
Under review as a conference paper at ICLR 2021

A A��������� A������ I����������

A.1 M2(R) M������������� T����

Each tuple (ta, tb, tc, td) represents a 2⇥ 2 real matrix.

M2(R) a b c d

a a b 0 0
b 0 0 a b

c c d 0 0
d 0 0 c d

A.2 M2(C) M������������� T����

Each tuple (ta, tb, tc, td, te, tf , tg, th) represents the 2⇥ 2 complex matrix:
h
ta + tbi tc + tdi

te + tf i tg + thi

i

M2(C) a b c d e f g h

a a b c d 0 0 0 0
b b -a d -c 0 0 0 0
c 0 0 0 0 a b c d

d 0 0 0 0 b -a d -c
e e f g h 0 0 0 0
f f -e h -g 0 0 0 0
g 0 0 0 0 e f g h

h 0 0 0 0 f -e h -g

A.3 D��� N����� M������������� T����

Each tuple (ta, tb) represents the dual number (ta + tb✏).

Dual Number a b

a a b

b b 0

A.4 C���� P������ M������������� T����

Multiplicated uses the cross product between length-3 tuples (ta, tb, tc).

Cross Product a b c

a 0 c -b
b -c 0 a
c b -a 0

A.5 L����� L���� E������

We give a concrete example of replacing a real linear layer with M2(R)-linear layer such that the activation
memory is kept identical. Intuitively, this can be thought of as reshaping the Rd input activations to have shape
M2(R)

d/4 that is processed by a fM : M2(R)
d/4 ! M2(R)

d/4 linear layer resulting in output activations –
when flattened – with shape R

d. Each such linear layer fM requires 1
4 of the parameters and 1

2 of the FLOPS
compared to a real Rd ! R

d linear layer counterpart.

B A������N�� C������: A����������, I��������������, ���

B.1 T����-���� N�����������

We consider equations of the form:
t f(g(t)) ⇤ t (1)

11

Under review as a conference paper at ICLR 2021

We found that if g is the tuple mean, and f is H the Heaviside function, top-1 performance dropped on an M2(R)
ResNet-50 AlgebraNet by 2.97%. While this drop is significant, the resulting activation sparsity might make it a
desirable tradeo� in some circumstances. Other methods, such as setting g to be the determinant resulted in
greater than a 10% drop in performance.

B.2 I�������������

For a ResNet-50 H-AlgebraNet with the standard number of channels divided by 4, we find a top-1 performance
of 74.0± 0.14 using standard initialization and 74.1± 0.15 using initialization from Gaudet and Maida (2018).
These experiments are done using standard batch normalization instead of the more expensive whitening
procedure.

B.3 C��������� �� R����

For all considered algebras, the norm of the tuple is mathematically given by
pP

i t
2
i . It is possible that the

optimal choice for converting to the reals would be di�erent in models with very large final layers, such as word
based language modeling – which we do not consider.

C A������N�� P������

C.1 A���������� ����� ������� �� M2(R)

For M2(R), we consider a variety of alternative pruning methods to remove entire tuples, based on the two
eigenvalues, �1 and �2 and singular values, �1,�2. Specifically, because our matrices are square but not
symmetric, the Forbenius norm is defined based on the singular values which correspond to the squared
eigenvalues of AA

T , if A is the matrix in question.

• Frobenius Norm:
�
�
2
1 + �

2
2

�1/2

• Determinant: �1�2

• Smallest Eigenvalue min(|�1|, |�2|)

• Largest Eigenvalue max(|�1|, |�2|)

In all cases, we remove tuples with the minimum magnitude of one of those options.

Sparsity det min max

50 -0.27 -0.76 -0.02
70 -1.26 -1.71 -0.57
90 -2.69 -3.558 -0.73

Table 4: For 50%, 70%, and 90% sparsity, we show the performance relative to the Frobenius norm for di�erent
magnitude-based tuple pruning criterion.

In Table 4, we show the resulting drop in top-1 accuracy relative to the Frobenius norm at three di�erent sparsities
for three alternative pruning methods. In addition to always achieving the best performance, the Frobenius norm
has the additional advantage that it is defined for all Algebra variants that was consider, rather than an Mn(R)
specific variant, for example.

C.2 P������ ���������� �� M2(R) ��� H

For M2(R) and H, we also prune individual tuple elements based on element norms. This equally reduces the
number of non-zero weights in the network, though it does not result in entire matrix multiplies that can be
skipped.

