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Abstract
Although deep learning-based methods have made significant ad-
vances in the field of image restoration (IR), they often suffer from
excessive model parameters. To tackle this problem, this work pro-
poses a compact Transformer (Compacter) for lightweight image
restoration by making several key designs. We employ the con-
cepts of projection sharing, adaptive interaction, and heterogeneous
aggregation to develop a novel Compact Adaptive Self-Attention
(CASA). Specifically, CASA utilizes shared projection to generate
Query, Key, and Value to simultaneously model spatial and channel-
wise self-attention. The adaptive interaction process is then used
to propagate and integrate global information from two different
dimensions, thus enabling omnidirectional relational interaction.
Finally, a depth-wise convolution is incorporated on Value to com-
plement heterogeneous local information, enabling global-local
coupling. Moreover, we propose a Dual Selective Gated Module
(DSGM) to dynamically encapsulate the globality into each pixel for
context-adaptive aggregation. Extensive experiments demonstrate
that our Compacter achieves state-of-the-art performance for a va-
riety of lightweight IR tasks with approximately 400K parameters.
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•Computingmethodologies→Computer vision;Reconstruc-
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1 Introduction
As a classical task in low-level computer vision, image restora-
tion (IR) aims to recover high-quality counterparts from degraded
images by removing degraded content. With the rapid develop-
ment of deep learning, convolutional neural networks (CNNs) have
become the de facto method for modern IR algorithms. Various
advanced CNN designs were introduced into the image restoration
task leading to further performance progress [55, 61, 62]. However,
CNNs suffer from limitations in long-range dependencies modeling
because convolution operators are more advantageous in extract-
ing local information [21]. Recently, the dominance of CNNs has
been challenged by vision Transformer-based models, which ex-
hibit superior performance due to the advantage of self-attention
in long-range modeling [15]. However, the quadratic complexity
of self-attention makes it difficult to apply to image restoration
tasks involving high-resolution images [6]. Many attempts have
been made to develop more efficient self-attention mechanisms for
image restoration. SwinIR [26] uses the shifted window mechanism
to limit the scope of attention to the window, such that linear com-
plexity is achieved. Similar strategies were adopted by Uformer
[42] for building a hierarchical network architecture. Restormer
[53] proposes to use channel-wise self-attention instead of spatial
one to achieve linear complexity.

Despite significant advances, most attempts have been devoted
to improving large-scale image restoration models while neglect-
ing the development of lightweight models. Lightweight image
restoration networks are still fraught with great challenges. Specif-
ically, most existing methods stack a single spatial or channel self-
attention, making single-dimensional information modeling fail to
achieve comprehensive feature interactions. Although some recent
methods [7, 37] have been proposed to use the two self-attention
mechanisms alternatively, it may lead to a large number of model pa-
rameters. In addition, the simple sequential combination is not fully
capable of effectively modeling omnidirectional higher-order rela-
tional interactions. Besides, self-attention focuses more on global
long-range information and is inferior at modeling local informa-
tion [33], which is detrimental to pixel-level image restoration tasks.
These problems are more severe in lightweight models, which can-
not stack enough layers due to limited capacity.

In this paper, we propose a novel compact Transformer called
Compacter for lightweight image restoration. Specifically, we pro-
pose a compact adaptive self-attention (CASA) mechanism through
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Figure 1: Comparisons between our Compacter and other
state-of-the-art algorithms. Left: PSNR vs. Parameters on
the Manga109 [32] dataset for super-resolution (×4). Right:
PSNR vs. Parameters on the LOL [43] dataset for low-light
enhancement. The proposed Compacter achieves a better
trade-off between performance and parameters.

the design of projection sharing, adaptive interaction, and heteroge-
neous aggregation. CASA first utilizes shared projections for gen-
erating Query, Key, and Value to simultaneously establish spatial
and channel self-attention. Subsequently, the bidirectional interac-
tion process is utilized to adaptively propagate and integrate the
two global information from two different axes, thereby realizing
omnidirectional relational interactions. Finally, a depth-wise convo-
lution is performed in parallel on Value to complement the locality
to achieve heterogeneous aggregation of global and local informa-
tion. With these designs, CASA enables comprehensive information
dissemination and interaction within a compact computational unit.
Furthermore, we propose a dual selective gated module (DSGM) to
further calibrate the aggregated features and obtain per-pixel global
dependencies. DSGM utilizes parallel branches to encode local in-
formation and gated to each other to adaptively promote favorable
pixels and suppress detrimental pixels, thus producing high-quality
restoration results. Thanks to two complementary components,
our Compacter enables comprehensive pixel-relational interaction
and maintains a desirable model size. We conducted comprehen-
sive experiments on four lightweight image restoration tasks, our
method achieved superior performance with significantly fewer
parameters. Figure 1 illustrates the comparison of the image super-
resolution and low-light enhancement tasks. We further provide
extensive ablation experiments to demonstrate the effectiveness of
the architectural design.

