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SUPPLEMENTARY MATERIAL TO “LEARNING LARGE DAGS IS HARDER THAN
YOU THINK: MANY LOSSES ARE MINIMAL FOR THE WRONG DAG”

A RELEVANCE

To see the possible damages induced using a wrong DAG consider the following example. Assume a
distribution pGt

factorized as in the Bayesian Network Gt shown in Fig. 4a and assume we sample
data X from the distribution pGt

defined below. The variable ix denotes if a patient got infected with
disease x, iy if the patient got infected with y, s denotes if a patient shows symptoms that a typical
for x and y, e denotes an exposure to a virus and t denotes if we conduct a treatment.
Assume we have given two candidate graphs G1 and G2 s.t. G1 = Gt and G2 as shown in Fig. 4b. If
we fit both graphs to X, we obtain different probabilities for the query pG1(t = 1|ix = 1, iy = 0):
pG1(t = 1|ix = 1, iy = 0) = 0.49 < 0.51 = pG2(t = 1|ix = 1, iy = 0). It is common to choose a
threshold value of 0.5 to decide which action should be taken for variables with a binary domain,
thus if a structure learning yields G2 instead of G1, this would flip the decision from not giving a
treatment to giving a treatment based on the same evidence. Thus our manipulations can have a direct
influence on eventually critical decision making processes.
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t
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iy s

e

t

(b)

Figure 4: Network Structure can flip decisions. Figure (a) shows the true independence structure
of pGt

in the medical example while (b) shows a wrong independence structure. The probability of
assigning a treatment (t = 1) is different in both graphs given the exact same evidence.

ix p(ix)
0 0.9
1 0.1

iy p(iy)
0 0.95
1 0.05

e p(e)
0 0.95
1 0.05

Table 2: Probability distributions of ix, iy and e.

p(s = 0|ix, iy) p(s = 1|ix, iy)
ix = 0

iy = 0 0.4 0.6
iy = 1 0.3 0.7

ix = 1
iy = 0 0.2 0.8
iy = 1 0.05 0.95

Table 3: Data-generating probability distribution conditioned on possible realizations of s.

p(t = 0|s, e) p(t = 1|s, e)
s = 0

e = 0 0.95 0.05
e = 1 0.2 0.8

s = 1
e = 0 0.4 0.6
e = 1 0. 1.

Table 4: Data-generating probability distribution conditioned on possible realizations of t.
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B PROOFS

This section provides the actual proofs as detailed versions of the proof sketches for the theoretical
results from the main paper.

Proposition 1 In the following we will show that the Model-MSE (MMSE) is equal to the sum of
the MSE-terms over all variables in a DAG up to rescaling.
Given a distribution p(X1, . . . , Xd) over Rd with zero mean, unit variance and n i.i.d. samples from
p, denoted as X ∈ Rn×d where Xij denotes the i-th realization of random variable Xj in X, MMSE
is defined as:

MMSE(X, fW,θ) :=
1

2n
||X− fW,θ(X)||2F

Here, W is a d× d-dimensional adjacency representing the (in)dependency-structure of p as a DAG.
Further, fW,θ(X) is a function representing all functional dependencies among variables Xi in the
DAG. We assume that fW,θ(X) can be represented as a d-dimensional vector of functions where
each function computes the value of a variable Xi, i.e. XT

i = fθi(X
T
Pi
) for each i where Pi = PaXi

is an index set selecting parents of Xi according to W. Writing out the squared Frobenius-norm,
which is defined as ||A||2F :=

∑m
i=1

∑n
j=1 |aij |2 for a m× n matrix A, yields:

MMSE(X, fW,θ) =
1

2n

n∑
i=1

d∑
j=1

∣∣(X− fW,θ(X)
)
ij

∣∣2

The Frobenius norm thus is just the summation of the squared absolute values of all elements in the
matrix. In this case we consider the residual-matrix X− fW,θ(X). Due to the assumption that fW,θ

can be represented as a vector of functions, sample i of variable Xj is estimated by fθj (X
T
Pj ,i

