
Supporting material for "Use Perturbations when
Learning from Explanations"
A Proof of Theorem 1

We restate the result of Theorem 1 for clarity.

We infer a regression function f from a GP prior as described above with the additional supervision
of [∂f(x)/∂x2]|x(i) = 0, ∀i ∈ [1, N ]. Then the function value deviations to perturbations on
irrelevant feature are lower bounded by a value proportional to the perturbation strength δ as shown
below.
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Proof outline. We first show that the posterior mean of the function estimates marginalised over
hyperparameters with Gamma prior has the following closed form where d(x, y) = (x− y)2/2 and
ỹ denotes original observations y augmented with observations on gradients, which is described in
more detail further below.
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We then derive the following lower bound on the function value deviations and finally use simple
inequalities to arrive at the final result.
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Proof. We first derive the augmented set of observations (ŷ) and K̂ explained in the main section.

ŷ = [y1, y2, . . . , yN , ∂f(x(1))/∂x2, ∂f(x
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These results follow directly from the results on covariance between observations of f and its partial
derivative below (Hennig et al., 2022).
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The posterior value of the function at an arbitrary point x would then be of the form p(f(x) |
D) ∼ N (f(x);mx, kx) where mx and kx are have the following closed form for Gaussian prior and
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Gaussian likelihood in our case.

mx = k(x,X)K−1
XX ŷ

kx = k(x, x)− k(x,X)K−1
XXk(X,x)

Since mx, kx are functions of the parameters θ1, θ2, we obtain the closed form for posterior mean by
imposing a Gamma prior over the two parameters. For brevity, we denote by d(x, x̃) = (x− x̃)2/2

and ỹ(i) is the i(th) component of K̂−1
XX ŷ.
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Overall, we have the following result.
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We now derive the sensitivity to perturbations on the second dimension for ∆x = [0, δ]T .
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Using Bernoulli inequality, (1 + x)r ≥ 1 + rx if r ≤ 0, we derive the following inequalities.
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Using inequalities 9, 10 in Equation 7, we have the following.
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f(x+∆x)− f(x) ≥ 2δα
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Using the inequality (1 + x)r ≥ 1 + rx if r ≤ 0, we have
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ỹn+N

(
2(x2 − x

(n)
2 )[x2 + δ − x

(n)
2 ](1− d(x2, x

(n)
2 ))− 1

)
− ỹn
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B Proof of Theorem 2

We restate the result of Theorem 2 for clarity.

When we use an adversarial robustness algorithm to regularize the network, the fitted function has
the following property.

|f(x+ [0, δ]T )− f(x)| ≤ α

β
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δmax and fmax are maximum value of ∆x2 and f(x) in the input domain (X ) respectively. X̂
denotes the subset of inputs covered by the robustness method. C therefore captures the maximum
gap in coverage of the robustness method.

Proof. We begin by estimating the Lipschitz constant of a GP with squared exponential kernel.
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We denote with δmax the maximum deviation of any input from the training points, i.e. we define
δmax as maxx∈X minn∈[N ] |x2 − x

(n)
2 |. Also, we denote by fmax the maximum function value in

the input domain, i.e. fmax ≜ maxx∈X f(x). We can then bound the partial derivative wrt second
dimension as follows.
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For any arbitrary point x, the maximum function deviation is upper bounded by the product of
maximum slope and maximum distance from the closest point covered by the adversarial distance
method.
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Therefore,

|f(x+ [0, δ]T )− f(x)| ≤ 2
δmaxfmax

θ2
C

Marginalising θ−2 with the Gamma prior leads to the final form below.

|f(x+ [0, δ]T )− f(x)| ≤ 2C
α

β
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C Proof of Proposition 1

We restate the result here for clarity.

Consider a regression task with D + 1-dimensional inputs x where the first D dimensions are
irrelevant, and assume they are xd = y, d ∈ [1, D] while xD+1 ∼ N (y, 1/K). The MAP estimate
of linear regression parameters f(x) =

∑D+1
d=1 wdxd when fitted using Avg-Ex are as follows:

wd = 1/(D +K), d ∈ [1, D] and wD+1 = K/(K +D).

