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Abstract

We consider reinforcement learning in an environment modeled by an episodic,
finite, stage-dependent Markov decision process of horizon H with S states, and A
actions. The performance of an agent is measured by the regret after interacting
with the environment for T episodes. We propose an optimistic posterior sam-
pling algorithm for reinforcement learning (OPSRL), a simple variant of posterior
sampling that only needs a number of posterior samples logarithmic in H , S, A,
and T per state-action pair. For OPSRL we guarantee a high-probability regret
bound of order at most Õ(

√
H3SAT ) ignoring poly log(HSAT ) terms. The key

novel technical ingredient is a new sharp anti-concentration inequality for linear
forms which may be of independent interest. Specifically, we extend the normal
approximation-based lower bound for Beta distributions by Alfers and Dinges
[1984] to Dirichlet distributions. Our bound matches the lower bound of order
Ω(

√
H3SAT ), thereby answering the open problems raised by Agrawal and Jia

[2017b] for the episodic setting.

1 Introduction

In reinforcement learning an agent interacts with an environment, whose underlying mechanism is
unknown, by sequentially taking actions, receiving rewards, and transitioning to the next state [Sutton
and Barto, 1998]. With the goal of maximizing the expected sum of the collected rewards, the agent
must carefully balance between exploring in order to gather more information about the environment
and exploiting the current knowledge to collect the rewards. In this paper, we are interested in solving
this exploration-exploitation dilemma by injecting noise into the agent’s decision-making process.

We model the environment as an episodic, finite, unknown Markov decision process (MDP) of horizon
H, with S states and A actions. In particular, we consider the stage-dependent setting where the
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rewards and the transition probability distributions can vary within an episode. After T episodes, the
performance of an agent is measured through regret which is the difference between the cumulative
reward the agent could have obtained by acting optimally and what the agent really obtained.

Jin et al. [2018] and Domingues et al. [2020] provide a problem-independent lower bound of order
Ω(

√
H3SAT ) for this setting; see also Azar et al. [2017] for a lower bound when the transitions are

stage-independent.

One generic solution to the exploration-exploitation dilemma is the principle of optimism in the face
of uncertainty. A simple way to implement this principle consists in building upper confidence bound
(UCB) on the optimal Q-value function through the addition of bonuses to the rewards. This is done
by either model-based algorithms [Azar et al., 2017, Dann et al., 2017, Zanette and Brunskill, 2019]
or model-free algorithms [Jin et al., 2018, Zhang et al., 2020, Menard et al., 2021]; see also [Jaksch
et al., 2010, Fruit et al., 2018, Talebi and Maillard, 2018] for the non-episodic setting. Notably,
among others, both the upper confidence bound value iteration (UCBVI) of Azar et al. [2017] and the
UCB-Advantage algorithm of Zhang et al. [2020] enjoys a problem-independent regret bound1 of
order2 Õ(

√
H3SAT ) that matches the aforementioned lower bound for T large enough and up to

terms poly-logarithmic in H,S,A, T .

Another way is to implement the optimism by injecting noise. A typical example is the random
least-square value iteration (RLSVI, Osband et al., 2016b, Russo, 2019) algorithm which at each
episode computes new Q-values by noisy value iteration from an estimated model and then acts
greedily with respect to them. In particular, a Gaussian noise is added to the reward before applying
the Bellman operator to encourage exploration. Indeed, when the variance of the noise is carefully
chosen, it allows to obtain optimistic Q-values with at least a fixed probability. Russo [2019] first
proved a regret bound of order Õ(H2S3/2

√
AT ) for RLSVI. Later, Xiong et al. [2021] obtained an

optimal regret bound of order Õ(
√
H3SAT ) for a modified version of RLSVI where the variance

of the injected Gaussian noise is scaled by a term similar to the Bernstein bonuses used in UCBVI.
Note that the RLSVI was also successfully extended beyond the tabular case to settings with function
approximation, e.g. see Ishfaq et al., 2021, Zanette et al., 2020.

Recently, Pacchiano et al. [2021] analyzed a version of RLSVI where the Gaussian noise is replaced
by a bootstrap sample of the past rewards and added pseudo rewards in the same fashion as Kveton
et al. [2019]. The algorithm proposed by Pacchiano et al. [2021], comes with a regret bound of order
Õ(H2S

√
AT ).

By generalizing the Thompson sampling algorithm [Thompson, 1933] originally given for stochastic
multi-armed bandit, Osband et al. [2013] propose a posterior sampling for reinforcement learning
(PSRL). PSRL algorithm also relies on noise to drive exploration. The general idea behind it is to
maintain a surrogate Bayesian model on the MDP, for instance, a Dirichlet posterior on the transition
probability distribution if the rewards are known. At each episode, a new MDP is sampled (i.e., a
transition probability for each state-action pair) according to the posterior distribution of the Bayesian
model. Then, the agent acts optimally in this sampled MDP. As the posterior is not well concentrated
in the unexplored region of the MDP, the probability that the Q-value of the sampled MDP is
optimistic in this region is high. Therefore, the agent will be incentivized to explore. Although the
original Thompson sampling is well-studied in the frequentist setting [Agrawal and Goyal, 2012,
Kaufmann et al., 2012, Agrawal and Goyal, 2013, Zhang, 2022] and the Bayesian setting [Thompson,
1933, Russo and Roy, 2016, Russo and Van Roy, 2014], most of the analysis of PSRL only provide
Bayesian regret bounds [Osband et al., 2013, Abbasi-Yadkori and Szepesvári, 2015, Osband et al.,
2016b, Ouyang et al., 2017, Osband and Van Roy, 2017], i.e., when the true MDP is effectively
sampled according to the prior of the surrogate Bayesian model. Despite this lack of guarantees, PSRL
demonstrates competitive empirical performance in comparison to bonus-based algorithms [Osband
et al., 2013, Osband and Van Roy, 2017]. Additionally, the exploration mechanism used by PSRL
(and RLSVI) was successfully extended outside the tabular setting and used in deep RL environments
[Osband et al., 2016a, 2018, 2019].

1We translate all the bounds to the stage-dependent setting by multiplying the regret bounds in the stage-
independent setting by

√
H , see Jin et al. [2018].

2In the Õ(·) notation we ignore terms poly-log in H,S,A, T .
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One exception to the above is the work of Agrawal and Jia [2017b] that studies PSRL from a frequentist
perspective in the infinite-horizon, non-episodic average reward setting. In particular, they provide a
regret bound3 of order4 Õ(H2S

√
AT ) for an optimistic version of PSRL that we call SOS-OPS-RL

since it switches between two types of sampling of the transitions: (1) simple optimistic sampling,
when the number of observed transitions at a given state-action pair is too small. In this case,
the sampled transition is a random mixture between the uniform distribution over the states and
an empirical estimate of the true transition biased by some bonus-like terms; or if the number of
observed transitions at a given state-action pair is large enough (2) optimistic posterior sampling,
where Õ(S) samples from an inflated Dirichlet posterior are used instead of one sample used in PSRL.
Then, from these Õ(S) sampled transition probabilities we select the most optimistic one i.e., the
one leading to the largest optimal Q-value.

The key idea underpinning the analysis of SOS-OPS-RL, and PSRL-like algorithms in general, is
to control the deviations of the Dirichlet posterior on the transition probability distributions. In
particular, we need to show that the posterior spreads enough to ensure optimism. To this end,
Agrawal and Jia [2017b] derive an anti-concentration bound for any fixed projection of a Dirichlet
random vector. The latter result in turn relies upon an equivalent representation of a Dirichlet vector
in terms of independent Beta random variables and an anti-concentration bound for the corresponding
Beta distribution. However, this anti-concentration inequality is not uniformly tight, in particular its
polynomial dependence on the number of states S is suboptimal.

Agrawal and Jia [2017b] conclude with two open problems. The first question is whether one can
reduce the number of posterior samples required per state-action pair from Õ(S) to constant or
logarithmic in S. The second asks if it is possible to obtain a near-optimal regret bound and in
particular to improve the dependence on S. In this paper, we answer both of them in the affirmative
in the episodic setting. Indeed, we propose optimistic posterior sampling algorithm for reinforcement
learning (OPSRL) that only requires Õ(1) samples from an inflated posterior while enjoying a near-
optimal problem independent regret bound of order Õ(

√
H3SAT ). OPSRL is a simple optimistic

variant of PSRL which, in particular, does not rely at all on ”simple” (bonus-based) optimistic
sampling.

The essential ingredient for OPSRL’s analysis is our novel anti-concentration bound for the projections
of a Dirichlet random vector (Theorem 3.3). We base it on a tight Gaussian approximation for
linear forms of a Dirichlet random vector. This latter approximation can be seen as a substantial
generalization to Dirichlet distributions of the result obtained by Alfers and Dinges [1984] for the
case of Beta distributions. We obtain this approximation through a refined non-asymptotic analysis
of the integral representation for the density of a linear form of a Dirichlet random vector, which was
first derived5 by Tiapkin et al. [2022]. We believe that the new anti-concentration inequality presented
in this work could be of independent interest, e.g., to tighten or simplify analysis of non-parametric
Thompson sampling like algorithms [Riou and Honda, 2020, Baudry et al., 2021a,b] for stochastic
multi-armed bandits.

• We propose the OPSRL algorithm for tabular, stage-dependent, episodic RL. It is a simple opti-
mistic variant of the PSRL algorithm that only needs Õ(1) posterior samples per state-action pair.
For OPSRL, we provide a regret bound of order Õ(

√
H3SAT ) matching the problem independent

lower bound up to poly-log terms. In particular we answer positively to two open questions by
Agrawal and Jia [2017b] in the episodic setting.

• We derive a new anti-concentration inequality for a linear form of a Dirichlet random vector
(Theorem 3.3) which is essential for the analysis of OPSRL. This result is a generalization to the
Dirichlet case of the one provided by Alfers and Dinges [1984] for Beta distributions.

3As acknowledged by the authors, there was a mistake in the initial submission of their work where the
previously announced bound was claimed to be

√
S better, see Agrawal and Jia [2017a], Qian et al. [2020]

4We translate all the bounds from the infinite-horizon, non-episodic average reward setting to our setting by
identifying the diameter with the horizon H and multiplying the bound by

√
H because of our stage-dependent

transitions assumption.
5Note that the anti-concentration inequality proved by Tiapkin et al. [2022] based on the same integral

representation is insufficient for our needs, see Remark 3.4 for a discussion.
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2 Setting

We consider a finite episodic MDP
(
S,A, H, {ph}h∈[H], {rh}h∈[H]

)
, where S is the set of states,

A is the set of actions, H is the number of steps in one episode, ph(s′|s, a) is the probability
transition from state s to state s′ by taking the action a at step h, and rh(s, a) ∈ [0, 1] is the bounded
deterministic6 reward received after taking the action a in state s at step h. Note that we consider the
general case of rewards and transition functions that are possibly non-stationary, i.e., that are allowed
to depend on the decision step h in the episode. We denote by S and A the number of states and
actions, respectively.

Policy & value functions A deterministic policy π is a collection of functions πh : S → A for all
h ∈ [H], where every πh maps each state to a single action. The value functions of π, denoted by
V π
h , as well as the optimal value functions, denoted by V ⋆

h are given by the Bellman and the optimal
Bellman equations,

Qπ
h(s, a) = rh(s, a) + phV

π
h+1(s, a) V π

h (s) = πhQ
π
h(s)

Q⋆
h(s, a) = rh(s, a) + phV

⋆
h+1(s, a) V ⋆

h (s) = max
a

Q⋆
h(s, a),

where by definition, V ⋆
H+1 ≜ V π

H+1 ≜ 0. Furthermore, phf(s, a) ≜ Es′∼ph(·|s,a)[f(s
′)] denotes the

expectation operator with respect to the transition probabilities ph and πhg(s) ≜ g(s, πh(s)) denotes
the composition with the policy π at step h.

Learning problem The agent, to which the transitions are unknown (the rewards are assumed
to be known for simplicity), interacts with the environment during T episodes of length H , with
a fixed initial state s1.7 Before each episode t the agent selects a policy πt based only on the past
observed transitions up to episode t− 1. At each step h ∈ [H] in episode t, the agent observes a state
sth ∈ S, takes an action πt

h(s
t
h) = ath ∈ A and makes a transition to a new state sth+1 according to

the probability distribution ph(s
t
h, a

t
h) and receives a deterministic reward rh(s

t
h, a

t
h).

Regret The quality of an agent is measured through its regret, that is the difference between what it
could obtain (in expectation) by acting optimally and what it really gets,

RT ≜
T∑

t=1

V ⋆
1 (s1)− V πt

1 (s1) .

Counts The number of times the state action-pair (s, a) was visited in step h in the first t

episodes is denoted as nt
h(s, a) ≜

∑t
i=1 1

{
(sih, a

i
h) = (s, a)

}
. Next, we define nt

h(s
′|s, a) ≜∑t

i=1 1
{
(sih, a

i
h, s

i
h+1) = (s, a, s′)

}
the number of transitions from s to s′ at step h.

Improper Dirichlet distribution For m ∈ N∗, the probability simplex of dimension m is denoted
by ∆m. For α ∈ (R++)

m+1, we denote by Dir(α) the Dirichlet distribution on ∆m with parameter α.
We also extend this distribution to improper parameter α ∈ (R+)

m+1 such that
∑m

i=0 αi > 0 by in-
jecting Dir((αi)i:αi>0) into ∆m. Precisely, we say that p ∼ Dir(α) if (pi)i:αi>0 ∼ Dir((αi)i:αi>0)
and all other coordinates are zero.

Additional notation For N ∈ N++, we define the set [N ] ≜ {1, . . . , N}. We denote the uni-
form distribution over this set by Unif[N ]. The vector of dimension N with all entries one is
1N ≜ (1, . . . , 1)T. The empirical probability distribution p̂ t

h(s, a) is defined as p̂ t
h(s

′|s, a) =
n t
h(s

′|s, a)/n t
h(s, a) if nt

h(s, a) > 0 and p̂ 0
h (s

′|s, a) = 1/S otherwise. Appendix A references all
the notation used.

6We study deterministic rewards to simplify the proofs but our result extend to bounded random rewards as
well.

7As explained by Fiechter [1994] and Kaufmann et al. [2020], if the first state is sampled randomly as
s1 ∼ p, we can simply add an artificial first state s1′ such that for any action a, the transition probability is
defined as the distribution p1′(s1′ , a) ≜ p.

4



3 Algorithm

In this section we describe the OPSRL algorithm. In spirit, OPSRL proceeds similarly as PSRL except
that it uses several posterior samples instead and acts optimistically with respect to them, explaining
the name Optimistic Posterior Sampling for Reinforcement Learning (OPSRL).

