, we discuss the convergence performance of our proposed method (Detailed proofs are
given in our appendix). Here, we give several assumptions which are widely used in convergence
analysis.

Assumption 1. We have E[∇̂zL(zt+1,pt+1, µ
k)] = ∇zL(zt+1,pt+1, µ

k),E[∇̂pL(zt+1,pt+1, µ
k))] =

∇pL(zt+1,pt+1, µ
k), E[∥∇̂zL(zt+1,pt+1, µ

k) − ∇zL(zt+1,pt+1, µ
k)∥2] ≤ V2

z and
E[∥∇̂pL(zt+1,pt+1, µ

k))−∇pL(zt+1,pt+1, µ
k))∥2] ≤ V2

p..

Assumption 2. The function L(w,λ,p, µk) is τ -strongly concave on p for any give µk > 0.
Assumption 3. The function L(w,λ,p, µk) has a L1-Lipschitz gradient on (w,λ,p) for any give
µk > 0.

Assumption 4. The smoothing function h̃(w, µk) is twice continuously differentiable on w for any
µk > 0 .
Assumption 5. f is Lipschitz continuous and g is twice Lipschitz continuous w.r.t. w and λ.

We prove our Algorithm 2 can converge to the points satisfying conditions 10. Here, we give the
definitions of ϵ-stationary of the constrained problem 3 and minimax problem 4 and then show the
relations between these definitions as follows,
Definition 2. (ϵ-stationary point of the constrained optimization problem.) (w∗,λ∗,α∗) is said to
be the ϵ-stationary point of the sub-problem (3) if the following conditions hold, ∥∇wf(w

∗,λ∗;µk)+∑d
i=1 α

∗
i∇wci(w

∗,λ∗)∥22 ≤ ϵ21, ∥∇λf(w
∗,λ∗) +

∑d
i=1 α

∗
i∇λci(w

∗,λ∗;µk)∥22 ≤ ϵ22 and∑d
i=1 c

2
i (w

∗,λ∗;µk) ≤ ϵ23, where α denotes the lagrangian multipliers.

Remark 1. Let α∗
j = p∗j2cj(w

∗,λ∗;µk). The conditions in Defintion 2 is equivalent to the tolerance
conditions 10.
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Definition 3. (ϵ-stationary point of the mini-max problem.) (w∗,λ∗,p∗) is said to be the ϵ-
stationary point of the mini-max problem if it satisfies the conditions ∥∇wL∥22 ≤ ϵ2, ∥∇λL∥22 ≤ ϵ2

and ∥∇pL∥22 ≤ ϵ2.
Proposition 1. If Assumptions 2 and 3 hold, (w∗,λ,p∗) is the ϵ-stationary point of the problem (4),
then (w∗,λ∗) is the ϵ-stationary point of the constrained problem 3.

According to Shi et al. (2022), the minimax problem 4 is equivalent to the following minimization
problem:

min
w,λ

{
H(w,λ) := max

p∈∆m
L(w,λ,p) = L(w,λ,p∗(w,λ)

}
, (11)

where p∗(w,λ) = argmaxp L(w,λ,p). Here, we give stationary point the minimization problem
11 and its relationship with Definition 3 as follows,
Definition 4. We call w∗ an ϵ-stationary point of a differentiable function H(w), if
∥∇wH(w∗,λ∗)∥2 ≤ ϵ and ∥∇λH(w∗,λ∗)∥2 ≤ ϵ.
Proposition 2. Under Assumptions 3 and 2, if (w′,λ′) is the ϵ-stationary point of H(w,λ), then
(w′,λ′,p′) is the ϵ-stationary point of minw,λ maxp∈∆d L(w,λ,p, µk) can be obtained. Cons-
versely, if (w′,λ′,p′) is the ϵ-stationary point of minw,λ maxp∈∆d L(w,λ,p, µk), then a point
(w′,λ′) is stationary point of H(w,λ).
Remark 2. According to Proposition 1 and Proposition 2, we have that once we find the ϵ-stationary
point in terms of Definition 4, then we can get the ϵ-stationary point in terms of Definition 2. Therefore,
we can obtain the points satisfying the tolerance conditions (10).

Before, we give the convergence reuslt of our method, we present the lemma useful in our analysis.
We have
Lemma 1. Under assumptions, let z = [w;λ], we have

∥∇H(z)−mt,z∥22 ≤2L2
1∥p∗(zt)− pt∥22 + 2∥∇zL(zt,pt, µ

k)−mt,z∥22 (12)

Then, we can define the following metric

Mk =
b2

γ2
∥z̃t+1 − zt∥22 + 2L2

1∥p∗(zt)− pt∥22 + 2∥∇zL(zt,pt, µ
k)−mt,z∥22. (13)

We have

Mk ≥ b2

γ2
∥zt − γA−1

t,zmt,z − zt∥22 + ∥∇H(z)−mt,z∥22 ≥ ∥mt,z∥22 + ∥∇H(z)−mt,z∥22 ≥ 1

2
∇H(zt)

If Mk → 0, we have ∥∇H(zt)∥22 → 0. Thus, we can bound Mk to find the stationary point of
problem (11). Then, we give the convergence theorem in the following theorem.

Theorem 1. Assume Assumptions hold, if at+1,1 = c1η
2
t ,at+1,2 = c2η

2
t , c1 >

5

2
+

2

3e3
ηt, 0 < γ ≤

√
3τσρ

2
√
12L2

1σ
2κ2 + 125L2

1κ
2b2

and 0 < σ ≤ min{ 15

12µ
,

1

6L1
}, we have

γ

4ρ

1

T

T∑
t=1

Mt ≤
(Θ1 −Θ∗)(m+ T )1/3

Te
+
γ(c21V2

z + c22V2
p)(m+ T )1/3

ρT
ln(m+ T ) (14)

Remark 3. Theorem 1 demonstrate that with suitable setting, our method can converge to the points
satisfying the conditions (10) at the rate of Õ(T−2/3) if omitting log.

Then, we discuss the convergence performance of our whole algorithm. Define a new function

hw̄i (DT
i w) :=

{
hi(D

T
i w) i ̸∈ Iw̄

hi(D
T
i w̄) i ∈ Iw̄

, (15)

which is Lipschitz continuous at DT
i w̄, i = 1, 2, · · · , n. Then, we have hw̄(w) :=

(hw̄1 (DT
1 w), hw̄2 (DT

2 w), · · · , hw̄n (DT
nw)) , which has the same value as h(w) but opposite property.

6
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For convenience, we define ϕw̄(w) = φ(hw̄(w)) and ϕ(w) = φ(h(w)). Besides, we define a vector
set as follows,

Vw̄ =
{
v : DT

i v = 0, i ∈ Iw̄
}
, (16)

which means that v is perpendicular to all column vectors in Di, i ∈ Iw̄. According to Bian & Chen
(2017), the necessary condition of the non-Lipschitz lower level problem is

∇wg(w
∗, λ̄)Tv + exp(λ1)ϕ

◦(w∗;v) ≥ 0, (17)

for all v ∈ Vw∗ , where ϕ◦(w∗;v) = lim sup
w 7→ w∗

t ↓ 0

ϕ(w + tv)− ϕ(w)

t
denotes the Clarke generalized

directional derivative of φ(h(w)) at w∗. Replacing the lower-level problem with above condition,
we can obtain the following single-level problem,

min
w,λ

f(w,λ) s.t. c(w,λ) = ∇wg(w, λ̄)
Tv + exp(λ1)ϕ

◦(w;v) ≥ 0 (18)

for all v ∈ Vw∗ . For this new problem, we have the following theorem.
Theorem 2. If (w∗,λ∗) satisfy the following conditions, then they are the stationary points of the
problem (18).