Proof. Without loss of generality, we assume α, σ2 parameters of Avg-Ex are set to 1. In effect, our
objective is to fit parameters that predict well for inputs sampled using standard normal perturbations,
i.e. x(n) +mϵ,∀n ∈ [1, N ], ϵ ∼ N (0, 1),m = [1, 1, . . . , 1, 0]T ∈ {0, 1}D+1. The original problem
therefore is equivalent to fitting on transformed input x̂ such that x̂(n)

i ∼ N (y, σ2
i ) where σ2

i = 1 for
all i ≤ D and is 1/K when i = D + 1.

Likelihood of observations for the equivalent problem is obtained as follows.
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Substituting, the value of σi defined as above, we have P=D+K and the MLE estimate for the linear
regression parameters are as shown in the statement. The MAP estimate also remains the same since
we do not impose any informative prior on the regression weights.

D Parametric Model Analysis

In this section we show that a similar result to what is shown for non-parametric models also holds
for parametric models. We will analyse the results for a two-layer neural networks with ReLU
activations. We consider a more general case of D dimensional input where the first d dimensions
identify the spurious features. We wish to fit a function f : RD → R such that f(x) is robust to
perturbations to the spurious features. We have the following bound when training a model using
gradient regularization of Ross et al. (2017).
Proposition 2. We assume that the model is parameterised as a two-layer network with ReLU
activations such that f(x) =

∑
j βjϕ(

∑
i wjixi + bj) where β⃗ ∈ RF , w⃗ ∈ RF×D, b⃗ ∈ RF are the

parameters, and ϕ(z) = max(z, 0) is the ReLU activation. For any function such that gradients
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wrt to the first d features is exactly zero, i.e. ∂f
∂xi

|
x
(n)
i

= 0 ∀i ∈ [1, d], n ∈ [1, N ], we have the
following bound on the function value deviations for input perturbations from a training instance x:
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T
d+1:D]T .

|f(x̃)− f(x)| = Θ((∥β⃗∥2 + ∥w⃗∥2F )∥∆x∥) (12)

For a two-layer network trained to regularize gradients wrt first d dimensions on training data, the
function value deviation from an arbitrary point x̃ from a training point x such that x̃− x = ∆x =
[∆xT

1:d,0
T
d+1:D]T is bounded as follows.
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Proof. Recall that the function is parameterised using parameters w⃗, b⃗, β⃗ such that f(x) =∑
j βjϕ(

∑
i wjixi + bj) where β⃗ ∈ RF , w⃗ ∈ RF×D, b⃗ ∈ RF are the parameters, and ϕ(z) =
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We now bound the variation in the function value for changes in the input when moving from x → x̃
where x is an instance from the training data. We define four groups of neurons based on the sign of∑

i wjixi + bj and
∑

i wjix̃i + bj . g1 is both positive, g2 is negative and positive, g3 is positive and
negative, g4 is both negative. By defining groups, we can omit the ReLU activations as below.
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retaining only the terms that depend on ∆x = x̃− x, the expression is further simplified as a term
that grows with ∆x and a constant term that depends on the value of x
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E Further Experiment Details

E.1 Hyperparameters.

We picked the learning rate, optimizer, weight decay, and initialization for best performance with
ERM baseline on validation data, which are not further tuned for other baselines unless stated
otherwise. We picked the best λ for Grad-Reg and CDEP from [1, 10, 100, 1000]. Additionally, we
also tuned β (weight decay) for Grad-Reg from [1e-4, 1e-2, 1, 10]. For Avg-Ex, perturbations were
drawn from 0 mean and σ2 variance Gaussian noise, where σ was chosen from [0.03, 0.3, 1, 1.5, 2].
In PGD-Ex, the worst perturbation was optimized from ℓ∞ norm ϵ-ball through seven PGD iterations,
where the best ϵ is picked from the range 0.03-5. We did not see much gains when increasing PGD
iterations beyond 7, Appendix F contains some results when the number of iterations is varied. In
IBP-Ex, we follow the standard procedure of Gowal et al. (2018) to linearly dampen the value of α
from 1 to 0.5 and linearly increase the value of ϵ from 0 to ϵmax, where ϵmax is picked from 0.01 to 2.
We usually just picked the maximum possible value for ϵmax that converges. For IBP-Ex+Grad-Reg,
we have the additional hyperparameter λ (Eqn. 4), which we found to be relatively stable and we set
it to 1 for all experiments.