Optimistic pseudo-state In order to define the prior used by OPSRL, we extend the state space S by
an absorbing pseudo-state s0 with reward rh(s0, a) ≜ r0 > 1 for all h, a and transition probability
distribution ph(s

′|s0, a) ≜ 1{s′ = s0}. A similar pseudo-state was already introduce in previous
works, see for example Brafman and Tennenholtz [2002], Szita and Lőrincz [2008]. We denote by
S ′ = S ∪ {s0} the augmented states space and by ∆S′ the set of probability distributions over S ′.

Pseudo-counts We define the pseudo-counts, nt
h(s, a) ≜ nt

h(s, a)+n0, as the counts shifted by an
initial value n0. This shift corresponds to prior transitions to the pseudo-state, that is nt

h(s
′|s, a) ≜

nt
h(s

′|s, a) + n01{s′ = s0}. Similar to the empirical transitions, we define a pseudo-empirical
transition probability distribution as p t

h(s, a) = n t
h(s

′|s, a)/n t
h(s, a).

Inflated Bayesian model Like PSRL, we define a Bayesian model on the transition probability
distributions, except that the prior/posterior is inflated. The practice of inflating the posterior is
common in the analysis of Thompson sampling like algorithm, see Agrawal and Jia [2017b], Abeille
and Lazaric [2017]. Precisely, the inflated prior is a Dirichlet distribution Dir

((
n0
h(s

′|s, a)/κ
)
s′∈S′

)
parameterized by the initial pseudo-counts, and some constant κ > 0 controlling the inflation. Thus
the prior is a Dirac distribution at a deterministic transition leading to the artificial state s0. Then
the inflated posterior is also a Dirichlet distribution Dir

((
nt
h(s

′|s, a)/κ
)
s′∈S′

)
. Note that the prior

is a proper prior (i.e., a valid probability distribution), but it will be updated in an improper way,
i.e., probability transitions with no mass under the prior could get mass in the posterior, as they get
positive counts.

Optimistic posterior sampling After episode t, for each state-action pair (s, a) and step
h ∈ [H] we sample J independent transition probability distributions p̃ t,j

h (s, a) ∼
Dir
((

nt
h(s

′|s, a)/κ
)
s′∈S′

)
from the inflated posterior. Then, the Q-values are obtained by op-

timistic backward induction with these transitions. Precisely the value after the last step is zero
V

t

H+1(s) ≜ 0 and the optimal Bellman equations become

Q
t

h(s, a) ≜ rh(s, a) + max
j∈[J]

p̃ t,j
h V

t

h+1(s, a) ,

V
t

h(s) ≜ max
a∈A

Q
t

h(s, a) .
(1)

The next policy is greedy with the Q-values πt+1
h (s) ∈ argmaxa∈A Q

t

h(s, a). The complete proce-
dure of OPSRL is described in Algorithm 1 for a general family of distributions parameterized by the
pseudo-counts over the transitions instead of the inflated Dirichlet prior/posterior.

3.1 Analysis

We fix δ ∈ (0, 1) and the number of samples

J ≜ ⌈cJ · log(2SAHT/δ)⌉,
where cJ = 1/ log(2/(1+Φ(1))) and Φ(·) is the cumulative distribution function (CDF) of a normal
distribution. Note that J has a logarithmic dependence on S,A,H, T, and 1/δ.

We now state the regret bound of OPSRL with a full proof in Appendix B. and a sketch in Section 3.2.

Theorem 3.1. Consider a parameter δ ∈ (0, 1). Let κ ≜ 2(log(12SAH/δ) + 3 log(eπ(2T +

1))), n0 ≜ ⌈κ(c0 + log17/16(T ))⌉, r0 ≜ 2, where c0 is an absolute constant defined in (4); see
Appendix B.2. Then for OPSRL, with probability at least 1− δ,

RT = O
(√

H3SATL3 +H3S2AL3
)
,
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Algorithm 1 OPSRL

1: Input: Family of probability distributions ρ : NS+1
+ → ∆S′ over transitions, initial pseudo-

count n0
h, number of posterior samples J .

2: for t ∈ [T ] do
3: For all (s, a, h) ∈ S ×A× [H], sample J independent transitions

p̃ t−1,j
h (s, a) ∼ ρ

(
nt−1
h (s′|s, a)s′∈S′

)
, j ∈ [J ].

4: Optimistic backward induction: set V
t−1

H+1(s) = 0 and recursively for h ∈ [H], compute

Q
t−1

h (s, a) = rh(s, a) + max
j∈[J]

{
p̃ t−1,j
h V

t−1

h+1(s, a)
}
,

V
t−1

h (s) = max
a∈A

Q
t−1

h (s, a) ,

πt
h(s) ∈ argmax

a∈A
Q

t−1

h (s, a) .

5: for h ∈ [H] do
6: Play ath = πt

h(s
t
h).

7: Observe sth+1 ∼ ph(s
t
h, a

t
h).

8: Increment the pseudo-count nt
h(s

t
h+1|sth, ath).

9: end for
10: end for

where L ≜ O(log(HSAT/δ)).

Computational complexity OPSRL is a model-based algorithm, and thus gets the O(HS2A) space
complexity as PSRL. Since we need Õ(1) posterior samples per state-action pair the time complexity
of OPSRL is of order Õ(HS2A) per episode, the same as PSRL up to poly-logarithmic terms. Building
on the idea of Efroni et al. [2019], in Appendix F we propose the Lazy-OPSRL algorithm a more
time-efficient version of OPSRL. Instead of recomputing the Q-value by backward induction before
each episode, Lazy-OPSRL only performs one step of optimistic incremental planning at the visited
states. It enjoys a regret bound of the same order Õ(

√
H3SAT ) as OPSRL but with an improved

time-complexity per episode of O(HSA), see Theorem F.1 in Appendix F.

Comparison with SOS-OPS-RL and PSRL One structural difference between OPSRL and
SOS-OPS-RL of Agrawal and Jia [2017a] is that OPSRL only relies on optimistic posterior sam-
pling while SOS-OPS-RL also uses simple optimistic sampling: a mixture of the uniform distribution
over the states and an empirical estimate of the true transition kernel biased by some bonus-like
terms. In particular, OPSRL does not use bonus-like quantities which could lead to poor empirical
performance [Osband and Van Roy, 2017]. Another important issue is the number of posterior
samples. SOS-OPS-RL needs Õ(S) posterior samples in order to obtain a regret bound of order
Õ(H2S

√
AT ) whereas OPSRL needs only Õ(1) samples and obtains a better regret bound. Note

that if we choose the number of posterior samples as J = 1 in OPSRL we recover PSRL up to two
technical differences: First, the posterior is inflated in order to increase its variance. This technical
trick was already used by Agrawal and Jia [2017a] and allows to guarantee optimism with a small
number of posterior samples, see Section 3.2. Second, OPSRL uses a particular prior which is a Dirac
distribution at a deterministic transition towards an optimistic pseudo-state. This prior is needed to
control the deviations of the (inflated) posterior, see Theorem D.2.

Comparison with RLSVI Both OPSRL and RLSVI build on the same mechanism for exploration.
RLSVI just adds an Gaussian noise to the Q-values whereas OPSRL injects the noise naturally via
a random transition sampled from a Dirichlet distribution. As controlling the deviation of the
Q-value obtained with additive Gaussian noise is not difficult, the analysis of RLSVI is relatively
straightforward [Russo, 2019, Ishfaq et al., 2021]. On the contrary the analysis of OPSRL is much
more involved, see Section 3.2. However, the benefit of optimistic posterior sampling in OPSRL is

6



that it adapts automatically to the variance of the estimates of the transitions which is central for
a regret bound with an optimal dependence on the horizon H [Azar et al., 2017]. Adapting to the
variance with RLSVI is much more involved and artificial, see Xiong et al. [2021]. This is probably
one reason why RLSVI performs empirically worse than PSRL [Osband et al., 2016a].

3.2 Proof sketch

The proof of Theorem 3.1 consists of three important steps. The first step is devoted to the approxima-
tion for tails of weighted sums of Dirichlet distribution and embodies the main technical contribution
of the paper.

Step 1. Exponential and Gaussian approximation for Dirichlet distribution The first result
generalizes Riou and Honda [2020] to Dirichlet distributions with real parameters. Let us first recall
the definition of the minimum Kullback-Leibler divergence for p ∈ ∆m where m ∈ N+, a function
f : {0, . . . ,m} → [0, b] for some b ∈ R+ and u ∈ R,

Kinf(p, u, f) ≜ inf{KL(p, q) : q ∈ ∆m, qf ≥ u} ,

where we recall that pf ≜ EX∼pf(X). This quantity appears already in the analysis of non-
parametric bounded multi-arm stochastic bandits, see Honda and Takemura [2010], Cappé et al.
[2013]. As the Kullback-Leibler divergence, the minimum Kullback-Leibler divergence admits a
variational formula by Lemma 18 of Garivier et al. [2018] up to rescaling for any u ∈ (0, b),

Kinf(p, u, f) = max
λ∈[0,1/(b−u)]

EX∼p[log(1− λ(f(X)− u))] . (2)

Theorem 3.2 (Exponential upper bound, see Theorem D.1). For any α = (α0, α1, . . . , αm) ∈ Rm+1
++

define p ∈ ∆m such that p(ℓ) = αℓ/α, ℓ = 0, . . . ,m, where α =
∑m

j=0 αj . Then for any
f : {0, . . . ,m} → [0, b] and 0 < µ < b, we have

Pw∼Dir(α)[wf ≥ µ] ≤ exp(−αKinf(p, µ, f)).

The second result is devoted to a tight Gaussian lower bound for the distribution of a linear function
of Dirichlet random vector. Here we follow the ideas of Alfers and Dinges [1984] and use the exact
expression for the density of a linear form of Dirichlet random vector derived by Tiapkin et al. [2022].

Theorem 3.3 (Gaussian lower bound, see Theorem D.2). For any α = (α0 + 1, α1, . . . , αm) ∈
Rm+1

++ , define p ∈ ∆m such that p(ℓ) = αℓ/α, ℓ = 0, . . . ,m, where α =
∑m

j=0 αj . Fix ε ∈ (0, 1)

and assume that α0 ≥ c(ε) + log17/16(α) for c(ε) defined in (11), Appendix D, and α ≥ 2α0.
Then for any f : {0, . . . ,m} → [0, b0] such that f(0) = b0, f(j) ≤ b < b0/2, j ∈ {1, . . . ,m} and
µ ∈ (pf, b0),

Pw∼Dir(α)[wf ≥ µ] ≥ (1− ε)Pg∼N (0,1)

[
g ≥

√
2αKinf(p, µ, f)

]
.

We emphasize that increasing the parameter α0 corresponding to the largest value of f by 1 is crucial.
The same technique was used by Alfers and Dinges [1984] to derive a lower bound on the tails of the
Beta distribution.
Remark 3.4. We stress that the anti-concentration inequality of Tiapkin et al. [2022, Theorem D.2]
is not sufficient for our purposes; their additional factor α−3/2 in front of the exponent makes it
unusable for the analysis of OPSRL. Indeed, this inequality would imply Õ(T 3/2) samples from the
inflated posterior in order to get optimism with high-probability, whereas with our refined bound
(Theorem 3.3) we only need Õ(1) posterior samples.

Proof sketch of Theorem 3.3. We start from the integral representation for the density by Tiapkin
et al. [2022, Proposition D.3]. Define Z ≜ wf for w ∼ Dir(α0 + 1, α1, . . . , αm), then for any
u ∈ (0, b0),

pZ(u) =
α

2π

∫
R
(1 + i(b0 − u)s)−1

m∏
j=0

(1 + i(f(j)− u)s)
−αjds.

7



One additional term (1 + i(b0 − u)s)−1 comes from increasing the parameter α0 by 1 corresponding
to the value f(0) = b0.

In the same spirit as it was done by Tiapkin et al. [2022], we apply the method of saddle point (see
Fedoryuk, 1977, Olver, 1997) to the complex integral above. Informally, for α0, α, b0 large enough
the following approximation holds

pZ(u) ≈

√
α

2πσ2(1− λ⋆(b0 − u))2
exp(−αKinf(p, u, f)),

where λ⋆ is the unique solution to the problem (2) and σ2 = EX∼p

[
( f(X)−u
1−λ⋆(f(X)−u) )

2
]
. The formal

statement can be found in Lemma D.5 of Appendix D.

Next we perform a change of variables t2/2 = Kinf(p, u, f) in the above expression to get

Pw∼Dir(α0+1,α1,...,αm)[wf ≥ µ] ≈
∫ b0

µ

√
α

2πσ2(1− λ⋆(b0 − u))2
exp(−αKinf(p, u, f))du

≈
∫ ∞

√
2Kinf(p,µ,f)

D(u(t))ϕ(t|0, α)dt,

where ϕ(x|µ, σ2) is a density of N (µ, σ2) and D(u) is a weight function bounded from below by 1
(see Lemma D.6 of Appendix D). This lower bound on D(u) concludes the proof.

Comparison with anti-concentration bound by Agrawal and Jia [2017b] We emphasise that our
technique of deriving a Gaussian-like lower bound is substantially different from the methodology
used by Agrawal and Jia [2017b]. The latter one was based on reduction of a weighted sum of
Dirichlet random vector to a weighted sum of independent Beta distributed random variables and a
subsequent application of the Berry-Esseen inequality, whereas our approach relies on the integral
representation for the density of the corresponding linear projection of Dirichlet random vector.

In particular, the Berry-Esseen inequality is likely to be very coarse since it uses only the first three
moments of the distribution and therefore generates an additional S-factor. At the same time, our
analysis is much better fitted to the Dirichlet distribution and provides a very tight lower bound. The
tightness of our bounds can be checked by comparing it to a similar result for the beta distribution
derived in Alfers and Dinges [1984].

Step 2. Optimism Next, we apply Theorem 3.3 to prove that the estimate of Q-function Q
t

h is
optimistic with high probability for our choice of inflation parameter κ and a number of posterior
samples J : Q

t

h(s, a) ≥ Q⋆
h(s, a) for any (s, a, h, t) ∈ S ×A× [H]× [T ].