To sum up, we summarize the contributions of this paper as
follows:

• We propose a compact Transformer-based network, called
Compacter, for lightweight image restoration.

• We present compact adaptive self-attention (CASA) that
achieves adaptive interaction through cross-modulation be-
tween spatial and channel global information. A novel dual
selective gated module (DSGM) is proposed for dynamic
context aggregation.

• Extensive experiments show that Compacter achieves SOTA
results on various lightweight restoration tasks with signifi-
cantly fewer parameters.

2 Related Work
2.1 Image Restoration
The purpose of image restoration is to recover a clean version from a
degraded image. In recent years, deep learning-based image restora-
tion methods have achieved unprecedented success. In particular,
CNNmodels have achieved state-of-the-art performance on various
tasks such as super-resolution [16, 29, 38], denoising [54], derain-
ing [23, 49], and low-light enhancement [24, 59]. Image restoration
algorithms are driven by the design of advanced CNN network
architectures. For example, the residual connection has been in-
troduced for tasks such as super-resolution [62], image denoising
[20], and has become a necessary component of image restoration
networks. Multi-scale representation learning is also widely used in
various restoration tasks [55] due to its superior performance. Sub-
sequently, the emerging attention mechanism has been explored for
further performance improvements in low-level vision tasks. RCAN
[61] coupled channel attention within the SR network, remarkably
improving the representational capability of the model. To better
learn feature correlation, SAN [13] further proposed a second-order
channel attention module. However, most attempts have been de-
voted to improving the performance of large restoration models,
while neglecting the development of lightweight models. Although
some lightweight methods [27, 29, 45] have emerged recently, they
tend to be dedicated to specific tasks such as super-resolution. In
contrast, our Compacter is a general-purpose lightweight image
restoration network that can be used for various restoration-related
tasks such as image super-resolution, denoising, deraining, and
low-light enhancement.

2.2 Vision Transformers
Vision Transformer [15] has achieved impressive performance due
to the self-attention mechanism, which naturally incorporates pow-
erful dynamic weights and global dependency capture. However,
the quadratic computational complexity of self-attention limits the
application to vision tasks, which typically involve high-resolution
images. IPT [6] pioneered introducing vision Transformer to image
restoration tasks, which reduces the computational cost by decom-
posing the image into small patches and using a sequence of small
patches as input. After that, SwinIR [26] used shifted-window-based
self-attention to reduce the computational cost by restricting the
scope of self-attention to the local window. A similar strategy is
also used by Uformer [42], which constructs a U-shaped hierarchi-
cal network. In addition, Restormer [53] adopts channel attention
instead of the original spatial attention, making the computational
complexity linear in spatial resolution. Despite achieving promis-
ing performance, they restrict attention to a local scope and may
not fully exploit the potential of Transformers in capturing global
dependencies [64]. Some recent methods [7, 37] suggest alternat-
ing spatial and channel attention to achieve further performance
improvements. However, these serial models do not adequately
represent the process of fusion of spatial and channel information,
due to the lack of ability to model their interactions. In addition,
these efforts remain committed to developing large vision Trans-
former models. In contrast, this paper is dedicated to designing a
lightweight image restoration network.
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Figure 2: (a) The overall architecture of our proposed Compacter for image restoration. (b) The inner structure of the compact
transformer layer (CTL).

3 Method
3.1 Overall Architecture
As shown in Figure 2 (a), the overall architecture of our Compacter
consists of threemain parts: shallow feature extraction, deep feature
extraction, and reconstruction module. Specifically, the input low-
quality image 𝐼𝐿𝑄 is converted using a 3 × 3 convolution to extract
shallow features. Subsequently, we use deep feature extraction to
generate deep features 𝐹𝐷 . The deep feature extraction consists of
𝑁 compact transformer layers (CTL) and a 3×3 convolutional layer
with residual concatenation applied. Finally, the deep features are
fed to the reconstruction module to construct a high-quality output
image 𝐼𝐻𝑄 . The composition of the reconstruction module depends
on different image restoration tasks. For image SR, a sub-pixel
convolutional layer [34] is used to reconstruct the high-resolution
image 𝐼𝐻𝑄 . For other image reconstruction tasks, a convolutional
layer is used to generate a residual image 𝐼𝑅 which is added to the
degraded image to obtain the restored image 𝐼𝐻𝑄 = 𝐼𝐿𝑄 + 𝐼𝑅 .
Loss Function. Following prior works [12, 35], we optimize our
model using dual-domain loss:

L1 = | |𝐼𝑃 − 𝐼𝐺 | |1, L𝑓 = | |F (𝐼𝑃 ) − F (𝐼𝐺 ) | |1, (1)
L = L1 + 𝜆L𝑓 (2)

where 𝐼𝑃 and 𝐼𝐺 represent the predicted image and ground truth.
F (·) is the 2D Fast Fourier Transform. 𝜆 is set to 0.1 for balancing
dual-domain training.

3.2 Compact Transformer Layer
As shown in Figure 2 (b), our Compact Transformer Layer (CTL)
consists of a compact adaptive self-attention (CASA) and a dual
selective gated module (DSGM). It can be formulated as:

𝑋 ′ = CASA(LN(𝑋𝑖𝑛)) + 𝑋𝑖𝑛, (3)
𝑋𝑜𝑢𝑡 = DSGM(LN(𝑋 ′)) + 𝑋 ′ (4)

where 𝑋𝑖𝑛 and 𝑋𝑜𝑢𝑡 are the input and output features, 𝐿𝑁 (·) de-
notes the LayerNorm operation [3].

3.3 Compact Adaptive Self-Attention
Comprehensive and dense feature interactions help reconstruct
finer results in restoration tasks that require dense per-pixel pre-
dictions. To fully mine the potential full correlation of features

within a compact computational unit, we propose compact adap-
tive self-attention (CASA), as shown in Figure 3. Our CASA is based
on the philosophy of projection sharing, adaptive interaction and
heterogeneous aggregation. It not only adaptively models spatial
and channel-wise global information and their interactions but also
achieves global-local coupling through the aggregation of hetero-
geneous operators.
Projection Sharing. Given an input feature map 𝑋 ∈ R𝐶×𝐻×𝑊 ,
we use linear layers to project it into query, key, and value𝑄,𝐾,𝑉 ∈
R𝐶×𝐻×𝑊 . Subsequently, the generated 𝑄,𝐾,𝑉 are fed to spatial
window self-attention (SWSA) and channel-wise self-attention
(CWSA), respectively. Based on this design, SWSA and CWSA share
𝑄,𝐾,𝑉 generated by the same projection, allowing to modelling of
both spatial and channel information in a more compact manner.

𝑄,𝐾,𝑉 = Linear𝑖 (𝑋 ), 𝑖 ∈ {0, 1, 2} (5)
𝑌𝑠 = SWSA(𝑄,𝐾,𝑉 ), 𝑌𝑐 = CWSA(𝑄,𝐾,𝑉 ) (6)

where Linear(·) denotes linear layer. The computational processes
of SWSA and CWSA are elaborated as follows.
Spatial Window Self-Attention (SWSA). Given the query, key and
value 𝑄,𝐾,𝑉 , we split them into non-overlapping windows with
the resolution of 𝑁𝑤 and flatten them in �̂�, �̂�,𝑉 ∈ R𝑁𝑤× 𝐻𝑊

𝑁𝑤
×𝐶 .

The SWSA is formulated as:

�̂�, �̂�,𝑉 = partition(𝑄,𝐾,𝑉 ) (7)

SWSA = Softmax(�̂� · 𝐾 T̂/
√
𝑑 + 𝐵) ·𝑉 (8)

where 𝐵 is a dynamic position bias, whose value is learned through
an MLP [40].
Channel-Wise Self-Attention (CWSA). Given the query, key, and
value𝑄,𝐾,𝑉 , we reshape them into �̂�, �̂�,𝑉 ∈ R𝐶×𝐻𝑊 and compute
the transposed-attention map across channels. The CWSA process
is defined as:

�̂�, �̂�,𝑉 = reshape(𝑄,𝐾,𝑉 ) (9)

CWSA = Softmax(�̂� · 𝐾 T̂/𝛼) ·𝑉 (10)

where 𝛼 is a learnable scaling factor.
Adaptive Interaction. After establishing spatial and channel long-
range dependencies, we use a bidirectional interaction process to
adaptively propagate and integrate the two global information from
two different axes. We adopt the cross-modulation method [17] to
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Figure 3: Illustration of compact adaptive self-attention (CASA).
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Figure 4: Illustration of dual selective gated module (DSGM).