) which
allows us to rewrite the MMSE:

MMSE(X, fW,θ) =
1

2n

n∑
i=1

d∑
j=1

∣∣(Xij − fθj (X
T
Pj ,i)

)∣∣2
=

1

2n

n∑
i=1

d∑
j=1

(
Xij − fθj (X

T
Pj ,i)

)2
=

1

2n

d∑
j=1

||XT
j − fθj (X

T
Pj
)||22

In the last step we used that the MSE of a variable is the same as the squared euclidean distance
between the estimated values and the true values. Thus we can express the MMSE as the sum of d
independent MSE-terms. The MSE of a fixed variable with n samples XT

j from a fixed variable Xj

can be written as:

MSE(XT
j , fθj (X

T
Pj
)) =

1

2n
||XT

j − fθj (X
T
Pj
)||22

∝
n∑

i=1

(Xij − fθj (X
T
Pj ,i))

2

We will omit the term 1
2n in the MSE from now on since it has no effect on the solution minimizing

the MSE. There are two cases we have to consider: (1) The weight-vector WT
j = 0, i.e. a node Xj

in the graph represented by W has no parents, and (2) WT
j ̸= 0, that is, a node Xj in has parents in
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the graph. In case of (1) we can shorten the MSE to:

MSE(XT
j , fθj (X

T
Pj
)) ∝

n∑
i=1

(Xij − fθj (X
T
Pj ,i))

2

=

n∑
i=1

X2
ij

= Var(XT
j )

This is the case as Pj is the empty set, hence fθj does not exist and can be replaced by a constant (0
in our case). In the last step we used that we assume zero mean of all variables. Thus, the MMSE can
be expressed as follows:

MMSE(X, fW,θ) =
1

2n

d∑
j=1

||XT
j − fθj (X

T
Pj
)||22

∝
d∑

j=1

IWT
j =0Var(X

T
j )

+ (1− IWT
j =0)MSE(XT

j , fθj (X
T
Pj
))

=
∑
j∈Z

Var(XT
j ) +

∑
j∈N

MSE(XT
j , fθj (X

T
Pj
))

Here, IWT
j =0 is the indicator function which equals 1 iff WT

j = 0, Z is the set of variable indices for
which WT

j = 0 holds and N = {1, . . . , d} \ Z.

Proposition 2 Consider a chain graph X1 → · · · → Xd, a distribution p(X1, . . . , Xd) s.t. all
variables have zero mean and that factorizes according to G and n samples from p, denoted as
X ∈ Rn×d. Then measuring variables on different scales Var(XT

1 ) > · · · > Var(XT
d ) where XT

j
denotes a vector of n samples from variables Xj . We observe that the Model-MSE (MMSE) of a
DAG G represented as a weighted adjacency W is the sum of d MSE-losses where d is the number
of variables in G. Thus, if G is a chain X1 → · · · → Xd we can write:

MMSE(W,X) ∝ Var(XT
1 ) +

d∑
j=2

||XT
j −XWT

j ||22

To avoid clutter in the notation, we will now refer to the learnt weights describing the dependency
between a variable Xj and all other variables as wj . The MMSE then becomes:

MMSE(W,X) ∝ Var(XT
1 ) +

d∑
j=2

(
XT

j −Xwj

)2
Note that we obtain the Var(XT

1 ) here because X1 has no parents in the chain, i.e. w1 = 0. This
yields (XT

1 − 0)2 = XT
1 X1 = Var(XT

1 ) in the MMSE-loss. Since in a chain there will be exactly
one entry for each Xj , j ̸= 1 in wj which is not 0. Thus the MMSE reduces to:

MMSE(W,X) ∝ Var(XT
1 ) +

d∑
j=2

(
XT

j −XT
j−1wj

)2
Here wj denotes the only entry in wj which is non-zero. Since it is assumed that all variables have a
zero mean, the squared residuals coincide with the variance of residuals:

MMSE(W,X) ∝ Var(XT
1 ) +

d∑
j=2

Var(XT
j −XT

j−1wj)

