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This document provides additional experimental results, moremethod
details, and further analysis to supplement the main paper, includ-
ing:

• Sec. 1: more experiments on the obstructed environments.
• Sec. 2: additional statistics and visualizations of the R2R-UNO
dataset.

• Sec. 3: qualitative examples of the generated environments
and navigation process.

• Sec. 4: a discussion on the performance gap between original
and obstructed environments.

• Sec. 5: discussions on limitations and future directions of
this work.

1 MORE EXPERIMENTS
In this section, we further investigate the factors impacting agent
performance when meeting instruction-reality mismatches and
the different situations for high-level instructions in REVERIE [9].
All experiments follow the implementation details in the main
paper. The code is available at https://anonymous.4open.science/r/
ObstructedVLN-D579.

1.1 Data Augmentation
In the official DUET [4] implementation 1 for training R2R [1],
no augmented data is used since the model quickly reaches peak
performance in unseen scenarios with limited gold data from R2R.
However, such rapid optimization is not ideal when simultaneously
training in R2R and R2R-UNO. Given the increased complexity and
our curriculum training strategy, agents achieve peak performance
in obstructed environments significantly later than in original ones,
which can cause over-fitting and prevent optimal performance for
both tasks with such limited data for unobstructed environments.

To address this issue, we propose utilizing synthesized instruc-
tions fromPREVALENT [5] as augmented data to enrich the training
data for original environments. While these data may not directly
enhance performance on R2R, they assist in maintaining agent
performance in R2R until the best performance is achieved in ob-
structed environments. In Tab. 1, we present an ablation study of
this augmented data on the validation unseen splits of R2R and R2R-
UNO Block-1 set. For each dataset, we report the best Success Rate
(SR), the corresponding step to achieve the best SR, and theΔSR, rep-
resenting the success rate gap between these two steps. For example,
if DUET reaches its best performance at step 𝑐1 for R2R and 𝑐2 for
R2R-UNO, ΔSR For R2R is calculated as 𝑆𝑅𝑐1

𝑅2𝑅 − 𝑆𝑅
𝑐2
𝑅2𝑅 . A lower

ΔSR value indicates a closer alignment of these two peaks, which
is desirable for achieving optimal performance for both datasets.
The results prove that using PREVALENT significantly narrows the
performance gap between the two peaks. With a ΔSR of only 1.0%
for R2R, the augmented data effectively helps agents maintain their

1https://github.com/cshizhe/VLN-DUET

Table 1: Ablation study of augmented data on R2R and the
Block-1 set of R2R-UNO.

Model
Best in R2R Best in R2R-UNO

Step SR↑ ΔSR↓ Step SR↑ ΔSR↓
Vanilla 3K 72.0 4.5 40K 68.5 11.3

PREVALENT 16K 72.9 1.0 54K 68.9 6.4

Table 2: Navigation performance with different training data
on REVERIE and the Block-1 set of R2R-UNO.

Env
REVERIE R2R-UNO

SR↑ SPL↑ RGS↑ SR↑ SPL↑ RGS↑
Original 49.8 35.0 35.2 34.3 24.6 24.6

Obstructed 48.4 31.7 33.6 38.4 25.7 26.3

Both 50.2 32.6 34.5 37.5 25.3 25.6

performance in original environments and balance the training
across the two tasks.

1.2 Different Situations on REVERIE
Unlike R2R, datasets with high-level instructions will not encounter
instruction-reality mismatches since the instructions only describe
the destination without specifying the path, making our obstructed
environments only additional unseen data for the same task. To vali-
date this, we conducted experimentswithin the REVERIE dataset [9].
Tab. 2 shows the performance of DUET when trained on different
environments of REVERIE, evaluated on the validation unseen
splits.2 We use the Block-1 set of R2R-UNO for the obstructed en-
vironments, as R2R and REVERIE share the same paths within
the Matterport3D dataset [2]. We further incorporated the Remote
Grounding Success (RGS) metric [9] to assess the efficacy of object
grounding. The observed results are markedly different from those
obtained with R2R and R2R-UNO in the main paper. Training with
only obstructed environments can achieve results comparable to
those using the original REVERIE, demonstrating that original and
obstructed environments are the same task when high-level in-
structions are provided. In the more challenging R2R-UNO dataset,
including obstructed environments improves about 4% SR and 1%
RGS, which is relatively minimal compared to the 20% performance
boost with R2R instructions. Although our obstructed environments
do not introduce instruction-reality mismatches with high-level
instructions, they still present a more challenging version of the

2The results exceed those reported in the original DUET paper due to a larger maximum
action length.