∇wf(w
∗,λ∗)Tv2 − (vT

2 ∇2
wwg(w

∗, λ̄∗)v1 + exp(λ∗1)ϕ
◦◦(w∗;v1,v2))ξ

∗ ≥ 0, (19)

∇λf(w
∗,λ∗)Tv3 − (v̄3∇2

wλ̄g(w
∗, λ̄∗)v1 + v13 exp(λ

∗
1)ϕ

◦(w∗;v1))ξ
∗ ≥ 0, (20)

∇wg(w
∗, λ̄∗)Tv1 + exp(λ∗1)ϕ

◦(w∗;v1) ≥ 0, (21)

ξ∗
(
∇wg(w

∗, λ̄∗)Tv1 + λ∗1ϕ
◦(w∗;v1)

)
= 0, (22)

ξ∗ ≥ 0, (23)

for all v1 ∈ Vw∗ , v2 ∈ Rd, v3 ∈ Rm, where v3 = [v13 , v̄
T
3 ]

T , v̄T
3 = [v23 , · · · , vm3 ]T and

ϕ◦◦(w∗;v1,v2) = lim sup
w 7→ w∗,

s ↓ 0

ϕ◦(w + v2s;v1)− ϕ◦(w;v1)

s
). In addition, (v1,v2,v3) is direction

vector used in calculating the Clarke directional derivative.

Then, we show with decreasing the smoothing parameter and tolerance parameters, our method can
converge to stationary point defined in Theorem 2 in the following theorem.
Theorem 3. Suppose {ϵk}∞k=1 are positive and convergent (limk→∞ ϵk = 0) sequences, {µk}∞k=1 is
a positive and convergent (limk→∞ µk = 0) sequence. Then any limit point of the sequence points
generated by SPNBO satisfies the conditions (19)-(23).

Then, we show the relations between the conditions 19-23 and the original nonsmooth bilevel problem
(1).
Theorem 4. Assume the lower level problem in problem (1) is strongly convex. If we have (w∗, λ∗)
and ξ∗ ≥ 0 satisfying the conditions (19)-(23), then (w∗, λ∗) is the stationary point of the original
nonsmooth bilevel problem.

5 EXPERIMENTS

In this section, we conduct experiments to demonstrate the superiority of our method in terms of
accuracy and efficiency.

5.1 EXPERIMENTAL SETUP

We summarize the baseline methods used in our experiments as follows.

1. Penalty. The method proposed in Mehra & Hamm (2019). It formulates the bi-level
optimization problem as a one-level optimization problem, and then use penalty method to
solve the new problem.

7
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(a) Cifar10 (b) FashionMNIST (c) MNIST (d) SVHN
Figure 1: Test MSE against training time of all the methods in data re-weight.

2. Approx. The method proposed in Pedregosa (2016). It solves an additional linear problem
to find the hypergradient to update the hyper-parameters.

3. RMD. The reverse method proposed in Franceschi et al. (2017). An additional loop is used
to approximate the hypergradient.

4. SMNBP. The method proposed in Okuno et al. (2021). It uses the smoothing method to
produce a sequence of smoothing lower-level functions and replaces them with the necessary
condition. Then the penalty method is used to solve each single level problem.

We implement SMNBP, Penalty, Approx, RMD, and our method in Python. Since original Penalty,
Approx and RMD are used for the smoothing problems, we use the smoothing function to approximate
the lower-level problem. We fix the smoothing parameter at µ = 0.0001 in these methods. In SMNBP,
for each given smoothing parameter, we solve the constrained problem using the Penalty method.
For all these method, we use ADAM to update w and λ and choose the initial step size from
{0.1, 0.01, 0.001}. For our method, we set â = 0.9 and other parameters are set according to
Theorem 1. We choose the penalty parameter from {0.1, 1, 10, 100} for our method, SMNBP, and
Penalty. We fix the inner iteration number T in Penalty, Approx, and RMD at 10 according to Mehra
& Hamm (2019). We summarize the datasets used in our experiments in Table 2 and we divide all
the datasets into three parts, i.e., 40% for training, 40% for validation and 20% for testing. All the
experiments are carried out 10 times on a PC with four 1080 Ti GPUs.

5.2 APPLICATIONS

Table 2: Datasets used in the experiments.
Datasets Features Samples Classes
SVHN 32× 32× 3 73257 10
Cifar10 84× 84× 3 50000 10
MNIST 28× 28× 1 60000 10
FashionMNIST 28× 28× 1 60000 10

Data re-weight: In this experiment, we evaluate
the performance of all the methods in the application
named data re-weight. In many real-world applica-
tions, the training set and testing set may have differ-
ent distributions. To reduce the discrepancy between
the two distributions, each data point will be given an
additional importance weight, which is called data re-
weight. In this application, we search the weight λi
of each training data and the OSCAR regularization
parameters λ̂ and λ̌. This problem can be formulated as

min
λ

1

Nval

Nval∑
i=1

ℓ(xT
i w

∗,yi) (24)

s.t. w∗ ∈ argmin
w

Ntr∑
i=1

exp(λi)∑
j exp(λj)

ℓ(xT
i w,yi) + exp(λ̂)∥w∥1 + exp(λ̌)

∑
i<j

max{wGi
,wGj

},

where Ntr and Nval denote the sizes of training set and validation set respectively. {xi,yi} denotes
the data instance, Gi denotes the group index. In this experiments, we set the group number equal to
10, and we use the mean squared loss ℓ = (xT

i w − yi)
2.

Training data poisoning: In this experiment, we evaluate the performance of all the methods in
training data poisoning. Assume we have pure training data {xi}Ntr

i=1 with several poisoned points

8
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Table 3: The test mse of all the methods in data reweight. (Lower is better.)
Datasets SPNBO SMNBP Penalty Approx RMD
Cifar10 2.146 ± 0.006 2.147± 0.012 2.147± 0.011 2.171± 0.004 2.203± 0.012
MNIST 1.338 ± 0.004 1.339± 0.006 1.340± 0.007 1.345± 0.010 1.412± 0.076
FashionMNIST 1.091 ± 0.011 1.096± 0.020 1.100± 0.001 1.104± 0.009 1.097± 0.013
SVHN 2.138 ± 0.004 2.176± 0.002 2.184± 0.006 2.142± 0.004 2.165± 0.002

(a) Cifar10 (b) FashionMNIST (c) MNIST (d) SVHN
Figure 2: Validation loss versus training time of all the methods in training data poisoning.