Since for two random variables A, B and two scalars a, bVar(aA−bB) = a2Var(A)+b2Var(B)−
abCov(A,B) holds, the MMSE can then be rewritten in terms of the variances and covariances of

14



Published as a conference paper at ICLR 2024

the d variables:

MMSE(W,X) ∝Var(XT
1 ) +

d∑
j=2

w2
jVar(X

T
j−1)

− 2wjCov(X
T
j−1,X

T
j ) + Var(XT

j )

Since we deal with d linear regressions, we can replace the weights by their analytical solution.
Between two variables A and B this corresponds to w = Cov(A,B)

Var(A) . Replacing the weights with their
analytical solution yields:

Var(XT
1 ) +

d∑
j=2

(Cov(XT
j−1,X

T
j )

Var(XT
j−1)

)2
Var(XT

j−1)

− 2
Cov(XT

j−1,X
T
j )

2

Var(XT
j−1)

+ Var(XT
j )

= Var(XT
1 )−

d∑
j=2

Cov(XT
j−1,X

T
j )

2

Var(XT
j−1)

+ Var(XT
j )

Assume the variable’s variances are sorted s.t. Var(XT
j ) < Var(XT

j+1) for all j ∈ {1, . . . , d}.
Further consider the Markov Equivalence Class (MEC) of G. As long as the variables are sorted
as assumed, any graph in the MEC of G other than G will receive a higher MMSE. Note that in
this case the MEC consists of G, any graph X1 ← · · · ← Xj → · · · → Xd with arbitrary Xj and
the reverse chain X1 ← · · · ← Xd. Due to the sorted variances, any node selected as the only
exogenous variable, i.e. the node with no parents, will contribute more to the MMSE since X1 has
the lowest variance. Also, note that the covariance is symmetric, i.e. Cov(A,B) = Cov(B,A) for
two random variables A and B. Thus, the only thing that will change in the sum of the MMSE are the

denominators. Since
Cov(XT

j−1,X
T
j )2

Var(XT
j−1)

>
Cov(XT

j−1,X
T
j )2

Var(XT
j )

holds for any j, for any graph not respecting
the order of variances, there will be at least one of these fractions contributing a smaller value than
if the fraction respects the order of variances, thus leading to a larger MMSE. To summarize: The
MMSE is minimal iff (1) the selected exogenous variable corresponds to the variable with the lowest
variance and (2) all edges are oriented s.t. each edge points from a lower-variance variable towards a
higher-variance variable.

Proposition 3 Consider a chain graph G = X1 → · · · → Xd (represented as adjacency W),
a distribution p(X1, . . . , Xd) s.t. all variables have zero mean and that factorizes according to G
and n samples from p, denoted as X ∈ Rn×d. Then it suffices to change the variance of XT

1 s.t.

Var(XT
1 ) > Var(XT

d ) −
∑d−1

i=1

Cov(XT
i ,XT

i+1)
2

Var(XT
i+1)

+
Cov(XT

i ,XT
i+1)

2

Var(XT
i )

, to prefer the reverse chain G′

(represented as adjacency W′) in terms of the MMSE. We know that we can represent the MMSE of
W and W′ as follows:

MMSE(W,X) ∝ Var(XT
1 )−

d−1∑
j=1

Cov(XT
j+1,X

T
j )

2

Var(XT
j )

MMSE(W′,X) ∝ Var(XT
d )−

d−1∑
j=1

Cov(XT
j+1,X

T
j )

2

Var(XT
j+1)

In order to make MMSE(W,X) > MMSE(W′,X) true, we just reorder the terms and obtain:
MMSE(W,X) > MMSE(W′,X)

⇐⇒ Var(XT
1 )−

d−1∑
j=1

Cov(XT
j+1,X

T
j )

2

Var(XT
j )

> Var(XT
d )−

d−1∑
j=1

Cov(XT
j+1,X

T
j )

2

Var(XT
j+1)

⇐⇒ Var(XT
1 ) > Var(XT

d )−
d−1∑
j=1

Cov(XT
j+1,X

T
j )

