Appendix

Anonymous Author(s) Affiliation Address email

1 **Additional Experiment Settings**

2 In the finetuning process, we consider 8 benchmark binary classification datasets from MoleculeNet.

The detailed statistics of datasets are listed in Table 1. The detailed information of these benchmark
datasets are listed bellow:

5 6	• muv is a subset of PubChem BioAssay by applying a refined nearest neighbor analysis. It is designed for the validation of virtual screening techniques.
7 8	• clintox compares drugs approved through FDA and drugs eliminated due to the toxicity during clinical trials.
9 10	• sider records marketed drugs along with its adverse drug reactions, also known as the side effect resource.
11	• hiv records the experimentally measured abilities to inhibit HIV replication.
12 13	• tox21 is a public database measuring the toxicity of compounds, which has been used in the 2014 Tox21 Data Challenge.
14 15	• bace is collected for recording compounds which could act as the inhibitors of (BACE-1) in the past few years.
16 17	• toxcast contains multiple toxicity labels over thousands of compounds by running high-throughput screening tests on thousands of chemicals.
18 19	• bbbp involves records of whether a compound carries the permeability property of penetrat- ing the blood-brain barrier.

Dataset	muv	clintox	sider	hiv	tox21	bace	toxcast	bbbp
Number of molecules	93087	1478	1427	41127	7831	1513	8575	2039
Number of tasks	17	2	27	1	12	1	617	1

Table	1:	Dataset	statistics
-------	----	---------	------------

20 2 Multi-level Self-supervised Pre-training

²¹ Here, we show the pseudo code of the multi-level self-supervised pre-training (Algorithm 1). We

22 adopt the MGDA-UB algorithm from multi-task learning to efficiently solve the optimization problem.

²³ Since MGDA-UB calculates the weights λ_i by Frank-Wolfe algorithm in each training step, we do

²⁴ not have to provide the weights explicitly.

²⁵ The input of Multi-level self-supervised pre-training is the molecule datasets, a list of self-supervised

tasks. The output is the model parameters of pre-trained GNNs. At the beginning of pre-training,

we first randomly initialized the task-specific paramters and the parameters of the pre-trained GNN

²⁸ model. In each training iteration, we update the parameters of all the pretext models. Then we

Algorithm 1 Multi-level Self-supervised Pre-training

Input: Set of input molecules X, set of self-supervised tasks T, learning rate α **Output**: Pre-trained parameter θ ;

- 1: $T = \{atom, bond, motif\}$
- 2: Initialize self-supervised task-specific parameters, ϕ_{atom} , ϕ_{bond} and ϕ_{motif} .
- 3: Initialize the parameters of pre-trained GNN model, θ .
- 4: while not convergence do
- Randomly sample and pre-process input molecules X, 5: generate self-supervised labels Y_{atom} , Y_{bond} , Y_{motif} .
- for $i \in T$ do 6:
- $\phi_i \leftarrow \phi_i \alpha \nabla_{\phi_i} \mathcal{L}_i(X, Y_i, \theta, \phi_i)$ 7:
- end for 8:
- $\begin{array}{l} \lambda_{atom}, \lambda_{bond}, \lambda_{motif} \leftarrow \text{FRANKWOLFE} \left(\theta, \phi_{atom}, \phi_{bond}, \phi_{motif}\right) \\ \theta \leftarrow \theta \sum_{i \in T} \lambda_i \nabla_Z \mathcal{L}_i(X, Y_i, \theta, \phi_i), Z = GNN(X; \theta) \end{array}$ 9:
- 10:
- 11: end while

apply the Frank-Wolfe algorithm [1] to choose the weights, which solves the following optimization 29 problem: 30

$$\min_{\lambda_i, i \in T} \left\{ \left\| \sum_{i \in T} \lambda_i \nabla_Z \mathcal{L}_i(X, Y_i, \theta, \phi_i) \right\|_2, \sum_{i \in T} \lambda_i = 1, \lambda_i \ge 0 \right\},$$
(1)

where $Z = GNN(X; \theta)$ is the representation of molecules. $\nabla_Z \mathcal{L}_i(X, Y_i, \theta, \phi_i)$ can be computed in 31 a single backward pass for all tasks. With the calculated weights, we can update the parameters of 32

pre-trained GNN model. More details can be found in the original paper of MGDA-UB [2]. 33

References 34

- [1] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In ICML, 35 pages 427-435. PMLR, 2013. 36
- [2] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. NeurIPS, 37 2018. 38