{λj}
Npoi

j=1 assigned arbitrary labels. In this task, we search the poisoned data which can hurt the
performance of the model trained from the clean data. This problem can be formulated as

max
λ

1

Nval

Nval∑
i=1

ℓ(θ(xi;w
∗),yi) s.t. w∗ ∈ argmin

w

1

N

∑
xi∈D

ℓ(θ(xi;w),yi) + ∥w∥pp,

where N = Ntr +Npoi and D denote the dataset containing all the clean training data and poisoned
data. In this experiment, we use Resnet18 as model. Besides, we add a p-norm (0 < p < 1)
regularization term in the lower-level problem to ensure that we can get a sparse model. In this
experiment, we set p = 0.5. After solving the bilevel problem, we retrain the model on the clean data
and poisoned data and then test the model.

Table 4: Test accuracy (%) of all the methods in training data poisoning (lower is better).
Data Approx RMD Penalty SMNBP SPNBO
SVHN 50.79± 0.39 50.67± 0.27 50.67± 0.27 50.62± 0.29 48.85 ± 0.57
Cifar10 82.91± 0.18 83.25± 0.11 82.29± 0.11 82.57± 0.11 82.22 ± 0.28
FashionMNIST 96.09± 0.07 95.89± 0.31 95.87± 0.19 96.01± 0.22 95.80 ± 0.20
MNIST 80.27± 0.25 77.63± 0.08 77.43± 0.54 77.50± 0.30 77.22 ± 0.08

5.3 RESULTS AND DISCUSSION

All the results are presented in Tables 3, 4 and Figure 1, 2. From Table 3 and Table 4, we can find that
our method has the similar results to other methods. From Figure 1 and Figure 2, we can find that our
method is faster than other methods in most cases. This is because Approx and RMD need to solve
the lower-level objective first and then need an additional loop to approximate the hypergradient
which makes these methods have higher time complexity. Penalty and SMNBP need to use all the
constraints in each updating step which is also time-consuming, when we use complex models (e.g.,
DNNs), Penalty and SMNBP suffer from high time complexity. However, our method uses the
stochastic gradient method which makes it scalable to complicated models and does not need any
intermediate steps to approximate the hypergradient. From all these results, we can conclude that our
SPNBO is superior to other methods in terms of accuracy and efficiency.

6 CONCLUSION

In this paper, we proposed a new method, SPNBO, to solve the generalized non-smooth non-Lipschitz
bi-level optimization problems by using the smoothing method and the penalty method. We also
give the convergence analysis of our proposed method. The experimental results demonstrate the
superiority of our method in terms of training time and accuracy.
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A CONVERGENCE ANALYSIS

A.1 PROOF OF PROPOSITION 1

Proof. Since the (w∗,λ,p∗) is the ϵ-stationary point of minw maxp∈∆d L(w,λ,p, µk), then we
have

∥∇wf(w
∗,λ∗) + β

d∑
j=1

p∗j2cj(w
∗,λ∗, µk)∇wcj(w

∗,λ∗;µk)∥22 ≤ ϵ2. (25)

Let α∗
j = p∗j2cj(w

∗,λ∗;µk) and ϵ = ϵ1, we have

∥∇wf(w
∗,λ∗) +

m∑
j=1

α∗
j∇wcj(w

∗,λ∗;µk)∥22 ≤ ϵ21. (26)

Then the first condition in Definition 2 is satisfied. Similarly, let ϵ = ϵ2, we have

∥∇λf(w
∗,λ∗) +

m∑
j=1

α∗
j∇λcj(w

∗,λ∗;µk)∥22 ≤ ϵ22. (27)

Since ∥∇pL(w∗,λ∗,p∗)∥22 ≤ ϵ2, we have

d∑
j=1

(βc2j (w
∗,λ∗, µk)− τp∗j )

2 ≤ ϵ2. (28)

Using the inequality ∥a+ b∥22 ≤ 2∥a∥22 + 2∥b∥22 and 0 ≤ pj ≤ 1, we have

1

2
β2

d∑
j=1

c4j (w
∗,λ∗, µk)

≤
d∑

j=1

(βc2j (w
∗,λ∗, µk)− τp∗j )

2 + τ2
d∑

j=1

(p∗j )
2

≤ϵ2 + dτ2. (29)

Then, using (

∑n
i=0 ai
n

)2 ≤
∑n

i=0 a
2
i

n
, we have

d∑
j=1

c2j (w
∗,λ∗;µk) ≤

√√√√d

d∑
j=1

c4j (w
∗,λ∗;µk) ≤

√
2dϵ2 + 2d2τ2

β2
. (30)

Let

√
2dϵ2 + 2d2τ2

β2
= ϵ23, we can obtain

m∑
j=1

c2j (w
∗,λ∗;µk) ≤ ϵ23. (31)

Therefore, the second condition in Definition 2 is satisfied.

That completes the proof.
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A.2 PROOF OF PROPOSITION 2

Proof. Let z = [w;λ]. Assume that z′ satisfies the condition ∥∇zH(z′)∥2 ≤ ϵ. Then, solving the
strongly concave problem maxp∈∆d L(z′,p, µk), we can obtain a point p′ satisfying that

∥∇pL(z′,p′, µk)∥2 ≤ ϵ, ∥p′ − p∗(z′)∥2 ≤ ϵ. (32)

In addition, we have

∥∇zL(z′,p′, µk)∥2
≤∥∇zL(z′,p′, µk)−∇zH(z′)∥2 + ∥∇zH(z′)∥2
=∥∇zL(z′,p′, µk)−∇zL(z′,p∗(z′), µk)∥2 + ϵ

≤L1∥p′ − p∗(z′)∥2 + ϵ

=O(ϵ). (33)

Thus, (z′,λ′) is the stationary point of L.

A.3 PROOF OF LEMMA 1

Proof.

∥∇H(zt)−mt,z∥22
=∥∇H(zt)−∇zL(zt,pt, µ

k) +∇zL(zt,pt, µ
k)−mt,z∥22

≤2∥∇zL(zt,p∗(zt), µ
k)−∇zL(zt,pt, µ

k)∥22 + 2∥∇zL(zt,pt, µ
k)−mt,z∥22

≤2L2
1∥p∗(zt)− pt∥22 + 2∥∇zL(zt,pt, µ

k)−mt,z∥22 (34)

A.4 PROOF OF THEOREM 1

Before we discuss the convergence, we give several assumptions and definitions used in our analy-
sis.All these assumptions are widely used the analysis in Bolte et al. (2018); Mehra & Hamm (2019);
Franceschi et al. (2017); Pedregosa (2016).
Lemma 2. (Lin et al. (2020)) Under Assumption 2 and Assumption 3, let z = [wT ,λT ]T , the

function H(z) = maxp∈∆d L(z,p, µk) has LH = L1 +
L2
1

τ
-Lipschitz continuous gradient.