2

Var(XT
j+1)

+

d−1∑
j=1

Cov(XT
j+1,X

T
j )

2

Var(XT
j )
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Proposition 4 The proof of Prop. 4 follows a similar reasoning as the last proof of Prop. 2. Let’s
consider data X ∈ Rn×d that is scaled s.t. Var(XT

k ) < · · · < Var(XT
1 ) and s.t. Var(XT

k ) < · · · <
Var(XT

d ) for some k, and the fork-graph G X1 ← · · · ← Xk → · · · → Xd as well as the weighted
adjacency of G, denoted by W. Then the MMSE of G can be written as the sum of the MMSEs of
the two sub-graphs X1 ← · · · ← Xk and Xk → · · · → Xd:

MMSE(W,X) ∝Var(XT
k )−

( k∑
j=1

Cov(XT
j−1,X

T
j )

2

Var(XT
j )

+

d∑
j=k+1

Cov(XT
j−1,X

T
j )

2

Var(XT
j−1)

)
Now the same reasoning applies as in the proof of Prop. 2: Any other graph in the MEC of G other
than G will receive a larger MMSE since either the parent-less node changes, yielding a variance
term larger than Var(XT

k ), or the sum of covariance terms gets larger due to at least one edge not
respecting the variance-oder or both.

Proposition 5 Given data from a DAG G, represented as a weighted adjacency matrix W ∈ Rd×d

and n samples X ∈ Rn×d sampled from a distribution p(X1, . . . , Xd) that factorizes according to
G, we say G respects the order of variances iff Xi → Xj =⇒ Var(Xi) < Var(Xj) for all nodes
Xi, Xj in G. Assuming G respects the order of variances, there is no other graph G′ in the MEC of
G which has a smaller MMSE. As shown above, the MMSE can be written as:

MMSE(W,X) ∝
∑
j∈Z

Var(XT
j ) +

∑
j∈N

MSE(XT
j ,X,W)

Here, Z is the set of nodes in G with no parents (exogenous variables) and N is the set of all nodes
in G which have parents (endogenous variables). Let’s rewrite the MSE for a given node Xj under
the assumption that all variables have mean 0:

MSE(XT
j ,X,W) ∝

n∑
i=1

(
Xij −

( d∑
k=1

WkjXik

))2
= Var(XT

j −WT
j X

T )

Since Var(A−B) = Var(A) + Var(B)− 2Cov(A,B) holds for two random variables A, B and
since WT

j X
T can be written as

∑d
k=1 WkjX

T
k , we obtain:

= Var(XT
j ) + Var(WT

j X
T )− 2Cov(XT

j ,W
T
j X

T )

= Var(XT
j ) + Var

( d∑
k=1

WkjX
T
k

)
− 2Cov

(
XT

j ,

d∑
k=1

WkjX
T
k

)

In the above equation we have the sample-variance of a linear combination of random variables.
The variance of a linear combination of N random variables is given by: Var(

∑N
i=1 aiXi) =∑N

i=1 a
2
iVar(Xi) + 2

∑
1̸=i<j ̸=N aiajCov(Xi, Xj), thus we obtain:

=

d∑
k=1

W2
kjVar(X

T
k ) + 2

d∑
k=1

k−1∑
i=1

WkjWijCov(X
T
k ,X

T
i )

+ Var(XT
j )− 2

d∑
k=1

WkjCov(X
T
j ,X

T
k )
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Since this is equivalent as solving d indepdent linear regressions, all Wij can be replaced by their

analytical solution minimizing the MSE, which is given by: Wij =
Cov(XT

i ,XT
j )

Var(XT
i )

. Hence we obtain:

= Var(XT
j ) +

d∑
k=1

Cov(XT
j ,X

T
k )

2

Var(XT
k )

− 2

d∑
k=1

Cov(XT
j ,X

T
k )

2

Var(XT
k )

+ 2

d∑
k=1

k−1∑
i=1

WkjWijCov(X
T
k ,X

T
i )

