
A Examples of proteins and projections483

(a) Atomic model of 5a1a (left) and 5j0n (right).

(b) Density map x of 5a1a (1Å) and 5j0n (3.67Å).

Figure 10: Proteins with different symmetries.

(a) p = Pθx (b) p = Pθx+ n

(c) p = StPθx (d) p = StPθx+ n

Figure 11: Example projections (n ∼ N (0, 16I)).

B Sampling of orientations484

Figure 12 shows four distributions of orientations and the distributions of distances they induce.485

As shorter distances are under-sampled, we uniformly resampled the distances to avoid biasing the486

training of our distance estimator.487

While we control the distributions of orientations and distances to facilitate distance learning, we488

cannot control them when recovering orientations of a given set of projections. Comparing Figure 13a489

with 8a, and 13b with 9e, shows that the recovered orientations and the reconstructed density are490

barely affected by a non-uniform sampling of orientations—a condition that might happen in real491

cryo-EM acquisitions.492

(a) Sampled directions (θ2, θ1).

� � � �

������ ���

�

���

���

����

�
�
�
�
�
�
��
��
�
�
��
�
�
�
�
��
�
� �������������

�������������

����

�������

(b) Distribution of dq .

0 2 4 6
3 [rad]

0

250

500

Nu
m

be
r o

f o
rie

nt
at

io
ns

0 1 2 3
2 [rad]

0 2 4 6
1 [rad]

SO(3) uniform
Euler uniform

(c) Distribution of θ = (θ3, θ2, θ1).

1 0 1
a

0

500

1000

Nu
m

be
r o

f o
rie

nt
at

io
ns

1 0 1
b

1 0 1
c

1 0 1
d

SO(3) uniform
Euler uniform

(d) Distribution of q = a+ bi+ cj + dk.

Figure 12: Sampling of orientations from four distributions: (blue) uniform on SO(3), (orange) uni-
form on Euler angles, (green) Euler uniform restricted to half the directions (θ2, θ1) ∈ [0, π2 [× [0, 2π[,
and (red) SO(3) uniform restricted to a quarter of the directions (θ2, θ1) ∈ [0, π2 [× [0, π[.

14



� ���� �����

�����

�

�

�
�
�

������������

���� �������������

���� �������������

� � � �

��������������

�

���

�
�
�
�
�
�
��
��
�
�
��
�
�
�
�
��
�
�

����������������

(a) Distance learning and orientation recovery.

� �����

������

�����

������

�����

������

�����

�����

�����

�����

������������� ��

�

�

�
�
�

������������

������������

����������� � ��

(b) FSC of the reconstructed density.

Figure 13: Orientation recovery and density reconstruction from noiseless projections of 5j0n
acquired from non-uniformly sampled orientations (Euler uniform, Figure 12 (orange)).

C Optimization settings493

We optimized (3) with the RMSProp optimizer [50] and a learning rate of 10−3 for 150 epochs.494

Batches of 256 pairs resulted in 247 steps per epoch for the training sets and 28 for the validation sets495

(Table 1). It took about 3.3 hours of a single Tesla T4 or 8.75 hours of a single Tesla K40c. Our code496

supports training on multiple GPUs. We optimized (4) with the Adam optimizer [51] and a learning497

rate of 0.5 until convergence on batches of 256 pairs sampled from the test sets (Table 1). It took498

about 3.75 hours of a single Tesla K40c (without early stopping). We optimized (5) with the FTRL499

optimizer [52], a learning rate of 2, and a learning rate power of −2 on batches of 256 orientations500

sampled from the test sets (Table 1). We reported the lowest of 6 runs (3 per value of m) of 300 steps501

each. This took about 50 minutes on a Xeon Silver 4114 CPU.502

D Orientation recovery from exact distances503

To verify that the lack of a convexity guarantee for (4) and the sampling of the sum are non-issues in504

practice, we attempted orientation recovery under exact distance estimation d̂p(pi,pj) = dq(qi, qj).505

Orientations were perfectly recovered; Figure 14 shows the convergence of LOR to zero. Figure 15506

shows how (5) could then perfectly align the recovered and true orientations—leading to EOR = 0. It507

illustrates how alignment is necessary to evaluate the performance of orientation recovery.508

� ���� ����

�����

�

�

�
�
�

��������������

Figure 14: Example of perfect
orientation recovery (for 5a1a).
The loss LOR (4) converges to
zero when the distance estima-
tion is perfect, i.e., d̂p(pi,pj) =
dq(qi, qj).

(a) Orientations before alignment. (b) Orientations after alignment.

Figure 15: Example of perfect alignment (5) after a perfect
recovery (4). The red histogram shows the errors (a) {dq(qi, q̂i)}
and (b) {dq(qi,Tq̂i)}, with the mean EOR highlighted. True
(green) and recovered (green) directions are shown in the insert.
While both colors are seen in (b), they are superimposed.