Lemma 3. Under Assumption 2 and Assumption 3, let z = [w;λ], we have

H(zt+1) ≤ H(zt) +
γηt
ρ

∥∇H(z)−mt,z∥22 −
ρηt
2γ

∥z̃t+1 − zt∥22 (35)

Proof. According to Lemma 2, we have

H(zt+1)

≤H(zt) + ⟨∇H(z), zt+1 − zt⟩+
LH

2
∥zt+1 − zt∥22

=H(zt) + ⟨∇H(z), ηt(z̃t+1 − zt)⟩+
LH

2
∥ηt(z̃t+1 − zt)∥22

=H(zt) + ⟨∇H(z), ηt(z̃t+1 − zt)⟩+
LH

2
∥ηt(z̃t+1 − zt)∥22

=H(zt) + ηt⟨∇H(z)−mt,z, z̃t+1 − zt⟩+ ηt⟨mt,z, z̃t+1 − zt⟩+
LHη

2
t

2
∥z̃t+1 − zt∥22 (36)

According to the update rules of w and λ, we have z̃t+1 = zt − γA−1
t,zmt,z = P(zt − γA−1

t,zmt,z),
where z̃t+1 = [w̃; λ̃], mt,z = [mt,1,mt,2] and At,z = diag([m̂t,1; m̂t,2] + ρ). Then, we have

⟨z̃t+1 − zt + γA−1
t,zmt,z, z − z̃t+1⟩ ≥ 0 (37)
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Set z = z̃, we have

⟨γ
ρ
mt,z, zt − z̃t+1⟩ ≥ ⟨γA−1

t,zmt,z, zt − z̃t+1⟩ ≥ ∥z̃t+1 − zt∥22 (38)

Thus, we have

⟨mt,z, z̃t+1 − zt⟩ ≤ −ρ
γ
∥z̃t+1 − zt∥22 (39)

In addition, we have

⟨∇H(z)−mt,z, z̃t+1 − zt⟩
≤∥∇H(z)−mt,z∥2∥z̃t+1 − zt∥2
≤γ
ρ
∥∇H(z)−mt,z∥22 +

ρ

4γ
∥z̃t+1 − zt∥22 (40)

Thus, we have

H(zt+1)

≤H(zt) + ηt

(
γ

ρ
∥∇H(z)−mt,z∥22 +

ρ

4γ
∥z̃t+1 − zt∥22

)
− ρηt

γ
∥z̃t+1 − zt∥22 +

LHη
2
t

2
∥z̃t+1 − zt∥22

≤H(zt) + ηt
γ

ρ
∥∇H(z)−mt,z∥22 −

ρηt
2γ

∥z̃t+1 − zt∥22 (41)

Lemma 4. Given 0 < ηt ≤ 1, 0 < σ ≤ b

6L1
, for all t > 0, we have

∥pt+1 − p∗(zt+1)∥22 ≤(1− ηtτσ

4b
)∥pt − p∗(zt)∥22 −

3ηt
4

∥p̃t+1 − pt∥22

+
25ηtσ

6τb
∥∇pL(zt,pt, µ

k)−mt,p∥22 +
25κ2ηtb

6τσ
∥zt − z̃t+1∥22 (42)

where κ =
L1

τ

Proof. Due to L is stongly concave, we have

L(zt,p, µk)

≤L(zt,pt, µ
k) + ⟨∇pL(zt,pt, µ

k),p− pt⟩ −
τ

2
∥p− pt∥22

=L(zt,pt, µ
k) + ⟨mt,p,p− p̃t+1⟩+ ⟨∇pL(zt,pt, µ

k)−mt,p,p− p̃t+1⟩

+ ⟨∇pL(zt,pt, µ
k), p̃t+1 − pt⟩ −

τ

2
∥p− pt∥22 (43)

Since L is L1 smooth, we have

−L1

2
∥p̃t+1 − pt∥22 ≤ L(zt, p̃t+1, µ

k)− L(zt,pt, µ
k)− ⟨∇pL(zt,pt, µ

k), p̃t+1 − pt⟩ (44)

Thus, we have

L(zt,p, µk)

≤L(zt, p̃t+1, µ
k) +

L1

2
∥p̃t+1 − pt∥22 + ⟨mt,p,p− p̃t+1⟩+ ⟨∇pL(zt,pt, µ

k)−mt,p,p− p̃t+1⟩

− τ

2
∥p− pt∥22 (45)

Since p̃t+1 = P∆(pt + σA−1
t,3mt,p), we have

⟨p̃t+1 − pt − σA−1
t,3mt,p,p− p̃t+1⟩ ≥ 0 (46)
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Then, we obtain

⟨mt,p,p− p̃t+1⟩

≤ b

σ
⟨p̃t+1 − pt,p− p̃t+1⟩

=− b

σ
∥p̃t+1 − pt∥22 +

b

σ
⟨p̃t+1 − pt,p− pt⟩ (47)

Thus, we have

L(zt,p, µk)

≤L(zt, p̃t+1, µ
k) +

L1

2
∥p̃t+1 − pt∥22 −

b

σ
∥p̃t+1 − pt∥22 +

b

σ
⟨p̃t+1 − pt,p

∗(zt)− pt⟩

+ ⟨∇pL(zt,pt, µ
k)−mt,p,p− p̃t+1⟩ −

τ

2
∥p− pt∥22 (48)

Set p = p∗(zt), we have

L(zt,p∗(zt), µ
k)

≤L(zt, p̃t+1, µ
k) +

L1

2
∥p̃t+1 − pt∥22 −

b

σ
∥p̃t+1 − pt∥22 +

b

σ
⟨p̃t+1 − pt,p

∗(zt)− pt⟩

+ ⟨∇pL(zt,pt, µ
k)−mt,p,p

∗(zt)− p̃t+1⟩ −
τ

2
∥p∗(zt)− pt∥22 (49)

Then, we have

0 ≤− (
b

σ
− L1

2
)∥p̃t+1 − pt∥22 +

b

σ
⟨p̃t+1 − pt,p

∗(zt)− pt⟩

+ ⟨∇pL(zt,pt, µ
k)−mt,p,p

∗(zt)− p̃t+1⟩ −
τ

2
∥p∗(zt)− pt∥22 (50)

By pt+1 = pt + ηt(p̃t+1 − pt), we have

∥pt+1 − p∗(zt)∥22
=∥pt + ηt(p̃t+1 − pt)− p∗(zt)∥22
=∥pt − p∗(zt)∥22 + 2ηt⟨p̃t+1 − pt,pt − p∗(zt)⟩+ η2t ∥p̃t+1 − pt∥22 (51)

Then, we obtain

⟨p̃t+1 − pt,p
∗(zt)− pt⟩ =

1

2ηt
∥pt − p∗(zt)∥22 +

ηt
2
∥p̃t+1 − pt∥22 −

1

2ηt
∥pt+1 − p∗(zt)∥22

(52)

Also, we have

⟨∇pL(zt,pt, µ
k)−mt,p,p

∗(zt)− p̃t+1⟩
=⟨∇pL(zt,pt, µ

k)−mt,p,p
∗(zt)− pt⟩+ ⟨∇pL(zt,pt, µ

k)−mt,p,pt − p̃t+1⟩

≤1

τ
∥∇pL(zt,pt, µ

k)−mt,p∥22 +
τ

4
∥p∗(zt)− pt∥22 +

1

τ
∥∇pL(zt,pt, µ

k)−mt,p∥22 +
τ

4
∥pt − p̃t+1∥22

=
2

τ
∥∇pL(zt,pt, µ

k)−mt,p∥22 +
τ

4
∥p∗(zt)− pt∥22 +

τ

4
∥pt − p̃t+1∥22 (53)