= Var(XT
j )−

d∑
k=1

Cov(XT
j ,X

T
k )

2

Var(XT
k )

+ 2

d∑
k=1

k−1∑
i=1

WkjWijCov(X
T
k ,X

T
i )

Let’s consider the case in which we flip an edge s.t. the resulting graph G′ is in the same MEC as G,
but it does no longer respect the variance-order. We observe that the last term in the above equation
only appears if a node Xj in a graph has multiple incoming edges, i.e. if Xj is a collider. Since we
assume G′ to be in the MEC of G, all collider-structures stay the same, hence we can treat this term
as a constant from now on and can omit it. Replacing the MSE in the MMSE by the above equation
then yields:

MMSE(W,X) ∝
∑
j∈Z

Var(XT
j ) +

∑
j∈N

(
Var(XT

j )

−
d∑

k=1

Cov(XT
j ,X

T
k )

2

Var(XT
k )

)
As for all exogenous variables Xj the parent set is empty, there will only be 0-entries in the j-th
column of the adjacency. This allows us to write the above as:

d∑
j=1

(
Var(XT

j )−
d∑

k=1

Cov(XT
j ,X

T
k )

2

Var(XT
k )

)
Now there are two possible outcomes of manipulating G to obtain a G′ being in the MEC of G:
(1) The set Z remains the same or (2) the set Z changes. This means, either edge-flips lead to
a different set of exogenous variables or they do not. In case (1) the MMSE will increase if G′

no longer respects the variance-order. This is because all terms stay the same except for the one
computing the error for variables that now have an incoming instead of an outgoing edge: An edge
flip from Xj → Xj+1 to Xj ← Xj+1 amounts to changing the optimal weight between Xj and

Xj+1 from
Cov(XT

j ,XT
j+1)

2

Var(XT
j )

to
Cov(XT

j ,XT
j+1)

2

Var(XT
j+1)

. Since we assume Var(Xj) < Var(Xj+1) it follows

that
Cov(XT

j ,XT
j+1)

2

Var(XT
j )

>
Cov(XT

j ,XT
j+1)

2

Var(XT
j+1)

, thus flipping an edge leads to an increased MMSE.

In case (2) the same reasoning applies. Additionally, the exogenous variables are not the same in G′

and G. Since we assume that G respects the variance-order and G′ does not, there will be at least one
exogenous variable in G′ which is not an exogenous variable in G, leading to a higher MMSE for
G′.

Proposition 6 Given data X from a distribution p(X1, . . . , Xd) induced by a DAG G = X1 →
· · · → Xd and assuming that all Xj have mean 0, the MMSE of a graph G′ containing a collider
at Xi and an additional edge Xi−1 → Xi+1 will receive a smaller MMSE than G if the variances
are scaled s.t. Var(XT

k ) < Var(XT
k+1) for all k < i− 1 and Var(XT

k ) > Var(XT
k+1) for all k ≥ i.

Let’s consider the MMSE of two adjacencies W and W′ representing a weighted version of G and
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G′ respectively, then the MMSEs can be computed as:

MMSE(W,X) = Var(XT
1 ) +

d∑
k=2

MSE(XT
k ,X,W)

MMSE(W′,X) = Var(XT
1 ) +

i−1∑
k=2

MSE(XT
k ,X,W′)

MSE(XT
i ,X,W′) + MSE(XT

i+1,X,W′)

+

d−1∑
k=i+2

MSE(XT
k ,X,W′) + Var(XT

d )

The reason why we decomposed the MMSE of W′ into multiple MSE-terms is that we can exclude a
large part of both MMSEs from our consideration since they are equal: Note that in the MMSE of W′

the first line corresponds to the error contributed to the MMSE by the chain X1 → · · · → Xi−1 and
the third line corresponds to the error coming from the chain Xi+1 ← · · · ← Xd. Line 2 corresponds
to the error coming from the collider structure itself. When comparing the two MMSEs we can
ignore the error coming from the X1 → · · · → Xi−1 since it will be the same for both W and
W′. Additionally, the chain Xi+1 ← · · · ← Xd can be considered independently in the MMSE.
Thus we can apply Prop. 2 and conclude that this part of the MMSE of W′ will be smaller than the
corresponding part of the MMSE of W since Var(XT

k ) > Var(XT
k+1) for all k > i. It remains to

show that the following holds:

MSE(XT
i ,X,W′) + MSE(XT

i+1,X,W′)

< MSE(XT
i ,X,W) + MSE(XT

i+1,X,W)

Since we assume that all variables have mean 0, the MSE coincides with the variance of the residuals,
allowing us to write:

Var(XT
i − (W′

i−1,iX
T
i−1 +W′

i+1,iX
T
i+1))

+ Var(XT
i+1 − (W′

i−1,i+1X
T
i−1 +W′

i+2,i+1X
T
i+2))

< Var(XT
i − (Wi−1,iX

T
i−1))

+ Var(XT
i+1 − (Wi,i+1X

T
i ))

Since the variance of a linear combination is given by Var(
∑N

i=1 aiXi) =
∑N

i=1 a
2
iVar(Xi) +

2
∑

1̸=i<j ̸=N aiajCov(Xi, Xj), we decompose the variance terms accordingly:

((
Var(XT

i ) +W′2
i−1,iVar(X

T
i−1) +W′2

i+1,iVar(X
T
i+1)− 2W′

i−1,iCov(X
T
i−1,X

T
i )− 2W′

i+1,iCov(X
T
i+1,X

T
i )

− 2W′
i−1,iW

′
i+1,iCov(X

T
i−1,X

T
i+1)

)
+
(
Var(XT

i+1) +W′2
i−1,i+1Var(X

T
i−1) +W′2

i+2,i+1Var(X
T
i+2)

− 2W′
i−1,i+1Cov(X

T
i−1,X

T
i+1)− 2W′

i+2,i+1Cov(X
T
i+2,X

T
i+1)− 2W′

i−1,i+1W
′
i+2,i+1Cov(X

T
i−1,X

T
i+2)

))

<

((
Var(XT

i ) +W2
i−1,iVar(X

T
i−1)− 2Wi−1,iCov(X

T
i ,X

T
i−1)

)
+
(
Var(XT

i+1) +W2
i,i+1Var(X

T
i )− 2Wi,i+1Cov(X

T
i ,X

T
i+1)

))
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Since W′
i−1,i = Wi−1,i =

Cov(XT
i ,XT

i−1)

Var(XT
i−1)

, we can exclude the error contributed by the connection
Xi−1 → Xi:

(
W′2

i+1,iVar(X
T
i+1)− 2W′

i+1,iCov(X
T
i+1,X

T
i )− 2W′

i−1,iW
′
i+1,iCov(X

T
i−1,X

T
i+1) +W′2

i−1,i+1Var(X
T
i−1)

+W′2
i+2,i+1Var(X

T
i+2)− 2W′

i−1,i+1Cov(X
T
i−1,X

T
i+1)− 2W′

i+2,i+1Cov(X
T
i+2,X

T
i+1)

− 2W′
i−1,i+1W

′
i+2,i+1Cov(X

T
i−1,X

T
i+2)

)

<

(
W2

i,i+1Var(X
T
i )− 2Wi,i+1Cov(X

T
i ,X

T
i+1)

)

Replacing the weights with their analytical solution yields:

(
Cov(XT

i+1,X
T
i )

2

Var(XT
i+1)

− 2
Cov(XT

i+1,X
T
i )

2

Var(XT
i+1)

− 2
Cov(XT

i−1,X
T
i )

Var(XT
i−1)

Cov(XT
i+1,X

T
i )

Var(XT
i+1)

Cov(XT
i−1,X

T
i+1)

+
Cov(XT
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This reduces to:
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Since Var(XT
i+1) < Var(XT

i ) by definition, −Cov(XT
i+1,X

T
i )2

Var(XT
i+1)

< −Cov(XT
i ,XT

i+1)
2

Var(XT
i )

holds. All other
terms on the right hand side of the equation are negative, thus the inequation will hold.