1
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Table 3: Navigation performance of DUET and HAMT on the
val seen and unseen splits of R2R and R2R-UNO datasets.
The setting number 𝛾 includes all Block-𝑥 sets with 𝑥 ≤ 𝛾 .
𝛾 = 0 means only using R2R for training.

Model Split 𝛾
Block-1 Block-2 Block-3 R2R

SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑

HAMT

Val
Seen

0 41 36 28 24 21 19 76 72
1 64 60 53 49 48 44 75 72
2 65 59 57 53 51 49 76 73
3 66 60 61 56 57 53 75 72

Val
Unseen

0 34 30 22 19 16 14 65 59
1 52 46 41 36 35 31 66 61
2 50 44 41 37 36 32 65 60
3 51 43 43 37 38 33 67 61

DUET

Val
Seen

0 50 44 34 30 25 22 80 75
1 77 71 70 65 65 62 79 71
2 77 69 76 68 74 67 79 70
3 77 71 75 71 74 70 80 72

Val
Unseen

0 44 36 31 25 23 20 72 60
1 69 55 60 50 53 45 72 58
2 67 53 63 52 59 50 71 56
3 67 53 65 54 63 54 72 57

original dataset, making the results in obstructed environments
significantly lower than the original REVERIE.

1.3 Impact of the Number of Obstructed Edges
To find out the relationship between different numbers of obstructed
edges, we train DUET [4] and HAMT [3] models using R2R and
different sets of R2R-UNO, as shown in Tab. 3. In this context,
each setting 𝛾 contains all Block-𝑥 sets with 𝑥 ≤ 𝛾 in R2R-UNO.
For example, the model with 𝛾 = 3 is trained using R2R and all
three sets of R2R-UNO. The results indicate a positive correlation
between the inclusion of data with increased obstructed edges and
improved agent performance in both HAMT and DUET models on
their respective evaluation sets. Notably, training with all three R2R-
UNO sets brings the best performance on Block-2 and Block-3 sets
while also maintaining strong results on Block-1 and R2R. The𝛾 = 1
setting also performs well on Block-2 and Block-3 sets, suggesting
that the skills required to navigate obstructed environments and
adapt to instruction-reality mismatches are universal for different
situations.

1.4 Hyper-Parameters in Learning Strategy
We conduct an ablation study to evaluate the impact of the maxi-
mum proportion of obstructed environments 𝛼𝑚𝑎𝑥 in our ObVLN
and the task-wise sample strategy, as shown in Tab. 4. The 𝛼𝑚𝑎𝑥 = 0
corresponds to training only with R2R, which performs poorly in
obstructed environments and is included in the main paper, so we
omit it here. The results reveal the trade-off between performances
in original and obstructed environments. Intuitively, increasing
𝛼𝑚𝑎𝑥 leads to the enhanced agent performance in obstructed en-
vironments at the expense of performance in original ones, and
the reverse is also true. Although 𝛼𝑚𝑎𝑥 = 1 achieves the highest
results in the R2R-UNO, it significantly compromises performance

Table 4: Ablation study of different 𝛼𝑚𝑎𝑥 and 𝑐 values on the
val unseen splits of R2R and the Block-1 set of R2R-UNO.

𝑐 𝛼𝑚𝑎𝑥

R2R R2R-UNO

SR↑ SPL↑ SR↑ SPL↑

0K

0.25 72.0 59.1 66.2 51.0
0.50 70.9 58.1 67.0 54.5
0.75 69.2 55.3 68.4 55.0
1.00 62.4 41.2 70.8 57.7

20K

0.25 72.5 59.5 65.1 53.4
0.50 72.3 58.3 68.5 54.9
0.75 71.3 57.4 68.6 56.9
1.00 70.2 55.4 69.0 55.9

(a) R2R (b) R2R-UNO-Block-1

(c) R2R-UNO-Block-2 (d) R2R-UNO-Block-3

Path Length

N
u

m
b

er

Figure 1: The path length distribution in R2R and three sets
of R2R-UNO, including all splits.

in the original environments, which is unacceptable since real-
world agents must operate effectively across both environments.
Considering the overall performance of both datasets, our method
outperforms task-wise sampling.