realize the bidirectional interaction. The computational procedure
is formulated as follows:

𝑌𝑠 = 𝑌𝑠 ⊙ Sigmoid(𝑌𝑐 ), 𝑌𝑐 = 𝑌𝑐 ⊙ Sigmoid(𝑌𝑠 ) (11)

where ⊙ is element-wise multiplication. With bidirectional inter-
action, the spatial and channel self-attentions complement and
augment each other, thereby enabling omni-axial global represen-
tations.
Heterogeneous Aggregation. Although self-attention excels at
modeling long-range dependencies, it lacks an inductive bias that
favors extracting high-frequency local information [21]. To address
this issue, we propose to add a depth-wise convolution operation
on the value 𝑉 to complement the heterogeneous local informa-
tion. Finally, all these representations are combined followed by
aggregation using a linear layer:

CASA = Linear(𝑌𝑠 + 𝑌𝑐 + DwConv(𝑉 )) (12)

Based on this design, our CASA not only realizes comprehensive
dense feature interactions but also provides heterogeneous feature
aggregation capability at different granularities within a compact
computational unit.

3.4 Dual Selective Gated Module
We propose a dual selective gated module (DSGM) to further cali-
brate the aggregated features generated by CASA and encapsulate
the comprehensive feature correlation to each pixel. Similar to
the gating mechanism [14], features are fed to two parallel linear
layers followed by depth-wise convolution to encode local pixel
information.

𝑍1 = DwConv(Linear(𝑋 )), 𝑍2 = DwConv(Linear(𝑋 )) (13)

The local-aware representations are converted into context-aware
weights via Sigmoid and GELU activation functions, and adaptively
filter the extracted pixel features using dual selective gating. Finally,
a linear layer is used to aggregate these representations.

𝑍1 = 𝑍1 ⊙ GELU(𝑍2), 𝑍2 = 𝑍2 ⊙ Sigmoid(𝑍1) (14)

𝐷𝑆𝐺𝑀 = Linear(𝑍1 + 𝑍2) (15)

The two different activation functions allow generating weights
with different properties to adaptively promote beneficial pixels
and suppress detrimental pixels when performing information ag-
gregation. With the above design, our DSGM can more efficiently
aggregate global information and local contexts while introducing
less computation.

4 Experiment
4.1 Experimental Setup
4.1.1 Datasets and Evaluation Metrics. We evaluate our Compacter
on four image processing tasks. For the sake of fairness, the datasets
used for all experiments follow exactly previous works [9, 10, 53, 65].
Training and testing datasets for each task are listed below.
Image Super-Resolution. Our model is trained on the DIV2K [1]
dataset. The evaluation is implemented on five public datasets: Set5
[5], Set14 [48], BSD100 [31], Urban100 [22] and Manga109 [32].
Image Denoising. The image denoising task is trained on DIV2K,
Flickr2K [36], BSD400 [2], and WED [30], and tested on CBSD68
[31], Kodak [18], McMaster [58], and Urban100 [22],
Low-Light Image Enhancement. The training and testing are
implemented in the LOL [44] dataset.
Image Deraining.We use Rain13K [19] dataset for training, while
evaluate on Rain100H [50] and Test100 [56].
Evaluation metrics. The common PSNR and SSIM are used to
measure performance. Following standard practice, both metrics
are computed in the RGB channel, except for the image deraining
task, which is evaluated in the Y-channel in YCbCr space, following
previous works [23, 27].

4.1.2 Implementation Details. Our model consists of 20 CTLs while
the channel number is set to 48. For image super-resolution, we
train the model using 500K iterations with a patch size of 64 ×
64 and a batch size of 32. The initial learning rate is set to 5 ×
10−4 and is halved at the milestones: [250K, 400K, 450K, 475K].
For other restoration tasks, we extract patches of size 128 from
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Table 1: Quantitative comparison (PSNR/SSIM) of different lightweight models on benchmark datasets for image SR task. The
best and second-best results are colored in red and blue, respectively. Note that CAMxierSR [41] only reports quantitative
results at the ×4 scale.