E.2 Metrics

Relative Core Sensitivity (RCS) (Singla et al., 2022). The metric measures the relative dependence
of the model on core features and is normalised such that the best value is 100. Higher value of RCS
imply that the model is exploiting core features more than the spurious features.

RCS = 100× acc(C) − acc(S)

2min(ā, 1− ā)
, where ā =

acc(C) + acc(S)

2
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(
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)
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)
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1
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∑
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1

(
f
(
x(n) + σ(z⊙ (1−m(n))); θ

)
= y(n)

)
where z ∼ N (0, I) and σ = 0.25 for all experiments. The interpretation of acc(C) is the accuracy
when noise is added outside of core region, and acc(S) is the accuracy when noise is added outside of
spurious region.

E.3 Data splits

We randomly split available labelled data in to training, validation, and test sets in the ratio of (0.75,
0.1, 0.15) for ISIC, (0.65, 0.1, 0.25) for Plant (similar to Schramowski et al. (2020)) and (0.6, 0.15,
0.25) for Salient-Imagenet. We use the standard train-test splits on MNIST.

E.4 Datasets

ISIC dataset The ISIC dataset consists of 2,282 cancerous (C) and 19,372 non-cancerous (NC) skin
cancer images of 299 by 299 size, each with a ground-truth diagnostic label. We follow the standard
setup and dataset released by Rieger et al. (2020), which included masks with patch segmentations. In
half of the NC images, there is a spurious correlation in which colorful patches are only attached next
to the lesion. This group is referred to as patch non-cancerous (PNC) and the other half is referred
to as not-patched non-cancerous (NPNC) Codella et al. (2019). Since trained models tend to learn
easy-to-learn and useful features, they tend to take a shortcut by learning spurious features instead of
understanding the desired diagnostic phenomena. Therefore, our goal is to make the model invariant
to such colorful patches by providing a human specification mask indicating where they are.

decoy-MNIST dataset The MNIST dataset consists of 70,000 images of handwriting digit from 0 to
9. Each class has about 7,000 images of 28 by 28 size. We use three-fully connected layers for multi
classification with 512 hidden dimension and 3 channels.

Salient-Imagenet. The six classes we considered are Rhinoceros Beetle, Dowitcher, Alaskan Tundra
Wolf, Dragonfly, Gorilla, Snoek Fish.
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E.5 Computational cost

Run time and memory usage Table 3 presents the computation costs, including run time and memory
usage, for each method using GTX 1080 Ti. It is worth noting that IBP-Ex has significantly less run
time and memory usage compared to PGD-Ex, with a 10-fold reduction in run time and a 2.5-fold
reduction in memory usage. Considering that PGD-Ex and IBP-Ex have similar performance in terms
of worst group accuracy, as shown in Table 5, IBP-Ex+Grad-Reg appears to be comparably effective
and efficient for model modification. Additionally, the combined method IBP-Ex+Grad-Reg, which
presents the best performance in terms of averaged and worst group accuracy compared to PGD-Ex,
also has a 3-fold reduction in run time and a 2-fold reduction in memory usage compared to PGD-Ex.

