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1 Additional Experiment Settings1

In the finetuning process, we consider 8 benchmark binary classification datasets from MoleculeNet.2

The detailed statistics of datasets are listed in Table 1. The detailed information of these benchmark3

datasets are listed bellow:4

• muv is a subset of PubChem BioAssay by applying a refined nearest neighbor analysis. It is5

designed for the validation of virtual screening techniques.6

• clintox compares drugs approved through FDA and drugs eliminated due to the toxicity7

during clinical trials.8

• sider records marketed drugs along with its adverse drug reactions, also known as the side9

effect resource.10

• hiv records the experimentally measured abilities to inhibit HIV replication.11

• tox21 is a public database measuring the toxicity of compounds, which has been used in the12

2014 Tox21 Data Challenge.13

• bace is collected for recording compounds which could act as the inhibitors of (BACE-1) in14

the past few years.15

• toxcast contains multiple toxicity labels over thousands of compounds by running high-16

throughput screening tests on thousands of chemicals.17

• bbbp involves records of whether a compound carries the permeability property of penetrat-18

ing the blood-brain barrier.19

Table 1: Dataset statistics

Dataset muv clintox sider hiv tox21 bace toxcast bbbp

Number of molecules 93087 1478 1427 41127 7831 1513 8575 2039
Number of tasks 17 2 27 1 12 1 617 1

2 Multi-level Self-supervised Pre-training20

Here, we show the pseudo code of the multi-level self-supervised pre-training (Algorithm 1). We21

adopt the MGDA-UB algorithm from multi-task learning to efficiently solve the optimization problem.22

Since MGDA-UB calculates the weights λi by Frank-Wolfe algorithm in each training step, we do23

not have to provide the weights explicitly.24

The input of Multi-level self-supervised pre-training is the molecule datasets, a list of self-supervised25

tasks. The output is the model parameters of pre-trained GNNs. At the beginning of pre-training,26

we first randomly initialized the task-specific paramters and the parameters of the pre-trained GNN27

model. In each training iteration, we update the parameters of all the pretext models. Then we28
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Algorithm 1 Multi-level Self-supervised Pre-training
Input: Set of input molecules X , set of self-supervised tasks T , learning rate α
Output: Pre-trained parameter θ;

1: T = {atom, bond,motif}
2: Initialize self-supervised task-specific parameters, φatom, φbond and φmotif .
3: Initialize the parameters of pre-trained GNN model, θ.
4: while not convergence do
5: Randomly sample and pre-process input molecules X ,

generate self-supervised labels Yatom, Ybond, Ymotif .
6: for i ∈ T do
7: φi ← φi − α∇φi

Li(X,Yi, θ, φi)
8: end for
9: λatom, λbond, λmotif ← FRANKWOLFE (θ, φatom, φbond, φmotif )

10: θ ← θ −
∑
i∈T λi∇ZLi(X,Yi, θ, φi), Z = GNN(X; θ)

11: end while

apply the Frank-Wolfe algorithm [1] to choose the weights, which solves the following optimization29

problem:30

minλi,i∈T

{∥∥∥∥∥∑
i∈T

λi∇ZLi(X,Yi, θ, φi)

∥∥∥∥∥
2

,
∑
i∈T

λi = 1, λi ≥ 0

}
, (1)

where Z = GNN(X; θ) is the representation of molecules. ∇ZLi(X,Yi, θ, φi) can be computed in31

a single backward pass for all tasks. With the calculated weights, we can update the parameters of32

pre-trained GNN model. More details can be found in the original paper of MGDA-UB [2].33
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