Combining above inequalities, we have

b

2ηtσ
∥pt+1 − p∗(zt)∥22

≤(
b

2ηtσ
− τ

4
)∥pt − p∗(zt)∥22 + (

bηt
2σ

+
τ

4
+
L1

2
− b

σ
)∥p̃t+1 − pt∥22 +

2

τ
∥∇pL(zt,pt, µ

k)−mt,p∥22

≤(
b

2ηtσ
− τ

4
)∥pt − p∗(zt)∥22 −

3b

8σ
∥p̃t+1 − pt∥22 +

2

τ
∥∇pL(zt,pt, µ

k)−mt,p∥22. (54)
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where the last inequality is due to 0 < σ ≤ b

6L1
. Therefore, we have

∥pt+1 − p∗(zt)∥22

≤(1− ηtτσ

2b
)∥pt − p∗(zt)∥22 −

3ηt
4

∥p̃t+1 − pt∥22 +
4ηtσ

τb
∥∇pL(zt,pt, µ

k)−mt,p∥22. (55)

Next, we have

∥pt+1 − p∗(zt+1)∥22
=∥pt+1 − p∗(zt) + p∗(zt)− p∗(zt+1)∥22
≤∥pt+1 − p∗(zt)∥22 + ∥p∗(zt)− p∗(zt+1)∥22 + 2⟨pt+1 − p∗(zt),p

∗(zt)− p∗(zt+1)⟩

≤(1 +
ηtτσ

4b
)∥pt+1 − p∗(zt)∥22 + (1 +

4b

ηtτσ
)∥p∗(zt)− p∗(zt+1)∥22

≤(1 +
ηtτσ

4b
)∥pt+1 − p∗(zt)∥22 + (1 +

4b

ηtτσ
)κ2∥zt − zt+1∥22 (56)

Then, we have

∥pt+1 − p∗(zt+1)∥22

≤(1 +
ηtτσ

4b
)(1− ηtτσ

2b
)∥pt − p∗(zt)∥22 −

3ηt
4

(1 +
ηtτσ

4b
)∥p̃t+1 − pt∥22

+
4ηtσ

τb
(1 +

ηtτσ

4b
)∥∇pL(zt,pt, µ

k)−mt,p∥22 + (1 +
4b

ηtτσ
)κ2∥zt − zt+1∥22

≤(1− ηtτσ

4b
)∥pt − p∗(zt)∥22 −

3ηt
4

∥p̃t+1 − pt∥22

+
25ηtσ

6τb
∥∇pL(zt,pt, µ

k)−mt,p∥22 +
25κ2ηtb

6τσ
∥zt − z̃t+1∥22 (57)

That complete the proof.

Lemma 5. Based on above assumptions, we have

E[∥mt+1,z −∇zL(zt+1,pt+1, µ
k)∥22]

≤(1− at+1,1)E[∥mt,z −∇wL(zt,pt, µ
k)∥22] + 2a2t+1,1V2

z + 4(1− at+1,1)
2L2

1η
2
t

(
E[∥z̃t+1 − zt∥22] + E[∥p̃t+1 − pt∥22]

)
(58)

E[∥mt+1,p −∇pL(zt+1,pt+1, µ
k)∥22]

≤(1− at+1,2)E[∥mt,p −∇pL(zt,pt, µ
k)∥22] + 2a2t+1,2V2

p + 4(1− at+1,2)
2L2

1η
2
t

(
E[∥z̃t+1 − zt∥22] + E[∥p̃t+1 − pt∥22]

)
(59)
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Proof. Sincemt,z = ∇̂zL(zt,pt, µ
k; ξt)+(1−at)

(
mt−1,z − ∇̂wL(zt−1,pt−1, µ

k; ξt)
)

, we have

E[∥mt+1,z −∇zL(zt+1,pt+1, µ
k)∥22]

=E[∥∇̂zL(zt+1,pt+1, µ
k; ξt+1) + (1− at+1,1)

(
mt,z − ∇̂wL(zt,pt, µ

k; ξt+1)
)
−∇zL(zt+1,pt+1, µ

k)∥22]

=E[∥(1− at+1,1)
(
mt,z −∇wL(zt,pt, µ

k)
)
+ at+1,1

(
∇̂zL(zt+1,pt+1, µ

k; ξt+1)−∇zL(zt+1,pt+1, µ
k)
)

+ (1− at+1,1)
(
∇̂zL(zt+1,pt+1, µ

k; ξt+1)−∇zL(zt+1,pt+1, µ
k)− ∇̂zL(zt,pt, µ

k; ξt+1) +∇zL(zt,pt, µ
k)
)
∥22]

≤(1− at+1,1)
2E[∥

(
mt,z −∇wL(zt,pt, µ

k)
)
∥22] + E[∥at+1,1

(
∇̂zL(zt+1,pt+1, µ

k; ξt+1)−∇zL(zt+1,pt+1, µ
k)
)

+ (1− at+1,1)
(
∇̂zL(zt+1,pt+1, µ

k; ξt+1)−∇zL(zt+1,pt+1, µ
k)− ∇̂zL(zt,pt, µ

k; ξt+1) +∇zL(zt,pt, µ
k)
)
∥22]

≤(1− at+1,1)
2E[∥mt,z −∇wL(zt,pt, µ

k)∥22] + 2a2t+1,1E[∥∇̂zL(zt+1,pt+1, µ
k; ξt+1)−∇zL(zt+1,pt+1, µ

k)∥22]

+ 2(1− at+1,1)
2E[∥∇̂zL(zt+1,pt+1, µ

k; ξt+1)−∇zL(zt+1,pt+1, µ
k)− ∇̂zL(zt,pt, µ

k; ξt+1) +∇zL(zt,pt, µ
k)∥22]

≤(1− at+1,1)
2E[∥mt,z −∇wL(zt,pt, µ

k)∥22] + 2a2t+1,1V2
z

+ 2(1− at+1,1)
2E[∥∇̂zL(zt+1,pt+1, µ

k; ξt+1)− ∇̂zL(zt,pt, µ
k; ξt+1)∥22]

≤(1− at+1,1)
2E[∥mt,z −∇wL(zt,pt, µ

k)∥22] + 2a2t+1,1V2
z + 4(1− at+1,1)

2L2
1

(
E[∥zt+1 − zt∥22] + E[∥pt+1 − pt∥22]

)
≤(1− at+1,1)E[∥mt,z −∇wL(zt,pt, µ

k)∥22] + 2a2t+1,1V2
z + 4(1− at+1,1)

2L2
1η

2
t

(
E[∥z̃t+1 − zt∥22] + E[∥p̃t+1 − pt∥22]

)
(60)

Similarly, we have

E[∥mt+1,p −∇pL(zt+1,pt+1, µ
k)∥22]

≤(1− at+1,2)E[∥mt,p −∇pL(zt,pt, µ
k)∥22] + 2a2t+1,2V2

p + 4(1− at+1,2)
2L2

1η
2
t

(
E[∥z̃t+1 − zt∥22] + E[∥p̃t+1 − pt∥22]

)
(61)