Grad-Reg PGD-Ex IBP-Ex IBP-Ex+Grad-Reg PGD-Ex+Grad-Reg
×2.3 ×4.9 ×2.2 ×3.5 × 7.0
Table 3: Running time in comparison to ERM on the ISIC dataset

E.6 Network Architecture

Model architecture on the decoy-MNIST dataset

Sequential(
(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU()
(2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(3): ReLU()
(4): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): ReLU()
(6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(7): ReLU()
(8): Flatten(start_dim=1, end_dim=-1)
(9): Linear(in_features=200704, out_features=1024, bias=True)
(10): ReLU()
(11): Linear(in_features=1024, out_features=1024, bias=True)
(12): ReLU()
(13): Linear(in_features=1024, out_features=2, bias=True)

)

Model architecture on the ISIC dataset

Sequential(
(0): Flatten(start_dim=1, end_dim=-1)
(1): Linear(in_features=2352, out_features=512, bias=True)
(2): ReLU()
(3): Linear(in_features=512, out_features=512, bias=True)
(4): ReLU()
(5): Linear(in_features=512, out_features=512, bias=True)
(6): ReLU()
(7): Linear(in_features=512, out_features=10, bias=True)
)

Model architecture on the Plant phenotyping dataset

Sequential(
(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU()
(2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(3): ReLU()
(4): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): ReLU()
(6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
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(7): ReLU()
(8): Flatten(start_dim=1, end_dim=-1)
(9): Linear(in_features=200704, out_features=1024, bias=True)
(10): ReLU()
(11): Linear(in_features=1024, out_features=1024, bias=True)
(12): ReLU()
(13): Linear(in_features=1024, out_features=2, bias=True)

)

F Additional Results

F.1 Standard deviations

We repeated all our experiments on Decoy-MNIST, Plant and ISIC dataset three times and report the
mean and standard deviation in Table 4. Similarly, we report in Table 5, the standard deviations for
the corresponding Table 2 of the main paper.

Dataset→ Decoy-MNIST Plant ISIC
Method↓ Avg Acc Wg Acc Avg Acc Wg Acc Avg Acc Wg Acc

ERM 15.1 ± 1.3 10.5 ± 5.4 71.3 ± 2.5 54.8 ± 1.3 77.3 ± 2.4 55.9 ± 2.3
G-DRO 64.1 ± 0.1 28.1 ± 0.1 74.2 ± 5.8 58.0 ± 4.6 66.6 ± 5.4 58.5 ± 10.7

Grad-Reg 72.5 ± 1.7 46.2 ± 1.1 72.4 ± 1.3 68.2 ± 1.4 76.4 ± 2.4 60.2 ± 7.4
CDEP 14.5 ± 1.8 10.0 ± 0.7 67.9 ± 10.3 54.2 ± 24.7 73.4 ± 1.0 60.9 ± 3.0

Avg-Ex 29.5 ± 0.3 19.5 ± 1.4 76.3 ± 0.3 64.5 ± 0.3 77.1 ± 2.1 55.2 ± 6.6
PGD-Ex 67.6 ± 1.6 51.4 ± 0.3 79.8 ± 0.3 78.5 ± 0.3 78.7 ± 0.5 64.4 ± 4.3
IBP-Ex 68.1 ± 2.2 47.6 ± 2.0 76.6 ± 3.5 73.8 ± 1.7 75.1 ± 1.2 64.2 ± 1.2

P+G 96.9 ± 0.3 95.8 ± 0.4 79.4 ± 0.5 76.7 ± 2.8 79.6 ± 0.5 67.5 ± 1.1
I+G 96.9 ± 0.2 95.0 ± 0.6 81.7 ± 0.2 80.1 ± 0.3 78.4 ± 0.5 65.2 ± 1.8

Table 4: Macro-averaged (Avg) accuracy and worst group (Wg) accuracy on (a) decoy-MNIST, (b)
plant dataset, (c) ISIC dataset. Results are averaged over three runs and their standard deviation is
shown after ±. I+G is short for IBP-Ex+Grad-Reg and P+G for PGD-Ex+Grad-Reg. See text for
more details.