2 MORE R2R-UNO STATISTICS
In this section, we provide more visualizations of the R2R-UNO
dataset, including the path length distributions, the category dis-
tribution of inpainting objects, and the distribution of CLIP [11]
scores approximated by Gaussian Mixture Models (GMMs).

Path Length Distribution. Fig. 1 shows the path length distribu-
tion of R2R and the three sets of R2R-UNO. It can be observed
that most paths include one or two additional nodes following the
obstruction of an edge, indicating that detours are always close to
the obstructions. This is aligned with real-world obstructions and
represents that most cases in obstructed environments are relatively
manageable. Despite this, current state-of-the-art VLN methods
still perform poorly in zero-shot evaluations within such contexts,
emphasizing the significance of our contributions. Additionally, the
presence of some significantly lengthened paths ensures that the

2
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Figure 2: The CLIP score distributions for ten object categories in R2R-UNO and their corresponding curves of GMMs.

R2R-UNO dataset also possesses sufficient complexity and chal-
lenges for the instruction-reality mismatches.

Compatibility Score Distribution. We present the compatibility
score evaluated by CLIP and corresponding curves of the trained
bimodal Gaussian Mixture Models (GMMs) in Fig. 2. Most object
categories follow the bimodal Gaussian distribution. However, ‘toy’
and ‘dog’ are out of this pattern since they are rarely seen in original
environments, resulting in a high probability of obstruction gener-
ation like an unimodal Gaussian distribution. Despite this, using
a bimodal Gaussian distribution can also help select those high-
quality candidates, so we treat all categories equally. We employ
the log-likelihood values to verify the effectiveness of our GMMs
in Fig. 2. The results demonstrate the strength and reliability of our
method in integrating diverse obstructions into existing views.

Object Category Distribution. Fig. 3 illustrates the distribution
of ten object categories in the R2R-UNO dataset. Each category
comes with at least 1,500 instances of obstruction, with eight out
of them surpassing 3,000 instances, proving the great diversity of
our generated obstructions. The categories ‘Basket’ and ‘Chair’ are
less frequent due to the greater generation challenges and high
occurrence in the inpainting backgrounds.

3 QUALITATIVE EXAMPLES
In this section, we provide more qualitative examples of the view
projection process in the object insertion module and the agent
trajectories in obstructed environments.

3.1 View Projection
Fig. 4 displays qualitative examples of the view projection results
and the final panoramic view in R2R-UNO. The inpainted regions
of the target view are projected into eight adjacent views and com-
bined with the original images to form novel views, as shown on
the left part. We stitch these discrete views together to generate
the panorama on the right, which is natural and photo-realistic.

1K

2K

3K

4K

5K

N
u
m

b
er

Category

b
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k
et

ch
ai

r

su
it

ca
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ta
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cl
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n
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Figure 3: The object category distribution inR2R-UNO. ‘plant’
is short for ‘potted plant’. ‘equip’ represents ‘exercise equip-
ment’ and ‘cleaner’ means ‘vacuum cleaner’.

These examples demonstrate the effectiveness of our method in in-
tegrating novel obstructions into real scenes to generate obstructed
environments.

3.2 Navigation Trajectory
We provide an example to show the adaptability of agents trained
with ObVLN in obstructed environments in Fig. 5. When encoun-
tering an obstruction along the instructed path, the ObVLN agent
efficiently identifies an alternate route and continues following
instructions to reach the destination. However, agents lacking train-
ing in such instruction-reality mismatches get confused and lose
their way, leading to an unsuccessful navigation trajectory. This
scenario demonstrates the significance and effectiveness of intro-
ducing obstructed environments and the ObVLN method.