Methods Scale Params Set5 [5] Set14 [48] BSD100 [31] Urban100 [22] Manga109 [32] Average
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

LatticeNet [29] ×2 756K 38.15/0.9610 33.78/0.9193 32.25/0.9005 32.43/0.9302 38.94/0.9774 35.03/0.9371
SMSR [38] ×2 985K 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771 34.95/0.9365
SwinIR-light [26] ×2 878K 38.14/0.9611 33.86/0.9206 32.31/0.9012 32.76/0.9340 39.12/0.9783 35.24/0.9390
ESRT [28] ×2 777K 38.03/0.9600 33.75/0.9184 32.25/0.9001 32.58/0.9318 39.12/0.9774 35.15/0.9375
FMEN [16] ×2 748K 38.10/0.9609 33.75/0.9192 32.26/0.9007 32.41/0.9311 38.95/0.9778 35.09/0.9379
ELAN-light [59] ×2 582K 38.17/0.9611 33.94/0.9207 32.30/0.9012 32.76/0.9340 39.11/0.9782 35.26/0.9390
DiVANet [4] ×2 902K 38.16/0.9612 33.80/0.9195 32.29/0.9012 32.60/0.9325 39.08/0.9775 35.19/0.9384
NGswin [11] ×2 998K 38.05/0.9610 33.79/0.9199 32.27/0.9008 32.53/0.9324 38.97/0.9777 35.12/0.9384
SRFormer-light [65] ×2 853K 38.23/0.9613 33.94/0.9209 32.36/0.9019 32.91/0.9353 39.28/0.9785 35.34/0.9396
Compacter (Ours) ×2 393K 38.24/0.9619 34.08/0.9215 32.35/0.9026 32.99/0.9354 39.40/0.9786 35.41/0.9400

LatticeNet [29] ×3 765K 34.53/0.9281 30.39/0.8424 29.15/0.8059 28.33/0.8538 33.63/0.9442 31.13/0.8738
SMSR [38] ×3 993K 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445 31.15/0.8743
SwinIR-light [26] ×3 886K 34.62/0.9289 30.54/0.8463 29.20/0.8082 28.66/0.8624 33.98/0.9478 31.40/0.8787
ESRT [28] ×3 770K 34.42/0.9268 30.43/0.8433 29.15/0.8063 28.46/0.8574 33.95/0.9455 31.28/0.8759
FMEN [16] ×3 757K 34.45/0.9275 30.40/0.8435 29.17/0.8063 28.33/0.8562 33.86/0.9462 31.24/0.8759
ELAN-light [59] ×3 590K 34.61/0.9288 30.55/0.8463 29.21/0.8081 28.69/0.8624 34.00/0.9478 31.41/0.8787
DiVANet [4] ×3 949K 34.60/0.9285 30.47/0.8447 29.19/0.8073 28.58/0.8603 33.94/0.9468 31.36/0.8775
NGswin [11] ×3 1,007K 34.52/0.9282 30.53/0.8456 29.19/0.8078 28.52/0.8603 33.89/0.9470 31.33/0.8778
SRFormer-light [65] ×3 861K 34.67/0.9296 30.57/0.8469 29.26/0.8099 28.81/0.8655 34.19/0.9489 31.50/0.8802
Compacter (Ours) ×3 399K 34.69/0.9300 30.65/0.8477 29.28/0.8117 28.90/0.8659 34.31/0.9487 31.56/0.8808

LatticeNet [29] ×4 777K 32.30/0.8962 28.68/0.7830 27.62/0.7367 26.25/0.7873 30.54/0.9075 29.01/0.8206
SMSR [38] ×4 1,006K 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085 28.97/0.8209
SwinIR-light [26] ×4 897K 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151 29.26/0.8274
ESRT [28] ×4 751K 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962 30.75/0.9100 29.14/0.8244
FMEN [16] ×4 769K 32.24/0.8955 28.70/0.7839 27.63/0.7379 26.28/0.7908 30.70/0.9107 29.11/0.8238
ELAN-light [59] ×4 601K 32.43/0.8975 28.78/0.7858 27.69/0.7406 26.54/0.7982 30.92/0.9150 29.27/0.8274
DiVANet [4] ×4 939K 32.41/0.8973 28.70/0.7844 27.65/0.7391 26.42/0.7958 30.73/0.9119 29.18/0.8257
NGswin [11] ×4 1,019K 32.33/0.8963 28.78/0.7859 27.66/0.7396 26.45/0.7963 30.80/0.9128 29.20/0.8262
SRFormer-light [65] ×4 873K 32.51/0.8988 28.82/0.7872 27.73/0.7422 26.67/0.8032 31.17/0.9165 29.38/0.8296
CAMixerSR [41] ×4 765K 32.51/0.8988 28.82/0.7870 27.72/0.7416 26.63/0.8012 31.18/0.9166 29.37/0.8290
Compacter (Ours) ×4 408K 32.53/0.8994 28.88/0.7876 27.76/0.7440 26.69/0.8025 31.24/0.9148 29.42/0.8297