Lemma 6. Based on above results, we have at+1,1 = c1η
2
t ,at+1,2 = c2η

2
t , c1 >

5

2
+

2

3e3
ηt and

c2 >
2

3e3
ηt +

125L2

3τ2
ηt =

e

(m+ t)1/3
,

1

ηt
E[∥mt+1,z −∇zL(zt+1,pt+1, µ

k)∥22]−
1

ηt−1
E[∥mt,z −∇zL(zt,pt, µ

k)∥22]

≤− 5

2
ηtE[∥mt,z −∇wL(zt,pt, µ

k)∥22] + 2c21V2
zη

3
t + 4L1ηt

(
E[∥z̃t+1 − zt∥22] + E[∥p̃t+1 − pt∥22]

)
(62)

1

ηt
E[∥mt+1,p −∇pL(zt+1,pt+1, µ

k)∥22]−
1

ηt−1
E[∥mt,p −∇pL(zt,pt, µ

k)∥22]

≤− 125L2ηt
3τ2

E[∥mt,p −∇pL(zt,pt, µ
k)∥22] + 2c22V2

pη
3
t + 4L1ηt

(
E[∥z̃t+1 − zt∥22] + E[∥p̃t+1 − pt∥22]

)
(63)

Proof.

1

ηt
E[∥mt+1,z −∇zL(zt+1,pt+1, µ

k)∥22]−
1

ηt−1
E[∥mt,z −∇zL(zt,pt, µ

k)∥22]

≤(
1− at+1,1

ηt
− 1

ηt−1
)E[∥mt,z −∇wL(zt,pt, µ

k)∥22] +
2a2t+1,1V2

z

ηt
+ 4(1− at+1,1)

2L1ηt
(
E[∥z̃t+1 − zt∥22] + E[∥p̃t+1 − pt∥22]

)
≤(

1

ηt
− 1

ηt−1
− c1ηt)E[∥mt,z −∇wL(zt,pt, µ

k)∥22] + 2c21V2
zη

3
t + 4L1ηt

(
E[∥z̃t+1 − zt∥22] + E[∥p̃t+1 − pt∥22]

)
(64)
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Since ηt =
e

(m+ t)1/3
and (a+ b)1/3 ≤ a1/3 + ab−2/3, we have

1

ηt
− 1

ηt−1
≤ 2

3e3
ηt (65)

Let c1 >
5

2
+

2

3e3
ηt, we have

1

ηt
E[∥mt+1,z −∇zL(zt+1,pt+1, µ

k)∥22]−
1

ηt−1
E[∥mt,z −∇zL(zt,pt, µ

k)∥22]

≤− 5

2
ηtE[∥mt,z −∇wL(zt,pt, µ

k)∥22] + 2c21V2
zη

3
t + 4L2

1ηt
(
E[∥z̃t+1 − zt∥22] + E[∥p̃t+1 − pt∥22]

)
(66)

Similarly, Let c2 >
2

3e3
ηt +

125L2

3τ2
we have

1

ηt
E[∥mt+1,p −∇pL(zt+1,pt+1, µ

k)∥22]−
1

ηt−1
E[∥mt,p −∇pL(zt,pt, µ

k)∥22]

≤− 125L2ηt
3τ2

E[∥mt,p −∇pL(zt,pt, µ
k)∥22] + 2c22V2

pη
3
t + 4L2

1ηt
(
E[∥z̃t+1 − zt∥22] + E[∥p̃t+1 − pt∥22]

)
(67)

Here, we give the proof of Theorem 1

Proof. According to lemma, we have

∥pt+1 − p∗(zt+1)∥22 − ∥pt − p∗(zt)∥22

≤− ηtτσ

4b
∥pt − p∗(zt)∥22 −

3ηt
4

∥p̃t+1 − pt∥22 +
25ηtσ

6τb
∥∇pL(zt,pt, µ

k)−mt,p∥22 +
25κ2ηtb

6τσ
∥zt − z̃t+1∥22

(68)

and

H(zt+1)−H(zt)

≤γηt
ρ

∥∇H(zt)−mt,z∥22 −
ρ

2γ
∥z̃t+1 − zt∥22

≤2L2
1γηt
ρ

∥p∗(zt)− pt∥22 +
2γηt
ρ

∥∇zL(zt,pt, µ
k)−mt,z∥22 −

ρηt
2γ

∥z̃t+1 − zt∥22 (69)

Define

Θt = E[H(zt) +
10L2

1γb

στρ
∥pt − p∗(zt)∥22 +

γ

ρηt−1
(∥mt,z −∇zL(zt,pt, µ

k)∥22 + ∥mt,p −∇pL(zt,pt, µ
k)∥22)]

(70)
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Then, we have

Θt+1 −Θt

=H(zt+1)−H(zt) +
10L2

1γb

στρ
(∥pt+1 − p∗(zt+1)∥22 − ∥pt − p∗(zt)∥22)

+
γ

ρ
(
1

ηt
E[∥mt+1,z −∇zL(zt+1,pt+1, µ

k)∥22]−
1

ηt−1
E[∥mt,z −∇zL(zt,pt, µ

k)∥22]

+
1

ηt
E[∥mt+1,p −∇pL(zt+1,pt+1, µ

k)∥22]−
1

ηt−1
E[∥mt,p −∇pL(zt,pt, µ

k)∥22])

≤2L2
1γηt
ρ

∥p∗(zt)− pt∥22 +
2γηt
ρ

∥∇zL(zt,pt, µ
k)−mt,z∥22 −

ρηt
2γ

∥z̃t+1 − zt∥22

+
10L2

1γb

στρ
(−ηtτσ

4b
∥pt − p∗(zt)∥22 −

3ηt
4

∥p̃t+1 − pt∥22 +
25ηtσ

6τb
∥∇pL(zt,pt, µ

k)−mt,p∥22 +
25κ2ηtb

6τσ
∥zt − z̃t+1∥22)

+
γ

ρ
(−5

2
ηtE[∥mt,z −∇zL(zt,pt, µ

k)∥22] + 2c21V2
zη

3
t + 4L2

1ηt
(
E[∥z̃t+1 − zt∥22] + E[∥p̃t+1 − pt∥22]

)
− 125L2ηt

3τ2
E[∥mt,p −∇pL(zt,pt, µ

k)∥22] + 2c22V2
pη

3
t + 4L2

1ηt
(
E[∥z̃t+1 − zt∥22] + E[∥p̃t+1 − pt∥22]

)
)

=(
2L2

1γηt
ρ

− 5L2
1γηt
2ρ

)∥p∗(zt)− pt∥22

+ (
2γηt
ρ

− 5γηt
2ρ

)∥∇zL(zt,pt, µ
k)−mt,z∥22

+ (−ρηt
2γ

+
10L2

1γb

στρ
· 25κ

2ηb

6τσ
+

4L2
1ηtγ

ρ
)E[∥z̃t+1 − zt∥22]

+ (−3ηt
4

· 10L
2
1γb

στρ
+

4L2
1ηtγ

ρ
)E[∥p̃t+1 − pt∥22]

+
γ(c21V2

z + c22V2
p)

ρ
η3t

≤− L2
1γηt
2ρ

∥p∗(zt)− pt∥22 −
γηt
2ρ

∥∇zL(zt,pt, µ
k)−mt,z∥22 −

ηtb
2

4ργ
E[∥z̃t+1 − zt∥22] +

γ(c21V2
z + c22V2

p)

ρ
η3t

(71)

where the last inequality is due to 0 < γ ≤
√
3τσρ

2
√

12L2
1σ

2κ2 + 125L2
1κ

2b2
and 0 < σ ≤ 15

12µ
.