We show that the inequalities maxj∈[J]{p̃ t,j
h V ⋆

h+1(s, a)} ≥ phV
⋆
h+1(s, a) hold for all (s, a, h, t) ∈

S ×A× [H]× [T ] with high probability. First, we notice that p̃ t,j
h (s, a) ∼ Dir(α0 + 1, α1, . . . , αS)

for α0 = n0/κ−1, αi = nt
h(si|s, a)/κ and α = (n t

h(s, a)−κ)/κ. Additionally, define a probability
distribution q ∈ ∆S such that q(i) = αi/α. This distribution slightly differs from p t

h(s, a) because
of an additional +1 in the parameters of the Dirichlet distribution. Next, we may apply Theorem 3.3
with ε = 1/2 and a proper choice of n0 = n0(ε),

Pp̃ t,j
h (s,a)∼Dir(α0+1,α1,...,αS)

[
p̃ t,j
h V ⋆

h+1(s, a) ≥ phV
⋆
h+1(s, a)

]
≥ 1

2

(
1− Φ

(√
2ζ

κ

))
,

where ζ ≜ (nt
h−κ)Kinf(q, phV

⋆
h+1(s, a), V

⋆
h+1) and Φ(·) is a cumulative distribution function (CDF)

of a standard normal distribution. By a concentration argument we have

ζ ≤ nt
h Kinf(p̂

t
h(s, a), phV

⋆
h+1(s, a), V

⋆
h+1) ≤ κ/2,

with high probability for an appropriate choice of κ = Õ(1). For this step of the proof
the presence of the inflation parameter κ is crucial: this parameter increases the variance of
p̃ t,j
h (s, a) to ensure that the above inequality holds with a constant probability. Next, by tak-

ing the maximum over J = O(log(SATH/δ)) samples and applying union bound, we guaran-
tee that the inequality maxj∈[J]{p̃ t,j

h V ⋆
h+1(s, a)} ≥ phV

⋆
h+1(s, a) holds simultaneously for all

8



(s, a, h, t) ∈ S × A × [H] × [T ] with probability at least 1 − δ/2. The formal statement and the
proof could be found in Proposition B.4 of Appendix B.2.

Finally, the standard backward induction over h ∈ [H] concludes optimism. Indeed, the base of
induction h = H + 1 is trivial. Next, by the Bellman equations for Q

t

h and Q⋆
h we have

Q
t

h(s, a)−Q⋆
h(s, a) = max

j∈[J]
{p̃ t,j

h V
t

h+1(s, a)} − phV
⋆
h+1(s, a).

The induction hypothesis implies V
t

h+1(s
′) ≥ Q

t

h+1(s
′, π⋆(s′)) ≥ Q⋆

h+1(s
′, π⋆(s′)) = V ⋆

h+1(s
′)

for any s′ ∈ S. Hence,

Q
t

h(s, a)−Q⋆
h(s, a) ≥ max

j∈[J]
{p̃ t,j

h V ⋆
h+1(s, a)} − phV

⋆
h+1(s, a) ≥ 0

with probability at least 1− δ/2.

Step 3. Regret bound The rest of proof directly follows Azar et al. [2017], where UCBVI algorithm
with Bernstein bonuses was analyzed. By the optimism, we have

RT =

T∑
t=1

[V ⋆
1 (s1)− V πt

1 (s1)] ≤
T∑

t=1

δt1,

where δth ≜ V
t−1

h (sth)− V πt

h (sth). The quantity δth can be decomposed as follows using the Bellman
equation for V πt

and Q
t−1

h ,

δth = Q
t−1

h (sth, a
t
h)−Qπt

h (sth, a
t
h) = max

j∈[J]

{
p̃ t−1,j
h V

t−1

h+1(s
t
h, a

t
h)
}
− phV

πt

h+1(s
t
h, a

t
h)

= max
j∈[J]

{
p̃ t−1,j
h V

t−1

h+1(s
t
h, a

t
h)
}
− p t−1

h V
t−1

h+1(s
t
h, a

t
h)︸ ︷︷ ︸

(A)

+ [p t−1
h − p̂ t−1

h ]V
t−1

h+1(s
t
h, a

t
h)︸ ︷︷ ︸

(B)

+ [p̂ t−1
h − ph][V

t−1

h+1 − V ⋆
h+1](s

t
h, a

t
h)︸ ︷︷ ︸

(C)

+ [p̂ t−1
h − ph]V

⋆
h+1(s

t
h, a

t
h)︸ ︷︷ ︸

(D)

+ ph[V
t−1

h+1 − V πt

h+1](s
t
h, a

t
h)− [V

t−1

h+1 − V πt

h+1](s
t
h+1)︸ ︷︷ ︸

ξth

+δth+1.

The terms (C), (D), and ξth are standard in the analysis of the optimistic algorithms. The term (B)

could be upper-bounded by r0·n0·H
nt−1
h (sth,a

t
h)

and turns out to be one of second-order terms. The analysis

of (A) is novel and requires application of the Bernstein inequality for Dirichlet distributions that
follows from Theorem 3.2 and is spelled out in the following lemma.
Lemma 3.5 (see Lemma C.6 in Appendix C). For any α = (α0, α1, . . . , αm) ∈ Rm+1

++ define
p ∈ ∆m such that p(ℓ) = αℓ/α, ℓ = 0, . . . ,m, where α =

∑m
j=0 αj . Then for any f : {0, . . . ,m} →

[0, b] such that f(0) = b and δ ∈ (0, 1),

Pw∼Dir(α)

[
wf ≥ pf + 2

√
Varp(f) log(1/δ)

α
+

3b · log(1/δ)
α

]
≤ δ.

As opposed to Lemma C.8 of Tiapkin et al. [2022], the last result applies to Dirichlet distributions with
non-integer parameters as in our case (due to the presence of the inflation parameter κ). Therefore, we
see that the term (A) can be upper bounded by a quantity which has the same role as in the analysis
of UCBVI. After using the Bernstein bound, the rest of the proof follows from the analysis of UCBVI
with the Bernstein bonuses and Bayes-UCBVI; see Azar et al. [2017] and Tiapkin et al. [2022].

4 Experiments

In this section we provide experiment to compare OPSRL with some baselines on simple tabular
environment; see details in Appendix G. In particular, we illustrate that OPSRL is competitive with
the original PSRL algorithm and outperforms bonus-based algorithms such as UCBVI.
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Baselines We compare OPSRL with the following baselines: UCBVI (with Hoeffding-type bonuses)
and UCBVI-B (with Bernstein-type bonuses) Azar et al. [2017], PSRL Osband et al. [2013], and RLSVI
Osband et al. [2016b]. See Appendix G for full details on parameters for OPSRL and baselines.
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Figure 1: Regret of OPSRL and baselines on grid-world environment with 100 states and 4 action for
H = 50 an transitions noise 0.2. We show average over 4 seeds.

Results In Figure 1, we plot the regret of the various baselines and OPSRL in the grid world
environment. In this experiment, we observe that OPSRL achieves competitive results with respect to
PSRL. It is not completely surprising since they share the same Bayesian model on the transitions up
to the prior. We shall elaborate more on the influence of the prior in Appendix G. We also note that
OPSRL outperforms UCBVI and RLSVI. This difference may be explained by the fact that OPSRL’s
optimism implies (in the worst case) KL bonuses as in Filippi et al. [2010]. The KL bonuses are
stronger than Bernstein bonuses, see Lemma E.1, because they somehow rely on all moments of the
empirical distribution rather than the first two moments as in the case of Bernstein bonuses or first
moments for Hoeffding bonuses or for the variance of the Gaussian noise in RLSVI. Note also that in
OPSRL, we do not have to solve the complex convex program to compute the KL bonuses Filippi et al.
[2010], which could be computationally intensive.

5 Conclusion

In this work, we presented the OPSRL algorithm which can be viewed as a simple optimistic variant
of the PSRL algorithm. Notably, OPSRL only needs Õ(1) posterior samples per state-action. We
proved that the regret of OPSRL is upper-bounded with high probability by Õ(

√
H3SAT ), matching

the problem-independent lower-bound of order Ω(
√
H3SAT ) for T large enough and up to terms

poly-logarithmic in H,S,A, and T . While our work addresses the open questions raised by Agrawal
and Jia [2017b] in the episodic setting, obtaining the same results in the infinite-horizon average
reward setting remains an open issue. We believe that it is possible to adapt our analysis to this
other setting up to some technical adjustments. Ultimately, another open question, is to obtain a
high-probability regret bound for PSRL, that is, when using only a single posterior sample and not
inflating the posterior. As a further future research direction we believe it could be interesting to
obtain a model-free algorithm that relies on the same mechanism as OPSRL for exploration. Indeed,
such an algorithm could avoid the use of complicated bonuses adopted by the current model-free
algorithms while reducing the memory complexity of OPSRL.
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A Notation

Table 1: Table of notation use throughout the paper

Notation Meaning

S state space of size S
A action space of size A
H length of one episode
T number of episodes
J number of posterior samples
rh(s, a) reward
ph(s

′|s, a) probability transition
Qπ

h(s, a) Q-function of a given policy π at step h
V π
h (s) V-function of a given policy π at step h

Q⋆
h(s, a) optimal Q-function at step h

V ⋆
h (s) optimal V-function at step h

RT regret
n0 number of pseudo-samples
s0 pseudo-state
r0 pseudo-reward
κ posterior inflation parameter
s t
h state that was visited at h step during t episode
a t
h action that was picked at h step during t episode

nt
h(s, a) number of visits of state-action nt

h(s, a) =
∑t

k=1 1
{
(skh, a

k
h) = (s, a)

}
nt
h(s

′|s, a) number of transition to s′ from state-action nt
h(s

′|s, a) =
∑t

k=1 1
{
(skh, a

k
h, s

k
h+1) = (s, a, s′)

}
.

nt
h(s, a) pseudo number of visits of state-action nt

h(s, a) = nt
h(s, a) + n0

nt
h(s

′|s, a) pseudo number of transition to s′ from state-action nt
h(s

′|s, a) = nt
h(s

′|s, a) + 1{s′ = s0} · n0

p̂ t
h(s

′|s, a) empirical probability transition p̂ t
h(s

′|s, a) = nt
h(s

′|s, a)/nt
h(s, a)

pth(s
′|s, a) pseudo-empirical probability transition pth(s

′|s, a) = nt
h(s

′|s, a)/nt
h(s, a)

Q
t

h(s, a) upper approximation of the optimal Q-value
V

t

h(s, a) upper approximation of on the optimal V-value
R+ non-negative real numbers
R++ positive real numbers
N++ positive natural numbers
[n] set {1, 2, . . . , n}
∆d d-dimensional probability simplex: ∆d = {x ∈ Rd+1

+ :
∑d

j=0 xj = 1}
1N vector of dimension N with all entries one is 1N ≜ (1, . . . , 1)
∥x∥1 ℓ1-norm of vector ∥x∥1 =

∑m
j=1 |xj |

∥x∥2 ℓ2-norm of vector ∥x∥2 =
√∑m

j=1 x
2
j

∥f∥2 for f : X → R, where |X| < ∞ define ∥f∥2 =
√∑

x∈X f2(x)

Let (X,X ) be a measurable space and P(X) be the set of all probability measures on this space. For
p ∈ P(X) we denote by Ep the expectation w.r.t. p. For random variable ξ : X → R notation ξ ∼ p
means Law(ξ) = p. We also write Eξ∼p instead of Ep. For independent (resp. i.i.d.) random variables

ξℓ
ind∼ pℓ (resp. ξℓ

i.i.d∼ p), ℓ = 1, . . . , d, we will write E
ξℓ

ind∼ pℓ
(resp.E

ξℓ
i.i.d∼ p

), to denote expectation

w.r.t. product measure on (Xd,X⊗d). For any p, q ∈ P(X) the Kullback-Leibler divergence KL(p, q)
is given by

KL(p, q) ≜

{
Ep

[
log dp

dq

]
, p ≪ q,

+∞, otherwise.

For any p ∈ P(X) and f : X → R, pf = Ep[f ]. In particular, for any p ∈ ∆d and f : {0, . . . , d} →
R, pf =

∑d
ℓ=0 f(ℓ)p(ℓ). Define Varp(f) = Es′∼p

[
(f(s′) − pf)2

]
= p[f2] − (pf)2. For any

(s, a) ∈ S, transition kernel p(s, a) ∈ P(S) and f : S → R define pf(s, a) = Ep(s,a)[f ] and
Varp[f ](s, a) = Varp(s,a)[f ].

17



We write f(S,A,H, T ) = O(g(S,A,H, T, δ)) if there exist S0, A0, H0, T0, δ0 and constant
Cf,g such that for any S ≥ S0, A ≥ A0, H ≥ H0, T ≥ T0, δ < δ0, f(S,A,H, T, δ) ≤
Cf,g · g(S,A,H, T, δ). We write f(S,A,H, T, δ) = Õ(g(S,A,H, T, δ)) if Cf,g in the previous
definition is poly-logarithmic in S,A,H, T, 1/δ.

For λ > 0, we define E(λ) as an exponential distribution with a parameter λ. For k, θ > 0 define
Γ(k, θ) as a gamma-distribution with a shape parameter k and a rate parameter θ. For set X such that
|X| < ∞ define Unif(X) as a uniform distribution over this set. In particular, Unif[N ] is a uniform
distribution over a set [N ].

We fix a function f : {1, . . . ,m} 7→ [0, b] and recall the definition of the minimum Kullback-Leibler
divergence for p ∈ ∆m−1 and u ∈ R

Kinf(p, u, f) ≜ inf{KL(p, q) : q ∈ ∆m−1, qf ≥ u} .