Method NPNC PNC C Avg Wg
ERM 55.9 ± 2.3 96.5 ± 2.4 79.6 ± 6.6 77.3 ± 2.4 55.9 ± 2.3
G-DRO 72.4 ± 4.0 63.2 ± 14.8 64.1 ± 5.6 66.6 ± 5.4 58.5 ± 10.7
Grad-Reg 67.1 ± 4.8 99.0 ± 1.0 63.2 ± 11.3 76.4 ± 2.4 60.2 ± 7.4
CDEP 72.1 ± 5.4 98.9 ± 0.7 62.2 ± 4.7 73.4 ± 1.0 60.9 ± 3.0
Avg-Ex 62.3 ± 11.7 97.8 ± 0.8 71.0 ± 16.7 77.1 ± 2.1 55.2 ± 6.6
PGD-Ex 65.4 ± 5.4 99.0 ± 0.3 71.7 ± 6.7 78.7 ± 0.5 64.4 ± 4.3
IBP-Ex 68.4 ± 3.4 98.5 ± 1.0 67.7 ± 4.8 75.1 ± 1.2 64.2 ± 1.2
P+G 69.6 ± 2.8 98.84 ± 0.6 70.4 ± 4.1 79.6 ± 0.5 67.5 ± 1.1
I+G 66.6 ± 3.1 99.6 ± 0.2 68.9 ± 4.7 78.4 ± 0.5 65.2 ± 1.8

Table 5: Macro-averaged (Avg) accuracy and worst group (Wg) accuracy on ISIC dataset. Also
shown are the average precision scores for each of the three groups. All the results are averaged over
three runs and their standard deviation is shown after ±. Note that the worst group for each run can
be different

F.2 Additional results on Salient-Imagenet

In Table 6, we show average accuracy and accuracy when noise (drawn from standard normal) is
added to spurious or irrelevant regions (N-Acc column). We observe that for PGD-Ex + Grad-Reg,
the accuracy did not diminish by much when noise is added to the spurious region.

F.3 Comparison of PGD-Ex and IBP-Ex

In Table 5, it is difficult to compare the worst group accuracy of IBP-Ex (64.2) and PGD-Ex (64.4)
due to the comparably high standard deviation of PGD-Ex (4.3). Therefore, we additionally compare
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Method Accuracy N-Acc ↑ RCS ↑
ERM 96.4 87.5 47.9

Grad-Reg 88.3 82.2 52.5
PGD-Ex 93.8 90.2 58.7

PGD-Ex + Grad-Reg 94.6 93.8 65.0
Table 6: The columns in that order are the average accuracy, accuracy when noise is added to spurious
(or irrelevant) regions and RCS value for our Salient-Imagenet data setup.

the accuracy drop when colorful patches are removed from images in the PNC group in Table 7.
We replace the colorful patch of the image with its mean value, making it looks like a background
skin color. Note that we evaluate the robustness to concept-level perturbations rather than pixel-
level perturbations, as our focus is on avoiding spurious concept features rather than robustness to
adversarial attacks. Interestingly, the accuracy drops about 17% and 37% in IBP-Ex and PGD-Ex,
respectively, showing that IBP-Ex is more robust to concept perturbations. This can be explained by
the effectiveness of robustness methods in covering the epsilon ball with the center of each input point
defined in a low-dimensional manifold annotated in the human specification mask. IBP guarantees
robustness on any possible pixel combination within the epsilon ball while PGD only considers the
worst case in the epsilon ball. When the inner maximization to find the PGD attack is non-convex,
an inappropriate local worst case is found instead of the global one. Thus, IBP-Ex shows better
robustness when spurious concepts are removed, which involves large perturbations on irrelevant
parts within the defined epsilon ball. The combined method IBP-Ex+Grad-Reg, where Grad-Reg
compensates for the practical limitations of the training procedure of IBP-Ex, shows about 1% higher
worst group accuracy than IBP-Ex alone.

Method PNC PNC (Remove patch)
PGD-Ex 99.0 ± 0.3 62.2 ± 17.0
IBP-Ex 98.5 ± 1.0 81.6 ± 16.5
IBP-Ex+Grad-Reg 99.6 ± 0.2 82.5 ± 9.5

Table 7: Comparison between robustness based methods. Macro-averaged accuracy and regval loss
before and after removing color patch part of images in PNC group on ISIC dataset.

F.4 Results of PGD-Ex with different epsilon and iteration number.