3
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Figure 4: Qualitative examples of the view projection results and the final panoramic views in R2R-UNO. On the left, we display
the inpainted target view and the eight adjacent views from the projection. On the right, we perform a comparison between
the original Matterport3D panorama and the novel panorama with obstructions in R2R-UNO. The red dash line highlights
the changed areas. Note that slight horizontal shifts between the two panoramas may occur as a result of the image stitching
process employed (source: https://github.com/OpenStitching/stitching).
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Instruction: "Walk out the door in front of you and turn left. Once you reach the black shelf, turn right and 

enter the hallway. Turn into the first door on your left and stop once you enter the bathroom."

R2R Agent ObVLN Agent

Node

GT Path

Obstructed Edge

Agent Trajectory

Starting Point

Destination

Figure 5: A visual comparison between trajectories of DUET trained with R2R and those enhanced by our ObVLN. When facing
the obstruction, the standard DUET (left) fails to find the detour, resulting in an unsuccessful trajectory. In contrast, agents
trained with ObVLN (right) effectively find an alternate path and arrive at the destination.

4 PERFORMANCE GAP BETWEEN R2R AND
R2R-UNO

In Sec. 4.1 of the main paper, we highlight the challenges faced by
state-of-the-art VLN methods in obstructed environments, proved
by their poor zero-shot performance on the R2R-UNO dataset. How-
ever, the significant performance degradation could also be attrib-
uted to factors other than instruction-reality mismatches, thus
making the impact of the “perfect instruction assumption” unclear.
Therefore, we further discuss these potential factors here to support
our claim that instruction-reality mismatches are the primary cause
of the observed performance decline. We consider four key factors:
1. Visual changes from inpainting. 2. Path number imbalance. 3.
Increased navigation complexity. 4. Instruction-reality mismatches.

Regarding the first factor, the results in Tab. 3 of the main paper
demonstrate that even in the absence of visual changes as the
visual feedback, DUET maintains a 60% success rate, which is much
higher than the 40% when zero-shot evaluation. We also experiment
with only modifying visual observations while maintaining the
navigation graphs, the vanilla DUET agents can achieve a 71% SR
under the Block-1 observations. These findings indicate that visual
changes are not the primary cause of the performance drop.

We take the second factor into consideration because R2R paths
with different numbers of redundant edges will result in different
numbers of modified paths in the R2R-UNO dataset. To eliminate
the impact of this shift, we assess the success rate under controlled
conditions by marking all successful paths in R2R also as successful
in R2R-UNO and vice versa. The SR on the validation unseen split
of DUET slightly decreased from 72% to 71%, suggesting the limited
impact of this factor.

For factors three and four, we compare the differences in per-
formance gain with and without the obstructed environments as
training data between R2R (Tab. 2 in the main paper) and REVERIE

(Tab. 2). R2R with both factors gets a substantial 20% SR improve-
ment after training in obstructed environments. In contrast, REVERIE
shows a slight 4% SR difference without the instruction-reality
mismatches. This difference suggests that the instruction-reality
mismatches are the main contributor to the performance drop, em-
phasizing the significance of our work.

5 DISCUSSION
Limitations. Although obstructed environments are designed

to help agents adapt to instruction-reality mismatches caused by
real-world dynamics such as unexpected obstacles, the develop-
ment of these agents is currently limited to simulators rather than
actual robots. This requires further advancements in continuous
environments like VLN-CE [6]. Another limitation is that our object
insertion is conducted on 2D images instead of 3D environments,
potentially leading to inconsistencies across multi-view observa-
tions and depth information. We experiment with state-of-the-art
single-image to 3D reconstruction works [7, 10] to map our 2D
changes into 3D spaces but get unsatisfactory results. Furthermore,
there is still room for enhancing agent performance in obstructed
environments to further approach the performance in original set-
tings.

Future Work. In the future, we plan to extend our methods into
continuous VLN benchmarks like VLN-CE [6], and incorporate
obstruction detection methods to deploy our agents on real robots.
This will enable us to assess their performance in real-world nav-
igation scenarios, especially after the introduction of instruction-
reality mismatches. We also aim to perform 3D object insertion to
the Matterport3D dataset to render obstacles more naturally and
realistically. Besides unexpected obstacles, some other potential
causes for instruction-reality mismatches also need investigation,
including existing object removal, furniture rearrangement [12],

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

and human-in-the-loop navigation [8]. Additionally, we will investi-
gate more training strategies to further enhance agent performance
in obstructed environments.
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