12

Under review as a conference paper at ICLR 2021

Sparsity M2(R) H

50 +0.20% +0.18%
60 +0.37% +0.32%
70 +0.58% +0.49%
80 +0.93% +0.74 %
90 +2.13% +1.64 %

Table 5: Performance di�erent from pruning components and entire tuples for M2(R) and H-AlgebraNets.
Depending on the size of the network, the di�erence between the methods varies slightly. The main point is that
pruning elements rather than tuples increases performance, more-so for higher sparsities.

In Table 5, we show the resulting increase in top-1 accuracy that results from pruning individual tuple components,
rather than entire tuples. However, due to the structure Mn(R) and H multiplication, setting individual values
to 0 does not result in 0 in the output. Therefore, pruning entire tuples provides more useful computational
advantages.

D A������N�� T���� �� CIFAR

We use a network structure based on that described in Gaudet and Maida (2018). We begin with the same ResNet
structure, with 128, 256, and then 512 channels in each real block. For the C networks, all channel counts are
divided by two. For the M2(R) and H networks, we assign the initial convolution, before the residual blocks, to
have half the original number of channels, all other channel counts are divided by four. Thus, for H and M2(R)
we have slightly more than 1/4 the parameters. We train with 24⇥ 24 random crops and evaluate on 32⇥ 32
images.

Algebra Parameters (⇥106) FLOPs (⇥106) top-1
R 3.64 32.8 94.2

C BN 1.85 33.6 94.2
C W 1.86 50.7 94.3

M2(R) 0.94 20.7 94.3
H BN 0.94 41.4 93.4
H W 0.97 72.9 94.1

Table 6: A comparison of di�erent AlgebraNets on CIFAR-10. BN denotes Batch Normalization, W denotes
the use of whitening.

We find we are able to divide the channels in the filter by two and maintain the same performance using complex
valued networks. When reducing the parameter count by a factor of ⇠four, we find we are able to again match
baseline performance with quaternions and 2⇥ 2 matrices. Regularization has non-trivial e�ect on performance,
and by more finely adjusting the L2 loss for the di�erent algebras may result in higher top-1 accuracy. We note
that the relative reduction in parameters on CIFAR-10 is not something we are able to replicate on ImageNet.
The results from the main text also hold here – M2(R) is the only algebra that is able to maintain accuracy while
having fewer FLOPs than the baseline real network. For these experiments, we used algebra specific weight
initializations, though we again verified that this does not seem to have a substantial e�ect.

E E������ M2(R) C���

We write the update rule explicitly for readability. Note that it is possible to concatenate the relevant terms on the
channel axis to reduce the number of convolutions needed.

C����������

'''
Simplified example code for M_2(R).

x: Input with an additional algebra axis. In the case

of a convolution, either (B, H, W, C, A) or

(B, C, H, W, A)

w: Corresponding weight matrix, with an additional

13

Under review as a conference paper at ICLR 2021

algebra axis.

'''

Rule that describes 2x2 matrix multiplication.

mat_22_rule = [[(0, 0), (1, 2)],
[(0, 1), (1, 3)],
[(2, 0), (3, 2)],
[(2, 1), (3, 3)]]

Update each of the four algebra components.

x_new = [0, 0, 0, 0]
for i in range(4):

for j in range(2):
w: weight with an extra algebra dimension.

x: Input with shape [B, ... , A] where A is the additional algebra dimension.

x_new[i] += Conv2D(x[..., mat_22_rule[i][j][1],
w[..., mat_22_rule[i][j][0],
...)

Add bias if wanted. Add (4,) to shape.

L����� L����

Update each of the four algebra components.

x_new = [0, 0, 0, 0]
for i in range(4):

for j in range(2):
w: weight with an extra algebra dimension.

x: Input with shape [B, L, A] where A is the algebra dimension.

x_new[i] += dot(x[..., mat_22_rule[i][j][1],
w[..., mat_22_rule[i][j][0])

Add bias if wanted. Add (4,) to shape.

F I�������� A��������� M�����

Due to the activations, there will be a slight increase in memory footprint from AlgebraNets in some cases. For
example, in a M2(R) AlgebraNet for ResNet-50 with channels/4, there will be C/4 convolutions performed. This
would, in a naive implementation, result in twice the activation memory. However, with a properly written kernel,
this would not be the case. There is, however, an additional factor: to reach comparable performance a slightly
larger network than C/4 is needed. In practice about a 1.3⇥ increase in activation memory would be incurred.

14