We experimented with different values of epsilon and iteration numbers on the ISIC and Plant
phenotyping datasets. The epsilon values tested were 0.03, 0.3, 1, 3, and 5, and the iteration numbers
were 7 and 25. In Figure 4, the results on the ISIC dataset showed that using an iteration of 7 with
different epsilon values resulted in stable results, but using an iteration of 25 resulted in unstable
worst group accuracy. However, in the Plant phenotyping dataset, we found that both average and
worst group accuracy were similar regardless of the epsilon and iteration values used.

(a) PGD-Ex on the ISIC data (b) PGD-Ex on the Plant phenotying data

Figure 4: PGD-Ex results on the ISIC and Plant phenotyping dataset with different epsilon and
iteration numbers in (a) and (b), respectively.
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F.5 Out-of-distribution scenarios on the Plant data

In the main paper, we follow the dataset construction from Schramowski et al. (2020) to replace
background with the average pixel value, which is obtained from train split. Here, in Table 8 we
evaluated on a test set obtained by adding varying magnitude of noise to the background to test
methods under out-of-distribution scenarios. We observe that robustness and regularization methods
when combined led to a model that is far more robust to noise in the background, aligning with our
original results on the plant dataset.

Noise (N (0, 1)) Noise (N (0, 10)) Noise (N (0, 30))

Avg Acc Wg Acc Avg Acc Wg Acc Avg Acc Wg Acc

ERM 59.8 ± 11.9 43.5 ± 2.0 57.4 ± 7.6 38.1 ± 4.8 55.8 ± 1.7 22.0 ± 3.7
Grad-Reg 71.6 ± 2.0 66.1 ± 1.8 68.7 ± 6.2 53.4 ± 4.3 56.1 ± 3.3 34.8 ± 1.8
PGD-Ex+Grad-Reg 69.8 ± 1.8 67.2 ± 2.1 69.5 ± 3.7 60.6 ± 4.8 67.5 ± 4.5 50.8 ± 2.4

Table 8: Out-of-distribution scenarios on the Plant data

F.6 Generality to new explanation methods: Integrated-gradient and CDEP

In Table 9, we introduced evaluation using Integrated-gradient (Sundararajan et al., 2017) based
regularization and also added evaluation with PGD-Ex+CDEP that we did not originally include on
Decoy-MNIST dataset.

Alg. Avg Acc Wg Acc

Integrated-Grad 26.7 ±1.3 17.6 ±1.2
CDEP 14.5 ±1.8 10.0 ±0.7
PGD-Ex 67.6 ±1.6 51.4 ±0.3
PGD-Ex+Integrated-Grad 80.5 ±2.1 62.1 ± 6.8
PGD-Ex+CDEP 84.8 ±0.8 64.2 ±1.6

Table 9: PGD-Ex+Integrated-Grad and PGD-Ex+CDEP on the Decoy-MNIST data

F.7 Generality to new model architecture: Attention map-based (ViT)

Using a Visual transformer architecture (of depth 3 and width 128), we evaluated regularization using
local explanations obtained using an attention map – regularization based on attention maps was
used to supervise prior knowledge in Miao et al. (2022) and is called SPAN. We obtained saliency
explanations on inputs using the procedure proposed in Miao et al. (2022), shown in Table 10

Alg. Avg Acc Wg Acc

ERM 10.0 ±0.3 8.1 ±0.3
SPAN 19.0 ±0.3 8.1 ±0.3
PGD-Ex 64.6 ±4.7 37.4 ±3.5
PGD-Ex+SPAN 63.1 ±2.6 39.4 ± 2.9

Table 10: Attention Map based local explanations with ViT on the Decoy-MNIST data

F.8 Sensitivity to hyperparameters on Decoy-MNIST dataset

In Table 11, we show sensitivity to hyperparameters on Decoy-MNIST dataset. In summary, results
are broadly stable with the choice of hyperparameters, and we did not extensively search for the best
hyperparameters.
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Decoy-MNIST Lambda (Grad-Reg) Eps (PGD-Ex) Avg -Acc Wg -Acc