LR

Urban100: img_092

SwinIR-light

NGswin

DiVANet

Compacter
(Ours)

GT

DiVANet

Compacter
(Ours)

GTNGswinManga109: 
YumeiroCooking

LR SwinIR-light

Figure 5: Qualitative comparison for ×4 super-resolution on the Urban100 and Manga109 datasets.

the training images with the batch size set to 32. We use 400K
iterations to train the model. The initial learning rate is 1×10−3 and
steadily decreases to 10−7 as the cosine annealing decays. Following

[54], we use common horizontal and vertical flips, and random
rotations of 90, 180, and 270 degrees for data augmentation. Note
that no other data augmentation (e.g., Mixup, RGB channel shuffle)
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Table 2: Quantitative comparison on benchmark datasets for blind image denoising. 𝜎 refers to the noise level.

Methods Params 𝜎
CBSD68 [31] Kodak24 [18] McMaster [58] Urban100 [22]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SwinIR-light [26] 905K

15

34.16 0.9323 35.18 0.9269 35.23 0.9295 34.59 0.9478
Restormer-light [53] 1,054K 33.99 0.9311 34.86 0.9244 34.69 0.9229 34.00 0.9439
CAT-light [8] 1,042K 34.01 0.9304 34.90 0.9237 34.83 0.9247 34.12 0.9443
ART-light [57] 1,084K 34.08 0.9315 35.00 0.9251 35.10 0.9282 34.44 0.9467
NGswin [11] 993K 34.12 0.9324 35.12 0.9268 35.17 0.9294 34.53 0.9476
RAMiT-1 [10] 818K 34.16 0.9324 35.13 0.9264 35.22 0.9297 34.58 0.9478
Compacter (Ours) 407K 34.22 0.9674 35.17 0.9674 35.30 0.9758 34.67 0.9726

SwinIR-light [26] 905K

25

31.50 0.8883 32.69 0.8868 32.90 0.8977 32.23 0.9222
Restormer-light [53] 1,054K 31.33 0.8865 32.38 0.8833 32.44 0.8905 31.60 0.9161
CAT-light [8] 1,042K 31.37 0.8855 32.43 0.8822 32.58 0.8928 31.75 0.9167
ART-light [57] 1,084K 31.40 0.8864 32.49 0.8833 32.74 0.8956 32.03 0.9195
NGswin [11] 993K 31.44 0.8884 32.61 0.8865 32.82 0.8978 32.13 0.9215
RAMiT-1 [10] 818K 31.50 0.8888 32.64 0.8862 32.91 0.8989 32.21 0.9223
Compacter (Ours) 407K 31.57 0.9443 32.69 0.9478 32.97 0.9619 32.32 0.9569

SwinIR-light [26] 905K

50

28.22 0.8006 29.54 0.8089 29.71 0.8339 28.89 0.8658
Restormer-light [53] 1,054K 28.04 0.7974 29.19 0.8034 29.31 0.8256 28.30 0.8559
CAT-light [8] 1,042K 28.11 0.7960 29.29 0.8024 29.48 0.8296 28.46 0.8573
ART-light [57] 1,084K 28.08 0.7950 29.27 0.8000 29.48 0.8279 28.62 0.8584
NGswin [11] 993K 28.13 0.8011 29.42 0.8087 29.59 0.8339 28.75 0.8644
RAMiT-1 [10] 818K 28.24 0.8024 29.51 0.8083 29.74 0.8376 28.93 0.8671
Compacter (Ours) 407K 28.36 0.8956 29.58 0.9066 29.78 0.9310 29.03 0.9199

NGswin Compacter (Ours) GT

SwinIR-light Restormer-light

Kodak24: 1

GTCompacter (Ours)NGswin

SwinIR-light Restormer-light

CBSD: 123074

Noisy

Noisy

Figure 6: Image denoising results with noise level 𝜎 = 50 on the Kodak24 and CBSD datasets.

or training skills (e.g., pre-training, multi-stage training) are used.
The Adam algorithm was used with 𝛽1 = 0.9 and 𝛽2 = 0.99 for model
optimization. All experiments are implemented in the PyTorch
framework with four NVIDIA Tesla V100s.