As the Kullback-Leibler divergence this quantity admits a variational formula by Lemma 18 of
Garivier et al. [2018] up to rescaling for any u ∈ (0, b)

Kinf(p, u, f) = max
λ∈[0,1/(b−u)]

EX∼p[log(1− λ(f(X)− u))] .
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B Proof of regret bound for OPSRL

B.1 Concentration events

Let β⋆, βKL, βconc, βVar : (0, 1)× N → R+, βDir : (0, 1)× N× N → R+, and β : (0, 1) → R+ be
some function defined later in Lemma B.1. We define the following favorable events,

E⋆(δ) ≜

{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A :

Kinf(p̂
t
h(s, a), phV

⋆
h+1(s, a), V

⋆
h+1) ≤

β⋆(δ, nt
h(s, a))

nt
h(s, a)

}
,

EKL(δ) ≜

{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A :

KL(p̂ t
h(s, a), ph(s, a)) ≤

S · βKL(δ, n t
h(s, a))

n t
h(s, a)

}
,

Econc(δ) ≜

{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A :

|(p̂th − ph)V
⋆
h+1(s, a)| ≤

√
2Varph

(V ⋆
h+1)(s, a)

β(δ, nt
h(s, a))

nt
h(s, a)

+ 3H
β(δ, nt

h(s, a))

nt
h(s, a)

}
,

EDir(δ) ≜

{
∀t ∈ [T ],∀h ∈ [H],∀(s, a) ∈ S ×A,∀j ∈ [J ] :

[p̃t,jh − pth]V
t

h+1(s, a) ≤ 2

√
Varp t

h
[V

t

h+1](s, a)
βDir(δ, T, J) · κ

n t
h(s, a)

+ 3r0H
βDir(δ, T, J) · κ

n t
h(s, a)

}
,

EVar(δ) ≜

{
∀t ∈ N :

t∑
ℓ=1

H∑
h=1

Varph
[V πℓ

h+1(s
ℓ
h, a

ℓ
h)] ≤ H2t+

√
2H5tβVar(δ, t) + 3H3βVar(δ, t)

}
,

E(δ) ≜

{
T∑

t=1

H∑
h=1

∣∣∣ph[V t−1

h+1 − V πt

h+1](s
t
h, a

t
h)− [V

t−1

h+1 − V πt

h+1](s
t
h+1)

∣∣∣ ≤ 2r0H
√
2HTβ(δ),

T∑
t=1

H∑
h=1

(1− 1/H)H−h+1

∣∣∣∣ph[V t−1

h+1 − V πt

h+1](s
t
h, a

t
h)

− [V
t−1

h+1 − V πt

h+1](s
t
h+1)

∣∣∣∣≤ 2er0H
√
2HTβ(δ),

}
·

We also introduce the intersection of these events, Gconc(δ) ≜ E⋆(δ)∩EKL(δ)∩Econc(δ)∩EDir(δ)∩
EVar(δ)∩E(δ). We prove that for the right choice of the functions β⋆, βKL, βconc, β, βVar, the above
events hold with high probability.
Lemma B.1. For any δ ∈ (0, 1) and for the following choices of functions β,

β⋆(δ, n) ≜ log(12SAH/δ) + 3 log(eπ(2n+ 1)) ,

βKL(δ, n) ≜ log(12SAH/δ) + log(e(1 + n)),

βconc(δ, n) ≜ log(12SAH/δ) + log(4e(2n+ 1)),

βDir(δ, t, J) ≜ log(12SAHt/δ) + log(J),

βVar(δ, t) ≜ log(48e(2t+ 1)/δ),

β(δ) ≜ log(48/δ),
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it holds that

P[E⋆(δ)] ≥ 1− δ/12, P[EKL(δ)] ≥ 1− δ/12, P[Econc(δ)] ≥ 1− δ/12,

P[EDir(δ)] ≥ 1− δ/12, P[EVar(δ)] ≥ 1− δ/12, P[E(δ)] ≥ 1− δ/12.

In particular, P[Gconc(δ)] ≥ 1− δ/2.

Remark B.2. Since we take J ≜ Θ(log(SAHT/δ)), all functions β are logarithmic in S,A,H, T, δ.

Proof. P[E⋆(δ)] ≥ 1 − δ/12 follows from Theorem C.4. Applying Theorem C.1 and the union
bound over h ∈ [H], (s, a) ∈ S × A we get P[EKL(δ)] ≥ 1− δ/12. Next, by Lemma C.6 and the
union bound over h ∈ [H], t ∈ [T ], (s, a) ∈ S × A, j ∈ [J ] we conclude P[EDir(δ)] ≥ 1 − δ/12.
Theorem C.5 and the union bound over h ∈ [H], (s, a) ∈ S ×A yield P[Econc(δ)] ≥ 1− δ/12. By
Lemma B.2 by Tiapkin et al. [2022] we have P[EVar(δ)] ≥ 1− δ/12.

To estimate P[E(δ)] one may apply Azuma-Hoeffding inequality. Define the following sequences for
all t ∈ [T ], h ∈ [H]

Z̄t,h ≜ V
t−1

h+1(s
t
h+1)− V ∗

h+1(s
t
h+1)− ph[V

t−1

h+1 − V ∗
t+1](s

t
h, a

t
h),

Z̃t,h ≜ (1− 1/H)H−h+1
(
V

t−1

h+1(s
t
h+1)− V ∗

h+1(s
t
h+1)− ph[V

t−1

h+1 − V ∗
h+1](s

t
h, a

t
h)
)
.

It is easy to see that these sequences form a martingale-difference w.r.t filtration Ft,h =

σ
{
{(sℓh′ , aℓh′), ℓ < t, h′ ∈ [H]} ∪ {(sth′ , ath′), h′ ≤ h}

}
. Moreover, |Z̄t,h| ≤ 2r0H, |Z̃t,h| ≤ 2er0H

for all t ∈ [T ] and h ∈ [H]. Hence, the Azuma-Hoeffding inequality implies

P

(∣∣∣ T∑
t=1

H∑
h=1

Z̄t,h

∣∣∣ > 2r0H
√
2tH · β(δ)

)
≤ 2 exp(−β(δ)) = δ/24,

P

(∣∣∣ T∑
t=1

H∑
h=1

Z̄t,h

∣∣∣ > 2er0H
√
2tH · β(δ)

)
≤ 2 exp(−β(δ)) = δ/24.

By the union bound, P[E(δ)] ≥ 1− δ/12.

Next we reproduce proof of important corollary of Lemma B.1.
Lemma B.3. Assume conditions of Lemma B.1. Then on the event EKL(δ), for any f : S → [0, r0H],
t ∈ N, h ∈ [H], (s, a) ∈ S ×A,

(p̂th − ph)f(s, a) ≤
1

H
phf(s, a) +

5r0H
2S · βKL(δ, n t

h(s, a))

n t
h(s, a)

,

∥p̂ t
h(s, a)− ph(s, a)∥1 ≤

√
2S · βKL(δ, n t

h(s, a))

n t
h(s, a)

·

Proof. By application of Lemma E.1 and Lemma E.2

(p̂th − ph)f(s, a) ≤
√
2Varp̂t

h
[f ](s, a) ·KL(p̂th, ph) +

2Hr0
3

KL(p̂th, ph)

≤ 2
√

Varph
[f ](s, a) ·KL(p̂th, ph) +

(
2
√
2 +

2

3

)
Hr0 KL(p̂th, ph).

Since 0 ≤ f(s) ≤ r0H

Varph
[f ](s, a) ≤ ph[f

2](s, a) ≤ r0H · phf(s, a).

Finally, by a simple bound 2
√
ab ≤ a+ b, a, b ≥ 0, we obtain the following

(p̂th − ph)f(s, a) ≤
1

H
phf(s, a) + (H2 + 2

√
2r0H + 2r0H/3)KL(p̂th, ph)

≤ 1

H
phf(s, a) + 5r0H

2 KL(p̂th, ph).

Definition of EKL(δ) implies the first statement. The second statement follows directly from the
combination of Pinsker’s inequality and definition of EKL(δ).
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B.2 Optimism

In this section we prove that our estimate of Q-function Q
t

h(s, a) is optimistic that is the event

Eopt ≜
{
∀t ∈ [T ], h ∈ [H], (s, a) ∈ S ×A : Q

t

h(s, a) ≥ Q⋆
h(s, a)

}
. (3)

holds with high probability on the event E⋆(δ).

Define constants

c0 ≜

(
4√

log(17/16)
+ 8 +

49 · 4
√
6

9

)2
8

π
+ log17/16

(
20

32

)
+ 1, (4)

and
cJ ≜

1

log
(

2
1+Φ(1)

) , (5)

where Φ(·) is a cdf of a normal distribution.
Proposition B.4. Assume that J = ⌈cJ · log(2SAHT/δ)⌉, κ = 2β⋆(δ, T ), r0 = 2, and n0 =
⌈(c0 + log17/16(T/κ)) · κ⌉. Then on event E⋆ the following event

Eanticonc(δ) ≜

{
∀t ∈ [T ] ∀h ∈ [H] ∀(s, a) ∈ S ×A : max

j∈[J]

{
p̃ t,j
h V ⋆

h+1(s, a)
}
≥ phV

⋆
h+1(s, a)

}
holds with probability at least 1− δ/2.

Proof. First, we notice that p̃ t,j
h (s, a) for all fixed t, j, h, s, a have a Dirichlet distribution with

parameter ({nt
h(s

′|s, a)/κ}s′∈S′) for an extended state-space S ′ = {s0} ∪ S. Therefore, we may
apply Theorem D.2 with fixed ε = 1/2 for f = V ⋆

h+1 if we have b0 = r0(H − h) ≥ 2(H − h) = 2b
and

n0

κ
= α0 + 1 ≥ c0 + log17/16

(
nt
h(s, a)/κ

)
for a constant c0 defined in (4). Let us define α0 = n0/κ − 1 and αi = nt

h(si|s,a)/κ for some ordering
si ∈ S . Then we have α = nt

h(s,a)/κ − 1 and p̃ t,j
h ∼ Dir(α0 + 1, α1, . . . , αS). Define a distribution

q ∈ ∆S : q(i) = αi/α. Then if α ≥ 2α0 Theorem D.2 yields for any u ≥ qV ⋆
h+1

P
(
p̃ t,j
h V ⋆

h+1(s, a) ≥ u
)
≥ 1

2

1− Φ

√2(nt
h(s, a)− κ)Kinf

(
q, u, V ⋆

h+1

)
κ

, (6)

where Φ is a cdf of a normal distribution.

Notice that if we have u < qV ⋆
h+1 then the following bound also holds

P
(
p̃ t,j
h V ⋆

h+1(s, a) ≥ u
)
≥ P

(
p̃ t,j
h V ⋆

h+1(s, a) ≥ pthV
⋆
h+1(s, a)

)
≥ 1

2
(1− Φ(0)). (7)

Since for all u ≤ qV ⋆
h+1 we also have Kinf

(
q, u, V ⋆

h+1

)
= 0, therefore (6) holds for all u ≥ 0 and

α ≥ 2α0.

Next we need to handle the case α < 2α0. In this case we have qV ⋆
h+1 > H − h, thus for any

0 ≤ u ≤ H − h

P
(
p̃ t,j
h V ⋆

h+1(s, a) ≥ u
)
≥ Pξ∼B(α0+1,α−α0)(r0(H − h)ξ ≥ u) ≥ Pξ∼B(α0+1,α−α0)

(
ξ ≥ 1

2

)
,

where we first apply a lower bound V ⋆
h+1(s) ≥ 0 for all s ∈ S and V ⋆

h+1(s0) = r0(H − h), and
second apply a bound u ≤ H−h. Here we may apply the result of Alfers and Dinges [1984, Theorem
1.2”] and obtain the following lower bound that is equivalent to (7)

P
(
p̃ t,j
h V ⋆

h+1(s, a) ≥ u
)
≥ Φ

(
−sign(α0/α− 1/2) ·

√
2α kl(α0/α, 1/2)

)
≥ 1

2
(1− Φ(0)),
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where we used α0/α > 1/2.

Thus, we may apply equation (6) for u = phV
⋆
h+1(s, a) ≤ H − h and any α

P
(
p̃ t,j
h V ⋆

h+1(s, a) ≥ phV
⋆
h+1(s, a)

)
≥ 1

2

1− Φ

√2(nt
h(s, a)− κ)Kinf

(
q, phV ⋆

h+1(s, a), V
⋆
h+1

)
κ

.

By the following relation that follows from variational formula for Kinf with rescaling of λ to [0, 1]

(n t
h(s, a)− κ)Kinf(q, u, V

⋆
h+1) = (n t

h(s, a)− κ) max
λ∈[0,1]

Es′∼q

[
log

(
1− λ

V ⋆
h+1(s

′)− u

r0(H − h)− u

)]
≤ max

λ∈[0,1]
(n0 − κ) log(1− λ) + (n t

h(s, a)− n0) max
λ∈[0,1]

Es′∼p̂ t
h(s,a)

[
log

(
1− λ

V ⋆
h+1(s

′)− u

r0(H − h)− u

)]
≤ (n t

h(s, a)− n0) max
λ∈[0,1]

Es′∼p̂ t
h(s,a)

[
log

(
1− λ

V ⋆
h+1(s

′)− u

H − h− u

)]
= (n t

h(s, a)− n0)Kinf(p̂
t
h(s, a), u, V

⋆
h+1) = n t

h(s, a)Kinf(p̂
t
h(s, a), u, V

⋆
h+1).

Thus, on the event E⋆

(nt
h(s, a)− κ)Kinf

(
q, phV

⋆
h+1(s, a), V

⋆
h+1

)
≤ β⋆(δ, nt

h(s, a)) ≤ β⋆(δ, T ),

and, as a corollary

P
(
p̃ t,j
h V ⋆

h+1(s, a) ≥ phV
⋆
h+1(s, a) | E⋆(δ)

)
≥ 1

2

(
1− Φ

(√
2β⋆(δ, T )

κ

))
.

By taking κ = 2β⋆(δ, T ) we have a constant probability of being optimistic

P
(
p̃ t,j
h V ⋆

h+1(s, a) ≥ phV
⋆
h+1(s, a) | E⋆(δ)

)
≥ 1− Φ(1)

2
≜ γ.

Next, using a choice J = ⌈log(2SAHT/δ)/ log(1/(1− γ))⌉ = ⌈cJ · log(2SAHT/δ)⌉

P
(
max
j∈[J]

{
p̃ t,j
h V ⋆

h+1(s, a)
}
≥ phV

⋆
h+1(s, a) | E⋆(δ)

)
≥ 1− (1− γ)J ≥ 1− δ

2SAHT
·

By a union bound we conclude the statement.

Next we provide a connection between Eanticonc(δ) and Eopt.

Proposition B.5. For any δ ∈ (0, 1) it holds Eopt ⊆ Eanticonc(δ).

Proof. We proceed by a backward induction over h. Base of induction h = H + 1 is trivial. Next by
Bellman equations for Q

t

h and Q⋆
h

[Q
t

h −Q⋆
h](s, a) = max

j∈[J]

{
p̃ t,j
h V

t

h+1(s, a)
}
− phV

⋆
h+1(s, a).

By induction hypothesis we have V
t

h+1(s
′) ≥ Q

t

h+1(s
′, π⋆(s′)) ≥ Q⋆

h+1(s
′, π⋆(s′)) = V ⋆

h+1(s
′),

thus
[Q

t

h −Q⋆
h](s, a) ≥ max

j∈[J]

{
p̃ t,j
h V ⋆

h+1(s, a)
}
− phV

⋆
h+1(s, a).

By the definition of event Eanticonc(δ) we conclude the statement.

Proposition B.6 (Optimism). Assume that J = ⌈cJ · log(2SAHT/δ)⌉, κ = 2β⋆(δ, T ), r0 = 2
and n0 = ⌈(c0 + log17/16(T/κ)) · κ⌉, where c0 is defined in (4) and cJ is defined in (5). Then
P(Eopt | E⋆(δ)) ≥ 1− δ/2.
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B.3 Proof of Theorem 3.1

First, we define an event G(δ) = Gconc(δ) ∩ Eopt where Gconc defined in Lemma B.1, and Eopt

defined in (3). This event is handle all required concentration and anti-concentration bounds for the
proof of the regret bound. Lemma B.1 and Proposition B.6 yield the following

Corollary B.7. Let conditions of Lemma B.1 and Proposition B.6 hold. Then P(G(δ)) ≥ 1− δ.