Therefore, we have

γηt
4ρ

(2L2
1∥p∗(zt)− pt∥22 + 2∥∇zL(zt,pt, µ

k)−mt,z∥22 +
b2

γ2
E[∥z̃t+1 − zt∥22]) ≤ Θt −Θt+1 +

γ(c21V2
z + c22V2

p)

ρ
η3t

(72)

Taking average over t = 1, · · · , T , we have ηt =
e

(m+ t)1/3

γ

4ρ

1

T

T∑
t=1

Mt

≤Θ1 −Θ∗

TηK
+
γ(c21V2

z + c22V2
p)

ρTηK

T∑
t=1

η3t

≤ (Θ1 −Θ∗)(m+ T )1/3

Te
+
γ(c21V2

z + c22V2
p)(m+ T )1/3

ρTe

∫
e

m+ t
dt

=
(Θ1 −Θ∗)(m+ T )1/3

Te
+
γ(c21V2

z + c22V2
p)(m+ T )1/3

ρT
ln(m+ T ) (73)
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B PROOF OF THEOREM 2

Lemma 7. Under Assumption 5, c(w,λ) is Lipschitz continuous on both w and λ.

Proof. We have

|c(w,λ)− c(w′,λ)|
=|

(
∇wg(w, λ̄)

Tv + exp(λ1)ϕ
◦(w;v)

)
−

(
∇wg(w

′, λ̄)Tv + exp(λ1)ϕ
◦(w′;v)

)
|

≤|∇wg(w, λ̄)
Tv −∇wg(w

′, λ̄)Tv|+ exp(λ1)|ϕ◦(w;v)− ϕ◦(w′;v)| (74)

According to Proposition 2.1.1 in Clarke (1990) and g is Lw
g -Lipschitz continuous , where Lw

g is
Lipschitz constant for w, we have ∇wg(w, λ̄)

Tv is Lw
g -Lipschitz continuous. Besides, we have

|ϕ◦(w;v)− ϕ◦(w′;v)|
=|ϕ◦w̄(w;v)− ϕ◦w̄(w′;v)|. (75)

Since ϕ◦w̄ is Lw̄
ϕ -Lipschitz continuous according to to Proposition 2.1.1 in Clarke (1990), where Lw

ϕ

is the Lipschitz constant for w, we have ϕ◦ is Lw̄
ϕ -Lipschitz continuous. Namely, we have

|ϕ◦(w;v)− ϕ◦(w′;v)| ≤ Lw̄
ϕ ∥w −w′∥2 (76)

Therefore, we have

|c(w,λ)− c(w′,λ)| ≤ (Lw
g + Lw̄

ϕ )∥w −w′∥2, (77)

which means that c(w,λ) is Lipschitz continuous on w.

Then we prove c is Lipschitz continuous on λ. We have

|c(w,λ)− c(w,λ′)|
=|

(
∇wg(w, λ̄)

Tv + exp(λ1)ϕ
◦(w;v)

)
−

(
∇wg(w, λ̄

′)Tv1 + exp(λ′1)ϕ
◦(w;v1)

)
|

=|∇wg(w, λ̄)
Tv −∇wg(w, λ̄

′)Tv|+ | exp(λ1)− exp(λ′1)| · |ϕ◦(w;v)| (78)

According to the Proposition 2.1.1 in Clarke (1990), we have

|ϕ◦(w;v)| = |ϕ◦w̄(w;v)| ≤ Lϕw̄∥v∥2 (79)

Thus, we obtain

|c(w,λ)− c(w,λ′)| ≤ C∥λ− λ′∥2. (80)

where C is a constant. That completes the proof.

Then, we prove Theorem 2

Proof. Define

L(w,λ, ξ) = f(w,λ)− c(w,λ)T ξ (81)

where ξ ≥ 0. If (w∗,λ) is the stationary point of problem 18, we have

0 ∈ ∂wL(w∗,λ∗, ξ∗) (82)
0 ∈ ∂λL(w∗,λ∗, ξ∗) (83)

∇wg(w
∗, λ̄∗)Tv1 + λ∗1ϕ

◦(w∗;v1) ≥ 0 (84)

ξ∗
(
∇wg(w

∗, λ̄∗)Tv1 + λ∗1ϕ
◦(w∗;v1)

)
= 0 (85)

ξ∗ ≥ 0 (86)

Since c(w,λ) and f(w,λ) are Lipschitz continuous, we have

|L(w,λ, ξ)− L(w′,λ, ξ)|
≤|f(w,λ)− f(w′,λ)|+ ξ|c(w,λ)− c(w′,λ)|
≤(Lw

f + Lw
g + Lw

ϕw̄
)∥w −w′∥2, (87)
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where Lw
f is the Lipschitz constant of f on w. This means L(w,λ, ξ) is Lipschitz continuous. Thus,

condition 82 is equivalent to

L◦
w(w∗,λ∗, ξ∗;v2) ≥ 0, ∀v2 ∈ Rd (88)

where L◦
w(w∗,λ∗, ξ∗;v2) is the generalized clarke directional derivative at w∗ defined as follows

L◦
w(w∗,λ∗, ξ∗;v2) = lim sup

w 7→ w∗,
s ↓ 0

L(w + sv2,λ
∗, ξ∗)− L(w,λ∗, ξ∗)

s
. (89)

Then, for all v2, we have,

L◦
w(w∗,λ∗, ξ∗;v2)

= lim sup
w 7→ w∗,

s ↓ 0

L(w + sv2,λ
∗, ξ∗)− L(w,λ∗, ξ∗)

s

= lim sup
w 7→ w∗,

s ↓ 0

f(w + sv2,λ
∗)− f(w,λ∗, ξ∗)

s

− ξ∗ lim sup
w 7→ w∗,

s ↓ 0

∇wg(w + sv2,λ
∗)v1 −∇wg(w,λ

∗)v1

s

− exp(λ∗1)ξ
∗ lim sup

w 7→ w∗,
s ↓ 0

ϕ◦(w + sv2;v1)− ϕ◦(w∗;v1)

s

=∇wf(w
∗,λ∗)Tv2 −

(
vT
2 ∇2

wwg(w
∗, λ̄∗)v1 + exp(λ∗1)ϕ

◦◦(w∗;v1,v2)
)
ξ∗

≥0 (90)

where

ϕ◦◦(w∗;v1,v2) = lim sup
w 7→ w∗,

s ↓ 0

ϕ◦(w + sv2;v1)− ϕ◦(w;v1)

s
(91)

Using the same method, we can obtain condition (83) is equivalent to

∇λf(w
∗,λ∗)Tv3 −

(
v̄3∇2

wλ̄g(w
∗, λ̄∗)v1 + v13 exp(λ

∗
1)ϕ

◦(w∗;v1)
)
ξ∗ ≥ 0 (92)

for all v3 ∈ Rd.

That completes the proof.