PGD-Ex + Grad-Reg 1 3 96.9 ± 0.3 95.8 ± 0.4
0.1 3 96.8 ± 0.8 94.2 ± 0.2
1.5 3 95.6 ± 1.0 93.0 ± 1.0
5 3 91.6 ± 0.9 87.6 ± 2.3
0.0001 3 75.5 ± 0.9 57.2 ± 3.6
1 1 95.1 ± 2.0 91.3 ± 3.9
1 2 95.4 ± 1.8 92.0 ± 1.6
1 4 97.5 ± 0.2 95.4 ± 0.8
1 5 93.8 ± 1.6 86.3 ± 3.1
1 0.1 58.5 ± 7.9 30.0 ± 2.7
1 0.0001 59.5 ± 1.1 40.1 ± 2.0

PGD-Ex 0 3 67.6 ± 1.6 51.4 ± 0.3
0 0.0001 16.5 ± 1.1 15.4 ± 2.7
0 0.1 19.1 ± 0.7 13.6 ± 0.6
0 1 62.5 ± 1.0 40.1 ± 2.2
0 2 74.6 ± 5.6 52.8 ± 4.8
0 4 71.9 ± 8.5 58.6 ± 12.9
0 5 57.0 ± 3.1 42.6 ± 4.2

Grad-Reg 10 0 64.1 ± 0.1 28.1 ± 0.1
5 0 39.2 ± 2.2 21.5 ± 0.6
20 0 49.1 ± 2.7 33.2 ± 4.3
100 0 50.1 ± 0.4 35.2 ± 2.3
500 0 48.0 ± 0.9 36.2 ± 1.7
1000 0 49.6 ± 1.7 30.5 ± 6.1

Table 11: Sensitivity to hyperparameters on Decoy-MNIST dataset

G Discussion on poor CDEP performance

Regarding ISIC dataset discrepancy: In Table 5, CDEP demonstrates better performance in worst
group accuracy compared to ERM on the ISIC dataset. However, it fails to surpass RRR, which
contradicts results from previous research in Rieger et al. (2020) where CDEP was found to perform
better than RRR. This discrepancy may be attributed to the fact that Rieger et al. (2020) used different
metrics (F1 and AUC) and employed a pretrained VGG model to estimate the contribution of mask
features, whereas in our study we used worst group accuracy and employed a four-layer CNN
followed by three fully connected layers without any pretraining. We do not use a pre-trained model
for CDEP in order to make a fair comparison to other methods. As a result, CDEP also fails to
improve worst group accuracy over ERM on the Plant Phenotyping and Decoy-MNIST datasets. We
further illustrate the interpretations of CDEP on the Plant Phenotyping dataset using Smooth Gradient
in Figure 5. In comparison to the interpretations of other methods shown in Figure 3 in the main
paper, CDEP appears to focus primarily on the spurious agar part instead of the main leaf part.

Regarding DecoyMNIST dataset discrepancy: Note that our Decoy-MNIST setting is inspired
from decoy-mnist of CDEP (Rieger et al., 2020), but not the same. All the methods were found to be
equally good on the original decoy-mnist dataset (Rieger et al., 2020), which is why we had to alter
the dataset to be more challenging. A key difference is that the volume of spurious/simple features
in our version of decoy-mnist dataset is much higher, making it harder to remove dependence of a
model on decoy/spurious features. This explains why there is the performance gap on this dataset
reported in our paper and CDEP (Rieger et al., 2020).
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Figure 5: Visual heatmap of salient features for CDEP on three sample images from the train split
of Plant phenotyping data. Importance score from SmoothGrad Smilkov et al. (2017) method is
normalized between 0 to 1 and visualized with a threshold 0.6.

26


	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 1
	Parametric Model Analysis
	Further Experiment Details
	Hyperparameters.
	Metrics
	Data splits
	Datasets
	Computational cost
	Network Architecture

	Additional Results
	Standard deviations
	Additional results on Salient-Imagenet
	Comparison of PGD-Ex and IBP-Ex
	Results of PGD-Ex with different epsilon and iteration number.
	Out-of-distribution scenarios on the Plant data
	Generality to new explanation methods: Integrated-gradient and CDEP
	Generality to new model architecture: Attention map-based (ViT)
	Sensitivity to hyperparameters on Decoy-MNIST dataset

	Discussion on poor CDEP performance