E Euclidean distance between projections509

We evaluate d̂p(pi,pj) = ‖pi − pj‖2 (i.e., the Euclidean distance) as a baseline distance estimator.510

Figure 16 shows the relationship between d̂p and dq . Two main observations can be made from this511

experiment. First, as suspected, d̂p fails to be a consistent predictor of dq , even in the simple imaging512

conditions considered here (no noise, no shift, no PSF). In particular, the larger the orientation513

distance dq, the poorer the predictive ability of d̂p (the plot plateaus). Second, because 5a1a has514

15



(a) Full coverage on 5j0n. (b) Full coverage on 5a1a. (c) Quarter coverage on 5a1a.

Figure 16: Euclidean distance between projections d̂p(pi,pj) = ‖pi − pj‖2 versus their actual
relative orientation dq(qi, qj). We randomly selected 5 projections from P = 5, 000: each color
represents the distances between one of those and all the others.

D2 symmetries, two projections might be identical while not having been acquired from the same515

orientation. Restricting directions to a quarter captures only one of four identical projections, solving516

the issue.517

F SNN: feature distance and embedding dimension518

There are multiple options for a distance function df between two features fi = Gw(pi) ∈ Rnf .519

Figure 17a compares the use of the Euclidean distance df (fi, fj) = ‖fi− fj‖2 and the cosine distance520

df (fi, fj) = 2 arccos
(
〈fi,fj〉
‖fi‖‖fj‖

)
. The cosine distance results in a lower LDE, which makes d̂p a better521

estimator of dq. This superiority of the cosine distance is likely due to its capacity to model the522

elliptic geometry of SO(3), a feat the Euclidean distance does not achieve, the Euclidean space being523

neither periodic nor curved.524

������ ���������

��

����

����

�
�
�

���������

���������

���������

���������

������������

��������������

� � � �

������ ���

�

�

�

�

�
�
��

��
�

��

� � � �

������ ���

�

�

�

�

�
�
��

��
�

��

(a) Performance w.r.t. the feature distance df .

� � �� �� ��� ��� ���

���

����

����

����

����

�
�
�

���������

���������
��������� ��������� ��������� ���������

���������

���������

���������

��������� ��������� ��������� ��������� ���������

������������

��������������

� � � �

������ ���

�

�

�

�

�
�
��

��
�

��

� � � �

������ ���

�

�

�

�

�
�
��

��
�

��

� � � �

������ ���

�

�

�

�

�
�
��

��
�

��

(b) Performance w.r.t. the embedding dimensionality nf .

Figure 17: Performance of our distance estimator d̂p w.r.t. two design choices. The box plots show
the distance learning loss LDE (3). The inserted plots show the relationship between dp(pi,pj) =
df (Gw(pi),Gw(pj)) and dq(qi, qj) on 1, 000 pairs sampled from 5j0n.

Figure 17b shows the performance of our distance estimator d̂p depending on the size nf of the525

feature space. It clearly indicates that a space of nf = 4 dimensions is insufficient to represent526

the variability of projections. That is a motivation to embed the projections in a space of higher527

dimensions that can represent more variations than the orientation, and can abstract that variation by528

solely considering the distances between the embedded projections fi = Gw(pi). While our choice529

of nf = 512 might be overkill (nf = 16 seems sufficient), it is not penalizing.530

G Convolutional neural network architecture531

16



32 1
1
6

64 5
8

128 2
9

256 1
5

256 8

512 4
512 2

32 1
1
6

116x1
16x1 116x116x32

58x58x64
29x29x128

15x15x256 8x8x256 4x4x512 2x2x512
1x1x512

7x7 convolutions 
32 filters

2x2 max pooling

5x5 convolutions 
64 filters

2x2 max pooling

3x3 convolutions 
128 filters

2x2 max pooling

3x3 convolutions 
256 filters

2x2 max pooling

3x3 convolutions 
256 filters

2x2 max pooling

3x3 convolutions 
512 filters

2x2 max pooling

3x3 convolutions 
512 filters

2x2 max pooling
average 
pooling

pj ∈ ℝnp fj ∈ ℝnf

Figure 18: Architecture of Gw, the convolutional neural network that extracts feature vectors fj =
Gw(pj) ∈ Rnf from projections pj ∈ Rnp . While nf = 512 and np = 116×116 in our experiments,
Gw can accommodate any image size thanks to the global average pooling layer.

17


	Examples of proteins and projections
	Sampling of orientations
	Optimization settings
	Orientation recovery from exact distances
	Euclidean distance between projections
	SNN: feature distance and embedding dimension
	Convolutional neural network architecture