Next, denote δth ≜ V
t−1

h (sth) − V πt

h (sth) and surrogate regret R
t

h ≜
∑T

t=1 δ
t
h. To simplify no-

tations denote N t
h = n t−1

h (sth, a
t
h), N

t
h (s) = n t−1

h (s|sth, ath), N
t

h = n t−1
h (sth, a

t
h), N

t

h(s) =

n t−1
h (s|sth, ath). Let

L = max
{
n0/κ, log(TH), β⋆(δ, T ), βKL(δ, T ), βDir(δ, T, J), βconc(δ, T ), β(δ), βVar(δ, T )

}
.
(8)

Under conditions Lemma B.1 and Proposition B.6, L = O(log(SATH/δ)) = Õ(1), n0 ≤ 2L2 =
O(log2(SATH/δ)), and κ ≤ 2L. In what follows we will follow ideas of UCBVI with the Bernstein
bonuses, see Azar et al. [2017], and Bayes-UCBVI, see Tiapkin et al. [2022].

Lemma B.8. Assume conditions of Theorem 3.1. Then it holds on the event G(δ), for any h ∈ [H],

R
T

h ≤ UT
h ≜ AT

h +BT
h + CT

h + 4eH
√
2HTL+ 2eH2SA,

where

AT
h = 3eL

T∑
t=1

H∑
h′=h

√
Varp t−1

h′
[V

t−1

h+1](s
t
h′ , ath′) ·

1{N t
h′ > 0}
N t

h′

,

BT
h = e

√
2L

T∑
t=1

H∑
h′=h

√
Varph′ [V

⋆
h+1](s

t
h′ , ath′)

1{N t
h′ > 0}
N t

h′

,

CT
h = 26H2SL2

T∑
t=1

H∑
h′=h

1{N t
h′ > 0}
N t

h′

,

and L is defined in (8).

Proof. Since our actions are greedy with respect to Q
t−1

h , we have V
t−1

h (sth) = Q
t−1

h (sth, a
t
h). Then

by Bellman equations for V πt

and Q
t−1

h

δth = Q
t−1

h (sth, a
t
h)−Qπt

h (sth, a
t
h) = max

j∈[J]

{
p̃ t−1,j
h V

t−1

h+1(s
t
h, a

t
h)
}
− phV

πt

h+1(s
t
h, a

t
h)

= max
j∈[J]

{
p̃ t−1,j
h V

t−1

h+1(s
t
h, a

t
h)
}
− p t−1

h V
t−1

h+1(s
t
h, a

t
h)︸ ︷︷ ︸

(A)

+ [p t−1
h − p̂ t−1

h ]V
t−1

h+1(s
t
h, a

t
h)︸ ︷︷ ︸

(B)

+ [p̂ t−1
h − ph][V

t−1

h+1 − V ⋆
h+1](s

t
h, a

t
h)︸ ︷︷ ︸

(C)

+ [p̂ t−1
h − ph]V

⋆
h+1(s

t
h, a

t
h)︸ ︷︷ ︸

(D)

+ ph[V
t−1

h+1 − V πt

h+1](s
t
h, a

t
h)− [V

t−1

h+1 − V πt

h+1](s
t
h+1)︸ ︷︷ ︸

ξth

+δth+1.

This decomposition is almost equivalent to the decomposition in the proof of Bayes-UCBVI, the
main difference is (A) and an another value of n0. We notice that the term ξth is an exactly the term
that appears in the definition of the event E(δ) ⊆ Gconc(δ) in Lemma B.1.

Let us analyze each term in this representation under assumption N t
h > 0.
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Term (A). To handle this term, we use the event EDir(δ) ⊆ Gconc(δ)

max
j∈[J]

{
p̃ t−1,j
h V

t−1

h+1(s
t
h, a

t
h)
}
− p t−1

h V
t−1

h+1(s
t
h, a

t
h) ≤ 2

√
Varp t−1

h
[V

t−1

h+1](s
t
h, a

t
h)

2L2

N
t

h

+ 3r0H
2L2

N
t

h

≤ 3L

√√√√Varp t−1
h

[V
t−1

h+1](s
t
h, a

t
h)

N
t

h

+
12HL2

N
t

h

·

Term (B). To bound (B) we use directly a definition of p t−1
h and p̂ t−1

h

[p t−1
h − p̂ t−1

h ]V
t−1

h+1(s
t
h, a

t
h) ≤

n0r0H

N
t

h

≤ 4HL2

N
t

h

·

Term (C). Note that by Corollary B.7 the event Eopt holds. We see that [V
t−1

h+1 − V ⋆
h+1] is a

non-negative function and therefore Lemma B.3 is applicable for f(s′) = [V
t−1

h+1 − V ⋆
h+1](s

′)

[p̂ t−1
h − ph][V

t−1

h+1 − V ⋆
h+1](s

t
h, a

t
h) ≤

1

H
ph[V

t−1

h+1 − V ⋆
h+1](s

t
h, a

t
h) +

5r0H
2S · βKL(δ,N t

h )

N t
h

≤ 1

H
(ξ t

h + δth) +
10H2S · L

N t
h

.

Term (D). The bound on this term is guaranteed by the event Econc(δ) ⊆ Gconc(δ)

(p̂ t−1
h − ph)V

⋆
h+1(s

t
h, a

t
h) ≤

√
2Varph

[V ⋆
h+1](s

t
h, a

t
h)

L

N t
h

+
3HL

N t
h

·

All bounds on (A)− (D) yield for N t
h > 0

δth ≤
(
1 +

1

H

)
δth +

(
1 +

1

H

)
ξth

+ 3L

√√√√Varp t−1
h

[V
t−1

h+1](s
t
h, a

t
h)

N
t

h

+
√
2L ·

√
Varph

[V ⋆
h+1](s

t
h, a

t
h)

N t
h

+
10H2S · L

N t
h

+
16L2H

N
t

h

·

Additionally, there is a trivial bound δth ≤ 2H that is valid for the case N t
h = 0.

Define γh′ = (1 + 1/H)H−h′+1 and notice that γh′ ≤ e, N
t

h ≥ N t
h. Summing it up in the definition

of R
T

h we obtain

R
T

h ≤
T∑

t=1

H∑
h′=h

γh′ξth′ +

T∑
t=1

H∑
h′=h

2eH1{N t
h′ = 0}

+ 3eL

T∑
t=1

H∑
h′=h

√
Varp t−1

h′
[V

t−1

h+1](s
t
h′ , ath′) ·

1{N t
h′ > 0}
N t

h′
≜ AT

h

+ e
√
2L

T∑
t=1

H∑
h′=h

√
Varph′ [V

⋆
h′+1](s

t
h′ , ath′)

1{N t
h′ > 0}
N t

h′
≜ BT

h

+ 26H2SL2
T∑

t=1

H∑
h′=h

1{N t
h′ > 0}
N t

h′
≜ CT

h .

The bound on the first term is this decomposition follows from the definition of the event E(δ) ⊆
Gconc(δ) ⊆ G(δ). To bound the second term we notice that the event 1{N t

h′ = 0} could occur no
more than SAH times.
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Next we provide two important technical results. First of them is a classical result that follows from
the pigeonhole principle.
Lemma B.9. For any H,T ≥ 1,

T∑
t=1

H∑
h=1

1{n t−1
h (sth, a

t
h) > 0}

n t−1
h (sth, a

t
h)

≤ 2HSAL,

T∑
t=1

H∑
h=1

1{n t−1
h (sth, a

t
h) > 0}√

n t−1
h (sth, a

t
h))

≤ 3H
√
TSA.

Proof. The main observation for both inequalities follows from pigeon-hole principle: term corre-
sponding to each state-action pair (s, a) appears in the sum exactly n t−1

h (s, a) times with a value
1/n for n increasing from 1, thanks to the indicator, to n t−1

h (s, a). For the first sum we use a bound
on harmonic numbers, for the second one the integral bound.

Lemma B.10. Assume that conditions of Theorem 3.1 are fulfilled. Then it holds on the event G(δ),
T∑

t=1

H∑
h=1

Varp t−1
h

[V
t−1

h+1](s
t
h, a

t
h)1{N t

h > 0} ≤ 2H2T + 2H2UT
1 + 38H3S2AL3 + 32H3S

√
2ATL,

T∑
t=1

H∑
h=1

Varph
[V ⋆

h+1](s
t
h, a

t
h) ≤ 2H2T + 2H2UT

1 + 6H3L+ 8
√
2H5TL.

where UT
h is defined in Lemma B.8.

Proof. First, apply the second inequality in Lemma E.3,
T∑

t=1

H∑
h=1

Varp t−1
h

[V
t−1

h+1](s
t
h, a

t
h)1{N t

h > 0} ≤
T∑

t=1

H∑
h=1

Varph
[V

t−1

h+1](s
t
h, a

t
h)1{N t

h > 0}︸ ︷︷ ︸
(W)

+ 2r20H
2

T∑
t=1

H∑
h=1

∥p t−1
h (sth, a

t
h)− ph(s

t
h, a

t
h)∥11{N

t
h > 0}︸ ︷︷ ︸

(X)

.

To bound the term (X) one may use Lemma B.3. We obtain under assumption N t
h > 0

∥p t−1
h (sth, a

t
h)− ph(s

t
h, a

t
h)∥1 ≤ ∥p t−1

h (sth, a
t
h)− p̂ t−1

h (sth, a
t
h)∥1 + ∥ph(sth, ath)− p̂ t−1

h (sth, a
t
h)∥1

≤ n0

N
t

h

+
∑
s∈S

N t
h (s)

(
1

N t
h

− 1

N
t

h

)
+

√
2SL

N t
h

≤ 2SL2

N t
h

+

√
2SL

N t
h

.

Since r0 = 2, Lemma B.9 implies

(X) ≤ 2r20H
2

T∑
t=1

H∑
h=1

∥p t−1
h (sth, a

t
h)−ph(s

t
h, a

t
h)∥11{N

t
h > 0} ≤ 32H3S2AL3+24H3S

√
2ATL.

Next, we bound (W) using the first inequality of Lemma E.3

(W) ≤ 2

T∑
t=1

H∑
h=1

Varph
[V πt

h+1](s
t
h, a

t
h)︸ ︷︷ ︸

(Y)

+2

T∑
t=1

H∑
h=1

r0Hph

∣∣∣V t−1

h+1 − V πt

h+1

∣∣∣(sth, ath)︸ ︷︷ ︸
(Z)

.

The term (Y) could be bounded using definition of the event EVar(δ). It follows that

(Y) ≤ H2T +
√
2H5TL+ 3H3L.
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By Proposition B.6 we have V
t−1

h+1(s) ≥ V πt

h+1(s) for any s ∈ S . By the definition of ξ t
h, δ

t
h, definition

of event E(δ) term, and Lemma B.8 (Z) could be bounded as follows

(Z) ≤
T∑

t=1

H∑
h=1

2H(ξ t
h + δth+1) ≤ 2r0H

2
√
2TL+ 2H

H∑
h=1

R
T

h+1 ≤ 4H2
√
2TL+ 2H2UT

1 .

Therefore, we have
T∑

t=1

H∑
h=1

Varp t−1
h

[V
t−1

h+1](s
t
h, a

t
h) ≤ (X) + 2 · (Y) + 2 · (Z)

≤ 2H2T + 2H2UT
1 + (32 + 6)H3S2AL3 + (24 + 8)H3S

√
2ATL

≤ 2H2T + 2H2UT
1 + 38H3S2AL3 + 32H3S

√
2ATL.

The first inequality in Lemma E.3 gives us a bound for the second inequality

T∑
t=1

H∑
h=1

Varph
[V ⋆

h+1](s
t
h, a

t
h) ≤ 2

T∑
t=1

H∑
h=1

Varph
[V πt

h+1](s
t
h, a

t
h)︸ ︷︷ ︸

(Y)

+2

T∑
t=1

H∑
h=1

r0Hph

∣∣∣V ⋆
h+1 − V πt

h+1

∣∣∣(sth, ath).

Since V
t−1

h ≥ V ⋆
h by Proposition B.6, the second term is bounded by (Z). Thus

T∑
t=1

H∑
h=1

Varph
[V ⋆

h+1](s
t
h, a

t
h) ≤ 2(Y) + 2(Z) ≤ 2H2T + 2H2UT

1 + 8
√
2H5TL+ 6H3L.

Lemma B.11. Assume conditions of Theorem 3.1 and Lemma B.8. Then on the event G(δ) it holds

AT
1 ≤ 6e

√
H3SAT · L3/2 + 6e

√
H3SAUT

1 · L3/2 + 27eH2S3/2AL3 + 30eH2SA3/4T 1/4L7/4,

BT
1 ≤ 4e

√
H3SAT · L+ 4e

√
H3SAUT

1 · L+ 8eH2S1/2A1/2L2 + 10eH7/4S1/2A1/2T 1/4L5/4,

CT
1 ≤ 52eH3S2AL3 = Õ(H3S2A).

Proof. For the term AT
1 we apply the Cauchy—Schwartz inequality, Lemma B.10, Lemma B.9 and

inequality
√
a+ b ≤

√
a+

√
b, a, b ≥ 0,

T∑
t=1

H∑
h=1

√
Varp t−1

h
[V

t−1

h+1](s
t
h, a

t
h)
1{N t

h > 0}
N t

h

≤

√√√√ T∑
t=1

H∑
h=1

Varp t−1
h

[V
t−1

h+1](s
t
h, a

t
h)1{N t

h > 0} ·

√√√√ T∑
t=1

H∑
h=1

1{N t
h > 0}
N t

h

≤
√
2H2T + 2H2UT

1 + 38H3S2AL3 + 32H3S
√
2ATL ·

√
2SAHL

≤ 2
√
H3SATL+ 2

√
H3SAUT

1 L+ 9H2S3/2AL2 + 10H2SA3/4T 1/4L3/4.

Similarly, the term BT
1 may be estimated as follows

T∑
t=1

H∑
h=1

√
Varph

[V ⋆
h+1](s

t
h, a

t
h)
1{N t

h > 0}
N t

h

≤

√√√√ T∑
t=1

H∑
h=1

Varph
[V ⋆

h+1](s
t
h, a

t
h) ·

√√√√ T∑
t=1

H∑
h=1

1{N t
h > 0}
N t

h

≤
√
2H2T + 2H2UT

1 + 8
√
2H5TL+ 6H3L ·

√
2SAH · L

≤ 2
√
H3SATL+ 2

√
H3SAUT

1 L+ 4H2L
√
SA+ 5H7/4T 1/4L3/4

√
SA.
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Finally, to estimate CT
1 we apply Lemma B.9. We obtain

CT
1 ≤ 26eH2S · L2 · 2SAHL ≤ 52eH3S2AL3.