B.1 PROOF OF THEOREM 3

Proof. In our method, we solve the following smoothed single level problem for each given µk

min
w,λ

f(w,λ) (93)

s.t. c(w,λ;µk) := ∇wg(w, λ̄) + λ1∇wφ(h̃(w, µ
k)) = 0,

where ∇wφ(h̃(w, µ
k)) = φ′(z)h(w,µk)∇wh(w, µ

k) and µk is the smoothing parameter.

Let wk,λk,pk be the point return by the random constraint method, according to the tolerance
condition, we have

∥c(w∗,λ∗;µk)∥22 ≤ ϵ2k (94)

Multplying ∥v1∥22, where v1 ∈ Vw∗ , on both sides of above equality, we have

∥c(wk,λk;µk)∥2∥v1∥2 ≤ ϵk∥v1∥2 (95)
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According to |ab| ≤ ∥a∥2∥b∥2, we have

|c(wk,λk;µk)Tv1| ≤ ϵk∥v1∥2. (96)

Thus, we have

c(wk,λk;µk)Tv1 ≥ −ϵk∥v1∥2. (97)

Then, taking the limit on both sides (i.e., k → ∞), we have

lim
k→∞

c(wk,λk;µk)Tv1 ≥ 0 (98)

Then, according to the Theorem 2 in Bian & Chen (2017), we have

lim
k→∞

c(wk,λk;µk)Tv1 = ∇wg(w
∗, λ̄∗)Tv1 + λ∗1ϕ

◦(w∗;v1) (99)

Thus, we have

∇wg(w
∗, λ̄∗)Tv1 + λ∗1ϕ

◦(w∗;v1) ≥ 0 (100)

Since we have αk
j = 2pkj cj(w

k,λk;µk) and limk→∞ ∥cj(wk,λk;µk)∥22 = 0, we have α∗ =

limk→∞ αk = 0. Thereofore, we have α∗ ∈ Vw∗ and

c(w∗,λ∗;µk)Tα∗ = 0. (101)

Let α∗ = ξ∗v1 ∈ Vw∗ and ξ∗ = 0, we can obtain

ξ∗
(
∇wg(w

∗, λ̄∗)Tv1 + λ∗1ϕ
◦(w∗;v1)

)
= 0 (102)

We also have

∥∇wf(w
k,λk)−∇wc(w

k,λk;µk)αk∥22 ≤ ϵ2k (103)

Assmue that we have a vector v2. Multiplying ∥v2∥22 on the both side of the above inequality, we
have

∥∇wf(w
k,λk)−∇wc(w

k,λk;µk)αk∥2∥v2∥2 ≤ ϵk∥v2∥2. (104)

According to |⟨a, b⟩| ≤ ∥a∥2∥b∥2, we have

|⟨∇wf(w
k,λk)−∇wc(w

k,λk;µk)αk,v2⟩| ≤ ϵk∥v2∥2 (105)

Obviously, we have

⟨∇wf(w
k,λk)−∇wc(w

k,λk;µk)αk,v2⟩ ≥ −ϵk∥v2∥2 (106)

Taking the limit on both sides, we can obtain

lim
k→∞

⟨∇wf(w
k,λk)−∇wc(w

k,λk;µk)αk,v2⟩ ≥ 0 (107)

Namely, we have

⟨∇wf(w
∗,λ∗)−∇wc(w

∗,λ∗;µk)α∗,v2⟩ ≥ 0 (108)

In addition, we have

⟨∇wf(w
∗,λ∗)−∇wc(w

∗,λ∗;µk)α∗,v2⟩
=⟨∇wf(w

∗,λ∗)− ξ∗∇w

(
∇wg(w

∗, λ̄∗)Tv1 + λ∗1ϕ
◦(w∗;v1)

)
,v2⟩

=∇wf(w
∗,λ∗)Tv2 − ξ∗vT

2 ∇2
wwg(w

∗, λ̄∗)v1 − λ∗1ϕ
◦◦(w∗;v1,v2)

≥0 (109)

where

ϕ◦◦(w∗;v1,v2) = lim sup
w 7→ w∗,

s ↓ 0,

ϕ◦(w + v2s;v1)− ϕ◦(w;v1)

s
) (110)

By using the same method, we can obtain

∇λf(w
∗,λ∗)Tv3 −

(
v̄3∇2

wλ̄g(w
∗, λ̄∗)v1 + v13e

λ∗
1ϕ◦(w∗;v1)

)
ξ∗ ≥ 0 (111)

for all v3.

That completes the proof.
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Table 5: The test mse of our method in data reweight with different penalty parameter β.

Datasets 0.1 1 10 100
Cifar10 2.186± 0.014 2.157± 0.016 2.148± 0.007 2.146± 0.006
MNIST 1.339± 0.009 1.338± 0.007 1.341± 0.009 1.338± 0.004
FashionMNIST 1.091± 0.011 1.105± 0.011 1.090± 0.012 1.094± 0.008
SVHN 2.140± 0.003 2.141± 0.002 2.138± 0.004 2.154± 0.043

C PROOF OF THEOREM 4

Here we prove Theorem 4

Proof. Since the lower level problem in problem (1) is convex, finding the optimal solution of the
lower level problem is equivalent to find the point which satisfies the condition

0 ∈ ∇wg(w, λ̄) + exp(λ1)∂φ(h(w)) (112)

This is equivalent to find the point which satisfies the condition

∇wg(w, λ̄)
Tv + exp(λ1)ϕ

◦(w;v) ≥ 0, ∀v ∈ Vw (113)

Therefore, (w∗,λ∗) is the optimal solution of the single level problem (18). Thus, (w∗,λ∗) satisfies
the conditions 19-23.

D IMPACT OF PENALTY PARAMETER

In this section, we evaluate the impact of different initial values for penalty parameter β. We fix
other parameters and choose β from {0.1, 1, 10, 100}. We present the results in Table 5 and Table 6.
From all these results, we can find that using a large penalty parameter usually leads to better results.
This is because using a large penalty parameter means that we can impose greater penalties onto the
conditions that violate the constraints, so as to ensure better convergence performance.

Table 6: Test accuracy (%) of our method in training data poisoning with different penalty parameter.

Data 0.1 1 10 100
SVHN 48.90± 0.37 49.05± 0.23 48.95± 0.24 48.85± 0.57
Cifar10 83.20± 0.22 82.76± 0.16 82.32± 0.09 82.22± 0.28
FashionMNIST 96.02± 0.12 95.99± 0.18 96.06± 0.16 95.80± 0.20
MNIST 79.31± 0.13 77.32± 0.04 78.08± 0.21 77.22± 0.08

23


	Introduction
	Preliminaries
	Formulation of Non-smooth Bi-level Optimization Problem
	Examples of Non-smooth Non-Lipschitz Lower-Level Problems

	Proposed Method
	Smoothing Technique
	Stochastic Constraint Gradient Method

	Theoretical Analysis
	Experiments
	Experimental Setup
	Applications
	Results and Discussion

	Conclusion
	Convergence Analysis
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Lemma 1
	Proof of Theorem 1

	Proof of Theorem 2
	Proof of Theorem 3

	Proof of Theorem 4
	Impact of Penalty Parameter 