4.2 Image Super-Resolution
We compare our method with state-of-the-art lightweight super-
resolution algorithms, as shown in Table 1. It can be seen that our
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Low-light image LLFormer Compacter(Ours) GTURetinexNet

Figure 7: Qualitative comparison on the LoL dataset for low-light enhancement. Please zoom in for a better view.

Raining image UMRL Compacter(Ours) GTDRT

Figure 8: Qualitative comparison on the Rain100H dataset for image deraining. Please zoom in for a better view.

Table 3: Quantitative comparison for Low-light image en-
hancement on the LoL [44] dataset.

Method Params PSNR SSIM

KinD [63] 8,020K 20.86 0.7900
FIDE [47] 8,620K 18.27 0.6550
DRBN [51] 5,270K 20.13 0.8300
KinD++ [60] 8,275K 21.80 0.8338
EnlightenGAN [24] 8,640K 17.48 0.6507
Uformer [42] 5,290K 16.36 0.7110
Restormer [53] 26,130K 22.43 0.8230
URetinex-Net [45] 1,230K 21.32 0.8348
KinD-SKF[46] 8,500K 21.91 0.8350
LLFormer [39] 24,520K 23.65 0.8160

Compacter (Ours) 407K 23.76 0.8375

Compacter achieves the best performance on almost all five bench-
mark datasets for all scale factors. In particular, our method achieves
an average of 0.05 dB higher PSNR than the latest CAMixerSR
(CVPR2024) with 46% fewer parameters. In addition, our method
outperforms prominent SRFormer-light (ICCV2023) on average
at all scales with less than half of the parameters. Compared to
NGswin (CVPR2023), our method achieves up to 0.43 dB PSNR
improvement on Manga109 with fewer parameters. These results
demonstrate the superiority of our method.

In Figure 5, we also provide a visualization comparison of dif-
ferent lightweight SR methods at ×4 scale. It can be seen that com-
peting algorithms are prone to erroneous textures and patterns. In
contrast, the images produced by our method are clearer and visu-
ally closer to the ground truth. These visual results also illustrate
the advantages of our Compacter in recovering details and textures.

Table 4: Quantitative comparison for image deraining.

Method Params Test100 [56] Rain100H [50]
PSNR/SSIM PSNR/SSIM

UMRL [52] 984K 24.41/0.8290 26.01/0.8320
JORDER-E [49] 4,170K 27.08/0.8720 24.54/0.8020
MSPFN [23] 13,350K 27.50/0.8760 28.66/0.8600
DRT [27] 1,180K 27.02/0.8470 29.47/0.8460
TAO-Net [25] 755K 28.59/0.8870 28.96/0.8640
RAMiT [10] 935K 30.44/0.9012 29.69/0.8775

Compacter (Ours) 407K 30.63/0.9075 29.73/0.8826

4.3 Image Denoising
We follow [10, 53] to perform blind denoising experiments on the
synthetic benchmark datasets generated using additive white Gauss-
ian noise. The lightweight denoising methods used for comparison
are derived from [9]. Table 2 shows the performances of different
approaches on several benchmark datasets for noise levels 15, 25,
and 50. It can be seen that our method achieves the best trade-
off between efficiency and performance. Specifically, our method
embraces significantly fewer parameters while obtaining superior
performance compared with other methods. For example, for the
challenging noise level 50 on the Urban100 dataset, our method
outperforms SwinIR by 0.14 dB in PSNR, while the parameters are
less than half of it. In addition, the far more perceptually relevant
SSIM index shows that our Compacter has a significant advantage
over other methods.

Figure 6 shows the denoising results of different methods. It can
be seen that existing methods fail to recover enough details due to
severe noise degradation. In contrast, our method provides better
restoration of structure and detail, resulting in a clearer restoration.

4.4 Low-light Image Enhancement
We conduct low-light enhancement experiments on the LOL dataset.
Table 3 shows the quantitative results, from which one can observe
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that our method achieves better performance while having signifi-
cantly fewer parameters. Specifically, our Compacter outperforms
the acclaimed general-purpose image restorationmethod Restormer
[53] by 1.33dB PSNR while requiring only 1.5% of its parameters.
Furthermore, our method also outperforms the much larger LL-
Former [39] and KinD-SKF [46], even though they are specifically
tailored for low-light enhancement tasks. We further compared the
visual results of the different methods in Figure 7. Compared to
competitors, our method generates images with more natural and
vivid colors.