Proof of Theorem 3.1. By Corollary B.7 event G(δ) holds with probability at least 1− δ. Next we
assume that this event holds. Then we have two cases: T < H2S2AL3 and T ≥ H2S2AL3. In the
first case the regret is trivially bounded by RT ≤ H3S2AL3. Thus it is sufficient to analyze only the
second case.

By Proposition B.6 and Lemma B.8

RT =

T∑
t=1

V ⋆
h (s

t
1)− V πt

h (st1) ≤
T∑

t=1

V
t−1

h (st1)− V πt

h (st1) = R
T

1

≤ UT
1 = AT

1 +BT
1 + CT

1 + 4e
√
2H3TL+ 2eH2SA.

(9)

Next, under our condition on T we can simplify expressions for the bounds of AT
1 and BT

1 . Indeed,
T ≥ H2S2AL3 implies that

H7/4S1/2A1/2L5/4 · T 1/4 ≤ H2SA3/4L7/4 · T 1/4 ≤
√
H3SATL3/2.

Furthermore,

H2S3/2AL3 ≤ H3S2AL3, H2S1/2A1/2L2 ≤ H3S2AL3,
√
2H3TL ≤

√
2H3SAT ·L.

We obtain the following bounds

AT
1 ≤ 36e

√
H3SAT · L3/2 + 6e

√
H3SAUT

1 · L3/2 + 27eH3S2AL3,

BT
1 ≤ 14e

√
H3SAT · L+ 4e

√
H3SAUT

1 · L+ 8eH3S2AL3,

CT
1 ≤ 52eH3S2AL3.

Hence, using bound H2SA ≤ H3S2A,

UT
1 ≤ 50e

√
H3SAT · L3/2 + 10e

√
H3SAUT

1 · L3/2 + 89eH3S2AL3 + 4e
√
2 ·

√
H3TL

≤ 56e
√
H3SAT · L3/2 + 10e

√
H3SAUT

1 · L3/2 + 89eH3S2AL3.

This is a quadratic inequality in UT
1 . Solving this inequality and using inequality

√
a+ b ≤

√
a+√

b, a, b ≥ 0, we obtain

UT
1 ≤ 108e

√
H3SATL3 + 178eH3S2AL3 + 200e2H3SAL3.

The last inequality and (9) imply that

RT = O
(√

H3SATL3 +H3S2AL3
)
.
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C Deviation inequalities

C.1 Deviation inequality for categorical distributions

Next, we restate the deviation inequality for categorical distributions by Jonsson et al. [2020, Proposi-
tion 1]. Let (Xt)t∈N⋆ be i.i.d. samples from a distribution supported on {1, . . . ,m}, of probabilities
given by p ∈ ∆m−1, where ∆m−1 is the probability simplex of dimension m− 1. We denote by p̂n
the empirical vector of probabilities, i.e., for all k ∈ {1, . . . ,m},

p̂n,k =
1

n

n∑
ℓ=1

1{Xℓ = k}.

Note that an element p ∈ ∆m−1 can be seen as an element of Rm−1 since pm = 1−
∑m−1

k=1 pk. This
will be clear from the context.
Theorem C.1. For all p ∈ ∆m−1 and for all δ ∈ [0, 1],

P(∃n ∈ N⋆, nKL(p̂n, p) > log(1/δ) + (m− 1) log(e(1 + n/(m− 1)))) ≤ δ.

C.2 Deviation inequality for categorical weighted sum

We fix a function f : {1, . . . ,m} → [0, b] and recall the definition of the minimum Kullback-Leibler
divergence for p ∈ ∆m−1 and u ∈ R

Kinf(p, u, f) = inf{KL(p, q) : q ∈ ∆m−1, qf ≥ u} .

As the Kullback-Leibler divergence this quantity admits a variational formula.
Lemma C.2 (Lemma 18 by Garivier et al., 2018). For all p ∈ ∆m−1, u ∈ [0, b),

Kinf(p, u, f) = max
λ∈[0,1]

EX∼p

[
log

(
1− λ

f(X)− u

b− u

)]
,

moreover if we denote by λ⋆ the value at which the above maximum is reached, then

EX∼p

[
1

1− λ⋆ f(X)−u
b−u

]
≤ 1 .

Remark C.3. Contrary to Garivier et al. [2018] we allow that u = 0 but in this case Lemma C.2 is
trivially true, indeed

Kinf(p, 0, f) = 0 = max
λ∈[0,1]

EX∼p

[
log

(
1− λ

f(X)

b

)]
.

We are now ready to restate the deviation inequality for the Kinf by Tiapkin et al. [2022] which is a
self-normalized version of Proposition 13 by Garivier et al. [2018].
Theorem C.4. For all p ∈ ∆m−1 and for all δ ∈ [0, 1],

P
(
∃n ∈ N⋆, nKinf(p̂n, pf, f) > log(1/δ) + 3 log(eπ(1 + 2n))

)
≤ δ.

C.3 Deviation inequality for bounded distributions

Below, we restate the self-normalized Bernstein-type inequality by Domingues et al. [2020]. Let
(Yt)t∈N⋆ , (wt)t∈N⋆ be two sequences of random variables adapted to a filtration (Ft)t∈N. We assume
that the weights are in the unit interval wt ∈ [0, 1] and predictable, i.e. Ft−1 measurable. We also
assume that the random variables Yt are bounded |Yt| ≤ b and centered E[Yt|Ft−1 ] = 0. Consider
the following quantities

St ≜
t∑

s=1

wsYs, Vt ≜
t∑

s=1

w2
s · E

[
Y 2
s |Fs−1

]
, and Wt ≜

t∑
s=1

ws

and let h(x) ≜ (x+1) log(x+1)−x be the Cramér transform of a Poisson distribution of parameter 1.
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Theorem C.5 (Bernstein-type concentration inequality). For all δ > 0,

P
(
∃t ≥ 1, (Vt/b

2 + 1)h

(
b|St|

Vt + b2

)
≥ log(1/δ) + log(4e(2t+ 1))

)
≤ δ.

The previous inequality can be weakened to obtain a more explicit bound: if b ≥ 1 with probability at
least 1− δ, for all t ≥ 1,

|St| ≤
√
2Vt log(4e(2t+ 1)/δ) + 3b log(4e(2t+ 1)/δ) .

C.4 Deviation inequality for Dirichlet distribution

Below we provide the Bernstein-type inequality for weighted sum of Dirichlet distribution, using a
generalized result on upper bound on tails for linear statistics on Dirichlet distribution (Theorem D.1).
Lemma C.6. [Generalization of Lemma C.8 by Tiapkin et al. [2022]] For any α =
(α0, α1, . . . , αm) ∈ Rm+1

++ define p ∈ ∆m such that p(ℓ) = αℓ/α, ℓ = 0, . . . ,m, where
α =

∑m
j=0 αj . Then for any f : {0, . . . ,m} → [0, b] such that f(0) = b and δ ∈ (0, 1)

Pw∼Dir(α)

[
wf ≥ pf + 2

√
Varp(f) log(1/δ)

α
+

3b · log(1/δ)
α

]
≤ δ.

Remark C.7. The only difference with the result of Lemma C.8 by Tiapkin et al. [2022] is allowing
to parameters of Dirichlet distribution being non-integer.

Proof. Fix δ ∈ (0, 1) and let µ ∈ (pf, b) be such that

Kinf(p, µ, f) = α−1 log(1/δ).

Note that such µ exists by the continuity of Kinf w.r.t. the second argument, see Honda and Takemura
[2010, Theorem 7]. By Tiapkin et al. [2022, Lemma C.7] there exists q such that p ≪ q, qf = µ and
KL(p, q) = α−1 log(1/δ). By Theorem D.1

Pw∼Dir(α)[wf ≥ qf ] = Pw∼Dir(α)[wf ≥ µ] ≤ exp(−αKinf(p, µ, f)) = δ. (10)

By Lemma E.1

qf − pf ≤
√

2Varq(f)KL(p, q).

By Lemma E.2, Varq(f) ≤ 2Varp(f) + 4b2 KL(p, q). The last two inequalities and (10) imply that

Pw∼Dir(α)

[
wf − pf ≥

√
4Varp(f)KL(p, q) + 2b

√
2 ·KL(p, q)

]
≤ δ.
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D Exponential and Gaussian approximations of Dirichlet distribution

In this section we present result on approximation of a tail probabilities for linear statistics of Dirichlet
distribution from above by tails of exponential distribution and from below by tails of Gaussian
distribution.

The proof of upper bound generalizes proof of Baudry et al. [2021b] to non-integer parameters using
exactly the same technique; see also Riou and Honda [2020].
Theorem D.1 (Upper bound). For any α = (α0, α1, . . . , αm) ∈ Rm+1

++ define p ∈ ∆m such that
p(ℓ) = αℓ/α, ℓ = 0, . . . ,m, where α =

∑m
j=0 αj . Then for any f : {0, . . . ,m} → [0, b] and

0 < µ < b and
Pw∼Dir(α)[wf ≥ µ] ≤ exp(−αKinf(p, µ, f)).

Proof. The statement is trivial for µ ≤ pf since Kinf(p, µ, f) = 0. Assume that µ > pf . It is well
know fact that w ∼ Dir(α) may be represented as follows

w ≜

(
Y0

Vm
,
Y1

Vm
, . . . ,

Ym

Vm

)
,

where Yℓ
ind∼ Γ(αℓ, 1), ℓ = 0, . . . ,m and Vm =

∑m
ℓ=0 Yℓ. Let us fix λ ∈ [0, 1/(b− u)) and proceed

by the changing of measure argument

P(wf ≥ µ) = P

(
m∑
ℓ=0

Yℓf(ℓ) ≥
m∑
ℓ=0

Yℓµ

)
= E

Yℓ
ind∼ Γ(αℓ,1)

[
1

{
m∑
ℓ=0

Yℓ(f(ℓ)− µ) ≥ 0

}]

= E
Ŷℓ

ind∼ Γ(αℓ,1−λ(f(ℓ)−µ))

[
1

{
m∑
ℓ=0

Ŷℓ(f(ℓ)− µ) ≥ 0

}
m∏
ℓ=0

exp(−λŶℓ(f(ℓ)− µ))

(1− λ(f(ℓ)− µ))αℓ

]

= exp

(
−

m∑
ℓ=0

αℓ log(1− λ(f(ℓ)− µ))

)

· E
Ŷℓ

ind∼ Γ(αℓ,1−λ(f(ℓ)−µ))

[
1

{
m∑
ℓ=0

Ŷℓ(f(ℓ)− µ) ≥ 0

}
e−λ

∑m
ℓ=0 Ŷℓ(f(ℓ)−µ)

]

≤ exp

(
−α

m∑
ℓ=0

pℓ log(1− λ(f(ℓ)− µ))

)
= exp(−αEX∼p[log(1− λ(f(X)− µ)]).

Since the previous inequality is true for all λ ∈ [0, 1/(b − µ)), then the variational formula
(Lemma C.2) allows to conclude

Pw∼Dir(α)[wf ≥ µ] ≤ exp

(
−α sup

λ∈[0,1/(b−µ))

EX∼p[log(1− λ(f(X)− µ)]

)
= exp(−αKinf(p, µ, f)).

The proof of lower bound extends the approach of Tiapkin et al. [2022] by ideas of Alfers and Dinges
[1984] and gives much more exact bounds. Define

c0(ε) =

(
4√

log(17/16)
+ 8 +

49 · 4
√
6

9

)2
2

π · ε2
+ log17/16

(
5

32 · ε2

)
. (11)

Theorem D.2 (Lower bound). For any α = (α0 + 1, α1, . . . , αm) ∈ Rm+1
++ define p ∈ ∆m such

that p(ℓ) = αℓ/α, ℓ = 0, . . . ,m, where α =
∑m

j=0 αj . Let ε ∈ (0, 1). Assume that α0 ≥
c0(ε) + log17/16(α) for c0(ε) defined in (11), and α ≥ 2α0. Then for any f : {0, . . . ,m} → [0, b0]

such that f(0) = b0, f(j) ≤ b < b0/2, j ∈ {1, . . . ,m} and µ ∈ (pf, b0)

Pw∼Dir(α)[wf ≥ µ] ≥ (1− ε)Pg∼N (0,1)

[
g ≥

√
2αKinf(p, µ, f)

]
.
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In the further subsections we are going to prove this theorem.

D.1 Proof of Theorem D.2

First, we restate the result of Tiapkin et al. [2022] on representation of the density of linear statistic
of Dirichlet distribution.

Proposition D.3 (Proposition D.3 of Tiapkin et al. [2022]). Let f ∈ Fm(b) and α = (α0 +
1, α1, . . . , αm) ∈ Rm+1

++ such that α =
∑m

j=0 αj > 1. Let w ∼ Dir(α) and assume that Z = wf is
not degenerate. Then for any 0 ≤ u < b0

pZ(u) =
α

2π

∫
R
(1 + i(b0 − u)s)−1

m∏
j=0

(1 + i(f(j)− u)s)
−αjds.

Next we proceed in the same spirit as an approach of Tiapkin et al. [2022] and apply the method of
saddle point (see Fedoryuk [1977], Olver [1997]) to derive an asymptotically tight approximation.
However, in our case we have to extract one additional term in from of the product.

Proposition D.4. Let f ∈ Fm(b0, b) and let α = (α0 + 1, α1, . . . , αm) ∈ Rm+1
+ be a fixed vector

with α0 ≥ 2. Then for any u ∈ (pf, b0),∫
R

∏m
ℓ=0(1 + i(f(ℓ)− u)s)

−αℓ

(1 + i(b0 − u)s)
ds =

(√
2π

ασ2
−R1(α) +R2(α)

)
exp(−α Kinf(p, u, f))

1− λ⋆(b0 − u)
+R3(α),

where

σ2 = EX∼p

[(
f(X)− u

1− λ⋆(f(X)− u)

)2
]
,

|R1(α)| ≤
c1

(1− λ⋆(b0 − u))
√
σ2 cκα0 α

,

|R2(α)| ≤
c2

(1− λ⋆(b0 − u))
√
σ2 αα0

,

|R3(α)| ≤ c3 ·
exp(−αKinf(p, u, f))

1− λ⋆(b0 − u)
· 1− λ⋆(b0 − u)

b0 − u
exp(−cκα0)

with c1 = 2
√
2, c2 =

(
8 + 49

√
6

9
b0

b0−pf

)
, c3 =

√
5π
2 , cκ = 1/2 · log

(
1 + 1

4

(
b0−pf

b0

)2)
and λ⋆

being a solution to the optimization problem

λ⋆(p, u, f) = argmax
λ∈[0,1/(b0−u)]

EX∼p[log(1− λ(f(X)− u))].

Proof. We start from the rewriting the integral in the form that allows us to apply saddle point
method,

I =

∫
R

∏n
j=0(1 + i(f(j)− u)s)

−αj

1− i(b0 − u)s
ds =

∫
R

exp
(
−α

∑m
j=0 pj log(1 + i(f(j)− u)s)

)
1− i(b0 − u)s

ds

=

∫
R
(1− i(b0 − u)s)−1 exp(−αEX∼p[log(1 + i(f(X)− u)s)]) ds. (12)

Since the analysis of the suitable integration contour depends only on the function under exponent,
we may directly switch to the contour γ⋆ = iλ⋆ + R as it was stated in Tiapkin et al. [2022].

Next we continue following approach of Tiapkin et al. [2022] and denote the following functions

T (s) = E[log(1− λ⋆(f(X)− u) + is(f(X)− u))],

P (s) =
1

1− λ⋆(b0 − u) + is(b0 − u)
,
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a cut-off parameter K > 0, and define κ1 = T (−K) − T (0), κ2 = T (K) − T (0). Similarly to
Chapter 4 (Section 6) by Olver [1997], we define the change of variables v1 = T (−s)− T (0), v2 =

T (s)−T (0) and the implicit functions q1(v1) =
P (−s)
T ′(−s) , q2(v2) =

P (s)
T ′(s) . Notice that these functions

differs from ones defined in Tiapkin et al. [2022] due to the presence of an additional multiplier
P (s). Using the first order Taylor expansion, we can write q1(v1) =

P (0)√
2T ′′(0)·v1

+ r1(v1), q2(v2) =

P (0)√
2T ′′(0)·v2

+ r2(v2). Then we have the following decomposition

I =

∫ ∞

−∞
P (s) exp(−αT (s)) ds =

(
P (0) ·

√
2π

αT ′′(0)
−R1(α) +R2(α)

)
exp(−αT (0))+R3(α),

where

R1(α) =

(
Γ

(
1

2
, κ1 α

)
+ Γ

(
1

2
, κ2 α

))
P (0)√
2T ′′(0)α

,

R2(α) =

∫ κ1

0

e−αv1r1(v1) dv1 +

∫ κ2

0

e−αv2r2(v2) dv2,

R3(α) =

∫
R\[−K,K]

P (s) exp(−αT (s)) ds,

where Γ(α, x) is an upper incomplete gamma function and integration w.r.t. v1, v2 is performed over
the straight lines connecting the points 0 and κ1, κ2, respectively. Define σ2 = T ′′(0).

Term R2. We will start from upper bounding on remainder terms in Taylor-like expansions r2(v)

|r2(v)| =

∣∣∣∣∣ P (s)

T ′(s)
− P (0)√

2T ′′(0)(T (s)− T (0))

∣∣∣∣∣
≤ P (0)

∣∣∣∣∣ 1

T ′(s)
− 1√

2T ′′(0)(T (s)− T (0))

∣∣∣∣∣+ |P (s)− P (0)|
|T ′(s)|

= P (0) · r̄2(v) + r̃2(v).

Analysis of the term r̄2(v) was performed in Tiapkin et al. [2022] under the choice 1/(2K) =

max
{

b0−u
1−λ⋆(b0−u) ,

u
1+λ⋆u

}
and the upper bound κ = Reκ2 = Reκ1 ≥ cκ · α0

α with cκ = 1/2 ·

log

(
1 + 1

4

(
b0−pf

b0

)2)
led to

r̄2(v) ≤
49
√
6

36
√
σ2

·
√

α

α0

b0
b0 − pf

·

Our next goal is to analyze the second term r̃2(v). We apply Taylor expansions of the form T ′(s) =
T ′′(0)s+ T ′′′(ξ2)s

2/2 and P (s) = P (0) + P ′(η)s to derive

r̃2(v) =

∣∣∣∣P (s)− P (0)

T ′(s)

∣∣∣∣ = |P ′(η) · s|
|T ′′(0)s+ T ′′′(ξ2)s2/2|

≤
supη∈(0,s) |P ′(η)|

|T ′′(0) + T ′′′(ξ2)s/2|
·

First note that P ′(η) maximizes at η = 0, since

P ′(η) =
b0 − u

(1− λ⋆(b0 − u) + iη(b0 − u))2
·

Next by defining a random variable Ys =
f(X)−u

1−λ⋆(f(X)−u)+is(f(X)−u) and due to our choice of K we
conclude that

|T ′′(0) + T ′′′(ξ2)s/2| ≥ E[Y 2
0 ]− sE[|Y0|3] ≥ E[Y 2

0 ]/2 = σ2/2.

It yields

r̃2(v) ≤
2(b0 − u)

(1− λ⋆(b0 − u))2σ2
=

2

(1− λ⋆(b0 − u))
√
σ2

√√√√ (b0−u)2

(1−λ⋆(b0−u))2

E[Y 2
0 ]

·
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By a bound

E[Y 2
0 ] =

m∑
i=0

αi

α
·
(

f(i)− u

1− λ⋆(f(i)− u)

)2

≥ α0

α

(b0 − u)2

(1− λ⋆(b0 − u))2

we obtain

r̃2(v) ≤
2

(1− λ⋆(b0 − u))
√
σ2

√
α

α0

and

|r2(v)| ≤
1

(1− λ⋆(b0 − u))
√
σ2

√
α

α0

(
2 +

49
√
6

36

b0
b0 − pf

)
.

A similar bound also holds for r1(v) by symmetry. Finally, due to bound on κ and α0 ≥ 2, we derive

|R2(α)| ≤
2

(1− λ⋆(b0 − u))
√
σ2

√
α

α0

(
2 +

49
√
6

36

b0
b0 − pf

)
·
∣∣∣∣∫ κ2

0

e−αvdv +

∫ κ1

0

e−αvdv

∣∣∣∣
≤ 1

(1− λ⋆(b0 − u))
√
σ2

(
8 +

49
√
6

9

b0
b0 − pf

)
· 1√

α · α0
·

Term R1. The analysis of this term can be carried out as in Tiapkin et al. [2022] except the
multiplication with P (0),

|R1(α)| ≤
c1√

σ2cκα0 · (1− λ⋆(b0 − u))
· exp(−cκα0)

α1/2
,

where c1 = 2
√
2.

Term R3. We start from the bound∣∣∣∣∫ ∞

K

P (s) exp(−αT (s)) ds

∣∣∣∣ ≤ exp(−α · Re[T (K)− T (0)]) · exp(−αT (0))

· sup
s∈R

|P (s)|
∫ ∞

K

exp(−αRe[T (s)− T (K)]) ds.

Let us start from the analysis of an additional multiplier connected to P (s)

sup
s

|P (s)| = sup
s

√
1

(1− λ⋆(b0 − u))2 + s2(b0 − u)
=

1

1− λ⋆(b0 − u)
·

The rest of the analysis coincides the the analysis of the same term in Tiapkin et al. [2022]

|R3(α)| ≤ c3 ·
exp(−αKinf(p, u, f))

1− λ⋆(b0 − u)
· 1− λ⋆(b0 − u)

b0 − u
exp(−cκα0)

for c3 =
√
5π/2.

Finally, we use a bounds on remainder terms to derive a lower bound on the density.

Lemma D.5. Consider a function f ∈ Fm(b0, b) and a vector α = (α0 + 1, α1, . . . , αm) ∈ Rm+1
+

with α ≥ 2α0, b0 ≥ 2b. Let w ∼ Dir(α) and assume that Z = wf is non-degenerate. Let ε ∈ (0, 1).
Assume

α0 ≥

(
4√

log(17/16)
+ 8 +

49 · 4
√
6

9

)2
2

π · ε2
+ log17/16

(
5

32 · ε2

)
+ log17/16(α).

Then for any u ∈ (pf, b0),

pZ(u) ≥ (1− ε)

√
α

2π

exp(−αKinf(p, u, f))

(1− λ⋆(b0 − u))
√
σ2

·
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Proof. We start the proof from the combination of Proposition D.3 and Proposition D.4

pZ(u) ≥
α

2π

((√
2π − 1

√
α0

(
c1√
cκ

+ c2

))
exp(−αKinf(p, u, f))

(1− λ⋆(b0 − u))
√
α · σ2

− |R3(α)|

)
.

Since α ≥ 2α0 and b0 ≥ 2b we have b0/(b0 − pf) ≤ 4. In this case we have cκ ≥ 1/2 log(17/16)

and c2 ≤ 8 + 49
√
6 · 4/9. Therefore

c1√
cκ

+ c2 ≤ 4√
log(17/16)

+ 8 +
49 · 4

√
6

9
≜ γ1.

And for α0 ≥ 4γ2
1/(2π · ε2), we have

pZ(u) ≥
α

2π

(
√
2π(1− ε/2)

exp(−αKinf(p, u, f)

(1− λ⋆(b0 − u))
√
α · σ2

− |R3(α)|

)

≥
√
α

2π

(√
2π(1− ε/2)√

ασ2
− c3 ·

1− λ⋆(b0 − u)

b0 − u
· exp(−cκα0)

)
exp(−αKinf(p, u, f)

(1− λ⋆(b0 − u))
·

Note that E[Y0] = 0 and observe that the inequality

σ2 = E[Y 2
0 ] = Var[Y0] ≤

(
b0 − u

2(1− λ⋆(b0 − u))
+

u

2(1 + λ⋆u)

)2

=
b20

4(1− λ⋆(b0 − u))2(1 + λ⋆u)2
≤ 4(b0 − u)2

(1− λ⋆(b0 − u))2
,

follows from a general bound on variance of bounded random variables (bounded differences), the
fact (see Lemma 12 in Honda and Takemura [2010])

λ⋆ ≥ u− pf

u(b0 − u)
⇐⇒ 1 + λ⋆u ≥ b0 − pf

b0 − u
,

and the inequality b0/(b0 − pf) ≤ 4. It yields

pZ(u) ≥
√
α

2π

(√
2π(1− ε/2)− 2

√
5π exp(−cκα0) ·

√
α
) exp(−αKinf(p, u, f))

(1− λ⋆(b0 − u)) ·
√
σ2

·

To guarantee
2
√
5π exp(−cκα0) ·

√
α ≤

√
2π · (ε/2)

we have to choose
α0 ≥ log17/16(5/(32ε

2)) + log17/16(α).

It allows us to conclude

pZ(u) ≥ (1− ε)

√
α

2π

exp(−αKinf(p, u, f))

(1− λ⋆(b0 − u)) ·
√
σ2

·

Before proceeding with the final proof, we derive one important technical result.
Lemma D.6. For any u ∈ (pf, b0) it holds

Kinf(p, u, f) ≥
1

2
(λ⋆)2σ2

(
1− λ⋆(b0 − u)

)2
.

Proof. Define the function ϕu(λ) = E log
(
1 − λ(f(X) − u)

)
and λu = λ⋆. Remark that σ2 =

−ϕ′′
u(λu). Thanks to the Taylor expansion of ϕu and the definition of λu it holds

0 = ϕu(0) = ϕu(λu) + 0 +
λ2
u

2
ϕ′′
u(yλu)
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for some y ∈ (0, 1). Thus we can rewrite Kinf as

ϕu(λ) =
λ2
u

2
(−ϕ′′

u(yλu)) .

We will lower bound the opposite of the second derivative that appears above. First note that

−ϕ′′
u(yλu) = E

[
(f(X)− u)2(

1− λu(f(X)− u)
)2( 1− λu(f(X)− u)

1− yλu(f(X)− u)

)2
]
.

We now lower-bound the ratio, noting that if X ≤ u then since y ∈ (0, 1)

1− λu(f(X)− u)

1− yλu(f(X)− u)
≥ 1 .

In the other case X > u, we have 0 ≤ 1−yλu(f(X)−u) ≤ 1 and 1−λu(f(X)−u) ≥ 1−λu(b0−u)
thus

1− λu(f(X)− u)

1− yλu(f(X)− u)
≥ 1− λu(b− u) > 0 .

In both case using 1− λu(b0 − u) ≤ 1 we get(
1− λu(f(X)− u)

1− yλu(f(X)− u)

)2

≥
(
1− λu(b0 − u)

)2
.

In particular, using the definition of ϕ′′(u), it entails that

−ϕ′′
u(yλu) ≥ −ϕ′′

u(λu)
(
1− λu(b− u)

)2
.

Plugging this inequality in the integral representation of ϕu allows us to conclude

ϕu(λ) ≥
1

2
λ2
u

(
− ϕ′′(λu)

)(
1− λu(b− u)

)2
.

Using this lemma we may proceed with the proof of our final result.

Proof of Theorem D.2. Define Z = wf . By Lemma D.5,

P(wf ≥ µ) =

∫ b0

µ

pZ(u)du ≥ (1− ε)

√
α

2π
·
∫ b0

µ

exp(−αKinf(p, u, f))√
σ2(1− λ⋆(b0 − u))2

du.

By Theorem 6 by Honda and Takemura [2010],

∂

∂u
Kinf(p, u, f) = λ⋆.

Thus, we can define a change of variables t2/2 = Kinf(p, u, f), tdt = λ⋆du and write

P(Z ≥ µ) = (1− ε)

∫ +∞

√
2Kinf(p,µ,f)

D(u)

√
α

2π
exp(−αt2/2)dt,

where D(u) is defined as a positive square root of

D2(u) =
2Kinf(p, u, f)

(λ⋆)2σ2(1− λ⋆(b0 − u))2
.

By Lemma D.6, D2(u) ≥ 1 and hence

P(Z ≥ µ) ≥ (1− ε)

∫ +∞

√
2Kinf(p,µ,f)

√
α

2π
exp(−αt2/2)dt

= (1− ε)Pg∼N (0,1)

(
g ≥

√
2αKinf(p, µ, f)

)
.
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E Technical lemmas

E.1 On the Bernstein inequality

In this part, we restate Bernstein-type inequality of Talebi and Maillard [2018].
Lemma E.1 (Corollary 11 by Talebi and Maillard, 2018). Let p, q ∈ ∆S−1, where ∆S−1 denotes
the probability simplex of dimension S − 1. For all functions f : S 7→ [0, b] defined on S,

pf − qf ≤
√
2Varq(f)KL(p, q) +

2

3
bKL(p, q)

qf − pf ≤
√
2Varq(f)KL(p, q) .

where use the expectation operator defined as pf ≜ Es∼pf(s) and the variance operator defined as
Varp(f) ≜ Es∼p

(
f(s)− Es′∼pf(s

′)
)2

= p(f − pf)2.

Lemma E.2 (Lemma E.3 by Tiapkin et al., 2022). Let p, q ∈ ∆S−1 and a function f : S 7→ [0, b],
then

Varq(f) ≤ 2Varp(f) + 4b2 KL(p, q) ,

Varp(f) ≤ 2Varq(f) + 4b2 KL(p, q).