4.5 Image Deraining
We further evaluate our method on the image deraining task. The
qualitative results can be viewed in Table 4. As may be seen, our
model improved over the state-of-the-art performances on both
datasets. The average PSNR gain of our model over the latest light-
weight model RAMiT [10] is 0.11 dB. Figure 8 shows a visual com-
parison on the more challenging Rain100H. Compared to other
algorithms, our model produces images that are clearer and more
consistent with the ground truth.

4.6 Ablation Study
For ablation experiments, we train super-resolution models on
DIV2K for 200K iterations. The evaluations were performed on the
Manga109 dataset [32] for ×2 scale super-resolution. FLOPs are
calculated on input image size 3 × 256 × 256.
Compact Transformer Layer. We performed ablation experi-
ments to validate their effectiveness by removing CASA or DSGM
from the CTL. For a fair comparison, we adjusted the depth of the
models so that their parameters and FLOPs were comparable. Table
5 shows that removing CASA leads to severe performance degra-
dation. This illustrates that the ability to model dense interactions
is critical for restoration tasks that require per-pixel prediction. In
addition, the absence of DSGM also leads to significant performance
degradation. DSGM further improves the restoration performance
by enhancing the useful information and suppressing the detrimen-
tal pixels through dual selective gating. In contrast, the full model
achieves the best performance by coupling two complementary
components.
Compact Adaptive Self-Attention (CASA).We conduct an ab-
lation study to investigate the effectiveness of each component of
CASA. As shown in Table 6, neither a single SWSA nor CWSA
can achieve the desired performance, which suggests that uni-
dimensional self-attention cannot realize comprehensive informa-
tion interaction. Although the combination of the two attention
techniques can achieve better performance, the absence of the pro-
jection sharing strategy leads to noticeable additional parameters
and computational overheads. In addition, adaptive interaction fur-
ther boosts performance barely costing any parameters and FLOPs.
Heterogeneous aggregation also brings a 0.05dB performance im-
provement at a cost of a limited computational budget.
Dual Selective Gated Module (DSGM). We further explored the
effectiveness of DSGM design as shown in Table 7. It can be seen
that introducing depth-wise convolution in vanilla FFNs can bring
performance improvement with few parameters and FLOPs. This
strategy is also widely adopted by advanced image restoration

Table 5: Ablation study of the CTL on the Manga109 dataset
for ×2 scale image super-resolution.

Methods PSNR Params FLOPs

w/o CASA 38.54 749K 48G
w/o DSGM 38.74 396K 57G
Full Model 39.29 393K 47G

Table 6: Ablation study on the micro design of the CASA. w/o
projection sharing denotes SWSA and CWSA independently
use linear layer to generate 𝑄,𝐾,𝑉 . w/o heterogeneous aggre-
gation means removing depth-wise convolution on the 𝑉 .

Methods PSNR Params FLOPs

only SWSA 39.24 393K 42G
only CWSA 38.98 393K 30G
w/o projection sharing 39.28 458K 51G
w/o adaptive interaction 39.25 393K 47G
w/o heterogeneous aggregation 39.24 384K 46G
CASA (Ours) 39.29 393K 47G

Table 7: Ablation study on the micro design of the DSGM.

Methods PSNR Params FLOPs

FFN (Baseline) 39.23 418K 49G
ConvFFN (+DwConv) [65] 39.28 435K 51G
GDFN (+Gating Mechanism) [53] 39.26 390K 47G
DSGM (Ours) 39.29 393K 47G

networks [42, 53]. In addition, the gating mechanism helps to fur-
ther reduce the model parameters and computation but leads to
some performance degradation. In contrast, our DSGM utilizing the
dual selective gating mechanism can achieve superior performance
while barely imposing additional computations.

5 Conclusion
In this paper, we present a novel compact Transformer for light-
weight image restoration. Specifically, we propose compact adaptive
self-attention (CASA) for comprehensive information dissemina-
tion and interaction within a compact computational unit. CASA
simultaneously establishes the global context of spatial and chan-
nel as well as their interactions and achieves global-local coupling
through heterogeneous aggregation. In addition, we propose a dual
selective gated module (DSGM) to achieve dynamic context ag-
gregation through a dual-path structure and gating mechanism.
Thanks to two complementary components, our Compacter en-
ables comprehensive pixel-level relational interactions while main-
taining desirable model sizes. Extensive experiments demonstrate
that Compacter achieves state-of-the-art performance on several
restoration tasks with fewer model parameters.
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