Lemma E.3 (Lemma E.4 by Tiapkin et al., 2022). For p, q ∈ ∆S−1, for f, g : S 7→ [0, b] two
functions defined on S, we have that

Varp(f) ≤ 2Varp(g) + 2bp|f − g| and

Varq(f) ≤ Varp(f) + 3b2∥p− q∥1,

where we denote the absolute operator by |f |(s) = |f(s)| for all s ∈ S.
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F Lazy version of OPSRL

In this section we present Lazy-OPSRL a lazy version of the OPSRL algorithm. Following Efroni
et al. [2019], instead of computing new Q-values by backward induction before each episode in
Lazy-OPSRL we just just do one step of optimistic incremental planning at the current state to obtain
improved Q-values (at the current state) and act greedily with respect to them. Precisely, given initial
optimistic value functions V

−1

h (s) = r0H for all (h, s) ∈ [H]×S ′ and Q-function Q
−1

h (s, a) = r0H
for all (h, s, a) ∈ [H]× S ′ ×A we update Q-values by applying the Bellman operator only at the
visited states:

Q
t

h(s, a) ≜ 1{s = st+1
h }

(
rh(s, a) + max

j∈[J]
{p̃ t,j

h V
t−1

h+1(s, a)}
)
+ (1− 1{s = st+1

h })Qt−1

h (s, a) ,

V
t

h(s) ≜ min

{
max
a∈A

Q
t

h(s, a), V
t−1

h (s)

}
,

πt+1
h (s) ∈ argmax

a∈A
Q

t

h(s, a) ,

(13)

where the posterior sample are still given by p̃ t,j
h (s, a) ∼ Dir

((
nt
h(s

′|s, a)/κ
)
s′∈S′

)
and

V
t

H+1(s) = 0 for all t, s. Consequently Lazy-OPSRL enjoys a better time complexity of Õ(HSA)

per episode than the one Õ(HS2A) of OPSRL.

The complete description of Lazy-OPSRL is given in Algorithm 2 for a general family of probability
distribution parameterized by the pseudo-counts over the transitions instead of the Dirichlet inflated
prior/posterior.

Algorithm 2 Lazy-OPSRL

1: Input: Family of probability distributions ρ : NS+1
+ → ∆S′ over transitions, initial pseudo-count

n0
h, number of posterior samples J , initial value functions V

−1

h , initial Q-functions Q
−1

h .
2: for t ∈ [T ] do
3: for h ∈ [H] do
4: Sample J independent transitions p̃ t−1,j

h (s, a) ∼ ρ
(
nt−1
h (s′|s, a)s′∈S′

)
, j ∈ [J ].

5: Compute for all a ∈ A

Q
t−1

h (sth, a) = rh(s
t
h, a) + max

j∈[J]

{
p̃ t−1,j
h V

t−2

h+1(s
t
h, a)

}
,

V
t−1

h (sth) = min

{
max
a∈A

Q
t−1

h (sth, a), V
t−2

h (sth)

}
.

6: Play ath ∈ argmaxa∈A Q
t−1

h (sth, a).
7: Observe sth+1 ∼ ph(s

t
h, a

t
h).

8: Increment the pseudo-count nt
h(s

t
h+1|sth, ath).

9: end for
10: end for

Interestingly, we can also obtain a regret bound for Lazy-OPSRL of the same order as OPSRL with
the same number of posterior samples as in 3.1.
Theorem F.1. Consider a parameter δ ∈ (0, 1). Let κ ≜ 2(log(12SAH/δ) + 3 log(eπ(2T +

1))), n0 ≜ ⌈κ(c0 + log17/16(T ))⌉, r0 ≜ 2, where c0 is an absolute constant defined in (4); see
Appendix B.2. Then for Lazy-OPSRL, with probability at least 1− δ,

RT = O
(√

H3SATL3 +H3S2AL3
)
,

where L ≜ O(log(HSAT/δ)).

Proof. Since this proof is very similar to the one of Theorem 3.1 we only describe how it needs to be
adapted.
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Optimism We are going to show that on event Eanticonc(δ) (see Proposition B.4 for definition) our
estimate of Q-function is optimistic that is Q

t

h(s, a) ≥ Q⋆
h(s, a) for any (t, h, s, a) ∈ {0, . . . , T} ×

[H]× S ×A and V
t

h(s) ≥ V ⋆
h (s) for (t, h, s) ∈ {−1, . . . , T} × [H]× S .

We prove by forward induction on t and backward induction on h. Base of induction t = −1 and
h = H + 1 is trivial. Next, if s ̸= st+1

h then Q
t

h(s, a) = Q
t−1

h (s, a) and the statement is correct by
the induction hypothesis. In the case of s = st+1

h we have by Bellman equations and update rule (13)

Q
t

h(s, a)−Q⋆
h(s, a) = max

j∈[J]
{p̃ t,j

h V
t−1

h+1(s, a)} − phV
⋆
h+1(s, a).

By induction on t and h we have V
t−1

h+1(s
′) ≥ V ⋆

h+1(s
′) for any s′ ∈ S thus by combination with

event Eanticonc(δ) we conclude the statement.

Regret bound Recall δth = V
t−1

h (sth)− V πt

h (sth) and R
T

h =
∑t

t=1 δ
t
h. By update rule for value

function V
t

h(s
t
h) ≤ Q

t

h(s
t
h, a

t
h). Thus we can proceed by update rule for Q-function and Bellman

equations

δth ≤ Q
t−1

h (sth, a
t
h)−Qπt

h (sth, a
t
h) = max

j∈[J]

{
p̃ t−1,j
h V

t−2

h+1(s
t
h, a

t
h)
}
− phV

πt

h+1(s
t
h, a

t
h)

= max
j∈[J]

{
p̃ t−1,j
h V

t−2

h+1(s
t
h, a

t
h)
}
− p t−1

h V
t−2

h+1(s
t
h, a

t
h)︸ ︷︷ ︸

(A)

+ [p t−1
h − p̂ t−1

h ]V
t−2

h+1(s
t
h, a

t
h)︸ ︷︷ ︸

(B)

+ [p̂ t−1
h − ph][V

t−2

h+1 − V ⋆
h+1](s

t
h, a

t
h)︸ ︷︷ ︸

(C)

+ [p̂ t−1
h − ph]V

⋆
h+1(s

t
h, a

t
h)︸ ︷︷ ︸

(D)

+ ph[V
t−2

h+1 − V πt

h+1](s
t
h, a

t
h)− [V

t−2

h+1 − V πt

h+1](s
t
h+1)︸ ︷︷ ︸

ξth

+ [V
t−2

h+1 − V
t−1

h+1](s
t
h+1)︸ ︷︷ ︸

∆t
h

+δth.

Here we see that all terms are very similar to the terms that appears in the proof of Lemma B.8 except
the additional one ∆t

h ≜ [V
t−2

h+1 − V
t−1

h+1](s
t
h+1). By adapting the concentration event Gconc(δ) with

a shift of indices we may obtain the following upper bound (for N t
h > 0)

δth ≤
(
1 +

1

H

)
δth +

(
1 +

1

H

)
∆t

h +

(
1 +

1

H

)
ξth

+ 3L

√√√√Varp t−1
h

[V
t−2

h+1](s
t
h, a

t
h)

N
t

h

+
√
2L ·

√
Varph

[V ⋆
h+1](s

t
h, a

t
h)

N t
h

+
10H2S · L

N t
h

+
16L2H

N
t

h

.

Thus, the surrogate regret is bounded by almost the same quantity up to a shift of indices and one
additional term

R
T

h ≤ ÃT
h +BT

h + CT
h + 4eH

√
2HTL+ 2eH2SA+

T∑
t=1

H∑
h′=h

γh′∆t
h′ ,
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where γh = (1 + 1/H)H−h+1 and

ÃT
h = 3eL

T∑
t=1

H∑
h′=h

√
Varp t−1

h′
[V

t−2

h+1](s
t
h′ , ath′) ·

1{N t
h′ > 0}
N t

h′

,

BT
h = e

√
2L

T∑
t=1

H∑
h′=h

√
Varph′ [V

⋆
h+1](s

t
h′ , ath′)

1{N t
h′ > 0}
N t

h′

,

CT
h = 26H2SL2

T∑
t=1

H∑
h′=h

1{N t
h′ > 0}
N t

h′
.

The terms BT
h and CT

h remain exactly the same as in the analysis of OPSRL, whereas there will be a
small difference in the analysis ÃT

h .

Next, we analyze the new term using non-increasing of the value function V
t−1

h (s) ≤ V
t−2

h (s)

T∑
t=1

H∑
h′=h

γh′∆t
h′ ≤ e

T∑
t=1

H∑
h′=h

∆t
h′ .

We derive a bound on the sum of ∆t
h over T for any fixed h by a telescoping property

T∑
t=1

∆t
h =

∑
s∈S

T∑
t=1

1{s = sth+1}[V
t−2

h+1 − V
t−1

h+1](s)

≤
∑
s∈S

T∑
t=1

[V
t−2

h+1 − V
t−1

h+1](s) =
∑
s∈S

[V
−1

h+1 − V
T−1

h+1 ](s) ≤ 2HS.

(14)

Thus we have a next bound for surrogate regret

R
T

h ≤ ŨT
h ≜ ÃT

h +BT
h + CT

h + 4eH
√
2HTL+ 4eH2SA.

Next we explain the analysis of term ÃT
1 . To do it, we analyze the sum of variance by following the

step of Lemma B.10. All analysis remain exactly the same except the analysis of term (Z), that can
be handled by additional use of inequality (14)

(Z) =

T∑
t=1

H∑
h=1

r0Hph(V
t−2

h+1 − V πt

h+1)(s
t
h, a

t
h)

= 2H

T∑
t=1

H∑
h=1

(ξth + δth +∆t
h) ≤ 4H2

√
2TL+ 2H2ŨT

1 + 2H2S.

The only difference is in the term 2H2S that is a second-order term. Thus, the following version of
Lemma B.10 holds for Lazy-OPSRL

T∑
t=1

H∑
h=1

Varp t−1
h

[V
t−1

h+1](s
t
h, a

t
h)1{N t

h > 0} ≤ 2H2T + 2H2ŨT
1 + 40H3S2AL3 + 32H3S

√
2ATL

with the change only in a constant in front of the third term. The rest of the proof remains the same
as in the analysis of OPSRL.
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G Experimental details

In this appendix we provides details on comparison OPSRL with some baselines and additionally
study the impact of choice of the number of posterior samples J for PSRL and the impact of optimistic
prior for OPSRL and PSRL. Our code is published on GitHub and based on the library rlberry by
Domingues et al. [2021].

Environment We use a grid-world environment with 100 states (i, j) ∈ [10]× [10] and 4 actions
(left, right, up and down). The horizon is set to H = 50. When taking an action, the agent moves in
the corresponding direction with probability 1 − ε, and moves to a neighbor state at random with
probability ε. The agent starts at position (1, 1). The reward equals to 1 at the state (10, 10) and is
zero elsewhere.

Number of posterior samples First we investigate the influence of the number of posterior samples
J on the regret. We fixed the other parameters as follows: We use the prior over the transition
probability described in Section 3 with n0 = 1 initial pseudo-counts and no inflation κ = 1. In
Figure 2 we plot the regret of OPSRL in the environment described above when the number of posterior
samples varies in J ∈ {1, 4, 8, 16, 32}. We observe that the number of posterior samples has little
effect on the regret, especially if we compare it to the scale of the gap between the different regret
curves of the baselines in Figure 1. Thus, in the sequel of this appendix, we arbitrarily choose
J = 8. Another justification of this choice is that J ≈ log(T ) for T = 10000, as it was required by
theoretical analysis.
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Figure 2: Regret of OPSRL for J ∈ {1, 4, 8, 16, 32} for H = 50 and transitions noise 0.2. We show
average over 4 seeds.

Baselines We compare OPSRL with the following baselines:

• The UCBVI algorithm by [Azar et al., 2017] (with Hoeffding-type bonuses). Since the
theoretical bonus often leads to poor practical performance we use simplified bonuses from
an idealized Hoeffding inequality of the form

βt
h(s, a) = min

(√
(H − h+ 1)2

4nt
h(s, a)

, H − h+ 1

)
.
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• The UCBVI-B algorithm, the same algorithm as above but with simplified bonuses from an
idealized Bernstein inequality:

βt
h(s, a) = min

√Varp̂t [V t−1
h+1 ](s, a)

nt
h(s, a)

+
H − h+ 1

nt
h(s, a)

, H − h+ 1

 .

• The PSRL algorithm by [Osband et al., 2013]. For this algorithm we used a Dirichlet
distribution of parameter (1/S, . . . , 1/S) as prior on the transition probability.

• The RLSVI algorithm by [Osband et al., 2016b]. As for UCBVI we used a simplified variance
for the Gaussian noise

σt
h(s, a) = min

(√
(H − h+ 1)2

4nt
h(s, a)

, H − h+ 1

)
.

For the OPSRL we use the prior over the transition probability described in Section 1 with n0 = 1
initial pseudo-counts and no inflation κ = 1. Note that the number of pseudo-counts is the same that
for the one of the chosen prior for PSRL (where the sum of parameters is also one). As discussed
above we pick J = 8 posterior samples.

Results In Figure 1, we plot the regret of the various baselines and OPSRL in the grid world
environment. In this experiment, we observe that OPSRL achieves competitive results with respect to
PSRL. It is not completely surprising since they share the same Bayesian model on the transitions up
to the prior. We shall elaborate more on the influence of the prior below. We also note that OPSRL
outperforms UCBVI and RLSVI. This difference may be explained by the fact that OPSRL’s optimism
implies (in the worst case) KL bonuses as in Filippi et al. [2010]. The KL bonuses are stronger than
Bernstein bonuses, see Lemma E.1, because they somehow rely on all moments of the empirical
distribution rather than the first two moments as in the case of Bernstein bonuses or first moments for
Hoeffding bonuses or for the variance of the Gaussian noise in RLSVI. Note also that in OPSRL, we
do not have to solve the complex convex program to compute the KL bonuses Filippi et al. [2010],
which could be computationally intensive.

Influence of prior Next we study the influence of the prior for posterior sampling algorithms. Here
we will refer to OPSRL as an optimistic prior choice and to PSRL as a uniform prior choice.
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Figure 3: Regret of OPSRL with optimistic prior and PSRL with uniform prior for J ∈ {1, 8} for
H = 50 an transitions noise 0.2. We show average over 4 seeds.

On Figure 3 we may observe that algorithm convergences for both tested numbers of Thompson
samples J and the only difference is the speed of forgetting the prior distribution that results in a

41



constant difference between regrets. We see that optimistic prior is slightly harder to forget and it
is connected to one of the most interesting features of it: optimistic prior is robust to the choice of
the underlying probabilistic model. This property makes it universal at the price of efficiency on
particular examples.
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