Proposition 7 Now we show that the log-likelihood w.r.t. a DAG W and parameterized functions
fj,θ mapping the values of parents of Xj , denoted by XPj

, is the same as the MMSE from Def. 1 up
to scaling. The log-likelihood can be written as:

n∑
i=1

d∑
j=1

log p̂
(
XT

i,j |fj,θ(Xi,Pj
)
)
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Assuming µ
(j)
i = fj,θ(XPj

) and fixed noise σ(j) for each Xj , replacing p̂ with the definition of the
normal distribution yields:

n∑
i=1

d∑
j=1

log
1

σ
√
2π

exp

−1

2

(
Xij − µ

(j)
i

σ(j)

)2


∝
n∑

i=1

d∑
j=1

(
Xij − µ

(j)
i

)2
=

n∑
i=1

d∑
j=1

(
Xij − fj,θ(Xi,Pj )

)2
=

d∑
j=1

MSE(XT
j , fj,θ(XPj

))

By Prop. 1 this equals the MMSE.

Proposition 9 In this section we aim to show that ELBO and MMSE are—under standard
assumptions—strongly related, thus showing that ELBO is susceptible to scale-changes of vari-
ables as well. The ELBO-loss defined in Yu et al. (2019) reads:

L(W, θe, θd;X) = −DKL(q(Z|X)||p(Z)) + Eq(Z|X)

[
log(p(X|Z))

]
+ αh(W) +

ρ

2
|h(W)|2

In the ELBO loss, q(Z|X) denotes a distribution over Z given X , a multivariate latent random
variable, p(X|Z) a distribution over random variables X which should reflect the distribution X
was sampled from and p(Z) a prior over the latent space (in our case a multivariate Gaussian with
independent components). Let’s assume the following data-generating model: The data is generated
according to a distribution p over random variables X1, . . . , Xd. It holds that the indpendencies
among X1, . . . , Xd in p can be represented with a DAG which is represented using the adjacency
W. Also, each variable Xj is determined by the value of its parents and some additive, independent
noise-term ϵj following a Gaussian, i.e. each Xj can be represented by Xj = fj(PAj) + ϵj where f
is some possibly non-linear, invertible function. Further assume that we only consider adjacencies
representing a DAG in our solution space, i.e. we can omit h in the loss. Assuming Gaussian latent
variables, the KL divergence reads:

DKL(q(Z|X)||p(Z)) =
1

2

d∑
j=1

σ2
Zj

+ µ2
Zj
− 2 log(σZj )− 1

In the above equation µZj
denotes the j-th component of a mean vector of a Gaussian over Z, σZj

denotes the standard deviation of the Gaussian. Assuming σZj
= 1 for all j leaves us with:

DKL(q(Z|X)||p(Z)) ∝ 1

2

d∑
j=1

µ2
Zj

Proceeding with the reconstruction loss, in Yu et al. (2019) a Monte Carlo approach is used to
approximate the reconstruction loss for a given sample Xi, which reads

1

L

L∑
l=1

d∑
j=1

−
(Xij − µ

(l)
Xj

)2

2(σ
(l)
Xj

)2
− log(σ

(l)
Xj

)− c

Here, σ(l)
Xj

refers to the standard deviation predicted by the decoder for the l-th Monte Carlo sample,

the same applies for µ(l)
Xj

. c is a constant in the above equation and thus can be ignored since it
does not affect the solution of the optimization problem. Assuming that σXj = 1 for all j, this is
proportional to:

1

L

L∑
l=1

d∑
j=1

−(Xij − µ
(l)
Xj

)2
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This means the loss we are optimizating for reads

1

L

L∑
l=1

( d∑
j=1

−(Xij − µ
(l)
Xj

)2 − 1

2

d∑
j=1

(µ
(l)
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L
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( d∑
j=1

(Xij − µ
(l)
Xj

)2 +
1

2

d∑
j=1

(µ
(l)
Zj
)2
)

Since maximizing a loss is the same as minimizing the negative version of the same loss, we will
consider the following loss from now on:

1

L

L∑
l=1

( d∑
j=1

(Xij − µ
(l)
Xj

)2 +
1

2

d∑
j=1

(µ
(l)
Zj
)2
)

By the central limit theorem we know that for L→∞ the sample mean 1
Lµ

(l)
Xj

coincides with the
true mean µXj for any component j, the same holds for µZj . Thus, with infinite many samples we
obtain:

d∑
j=1

(Xij − µXj
)2 +

1

2

d∑
j=1

(µZj
)2

As the true mean µXj
is constant, we can treat the second term as a constant term. As we drop this

term, we obtain the following loss which is still proportional to the original loss:

d∑
j=1

(Xij − µXj
)2

As we only consider the loss of one sample i so far, let us extend the above to minimizing the loss
w.r.t. all samples where µ

(i)
Xj

refers to the true mean predicted by the decoder for the i-th sample (i.e.
assuming L→∞):

n∑
i=1

d∑
j=1

(Xij − µ
(i)
Xj

)2

This loss is proportional to the MMSE for arbitrary non-linear dependencies among the variables Xj

which proves that DG is susceptible to variance manipulation as well.

Before concluding the proof, let us consider a special case of the above where we assume that all
relations are linear and are described with by a weighted adjacency W. As in Yu et al. (2019), we
replace the means µXj

, µZj
predicted by the decoder and encoder respectively and obtain:

d∑
j=1

(
Xij −

(
X(I−W)X(I−W)−1

)
ij

)2

+
1

2

d∑
j=1

((
(I−W)X

)
ij

)2

Since this is a loss for a single sample Xi but we optimize over all samples, the full loss is given by:

n∑
i=1

(
d∑

j=1

(
Xij −

(
X(I−W)X(I−W)−1

)
ij

)2

+
1

2

d∑
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((
(I−W)X

)
ij

)2
)

=

n∑
i=1

d∑
j=1

(
Xij −

(
X(I−W)X(I−W)−1

)
ij

)2

︸ ︷︷ ︸
reconstruction loss

+
1

2

n∑
i=1

d∑
j=1

((
(Xij − (XW)ij

)2

︸ ︷︷ ︸
MMSE = KL divergence

It can be seen that the MMSE-term appears twice in the loss. Assuming perfect reconstruction, the
KL-divergence – which is exactly the MMSE in this case – remains. Thus the MMSE is the distance
between the marginal likelihood of obtaining the data and the evidence lower bound.

21



Published as a conference paper at ICLR 2024

C EXPERIMENTAL DETAILS

C.1 PERFECT CONTROL

In the following we will consider scenarios in which we are able to control the scale of all variables in
the data X. This amounts to assuming that we can control on which scale all variables are measured.
Hence, ”manipulating“ scale is equivalent to choosing the scale on which a variable is measured. We
coin these scenarios as perfect scenarios as we gain full control over variable scales. As mentioned in
Section 3, there are three substructures each DAG consists of: Chains, forks and colliders. We will
now briefly describe manipulations on each of these structures.

Chains By controlling the variance of variables in X chains can be reversed and forks as well as
colliders can be introduced. E.g. for a graph X1 → X2 → X3 and data X for which Var(XT

1 ) >
Var(XT

2 ) > Var(XT
3 ) holds, we can force NT and DG to predict X1 ← X2 ← X3 by scaling data

s.t. Var(XT
1 ) < Var(XT

2 ) < Var(XT
3 ) holds. Similarly we can force both algorithms to predict a

fork X1 ← X2 → X3 instead of a chain X1 → X2 → X3 by scaling data s.t. Var(XT
1 ) < Var(XT

1 )
and Var(XT

2 ) < Var(XT
3 ).

If we wish NT/DG to predict a collider instead of a chain-structure, the same approach can be used.
However, in this case an additional edge will appear in the graph. Let us consider the 3-node example
from above again: In the data-generating process each variable is statistically dependent on each
other. If a collider is predicted in X2 although data comes from a chain-structure, predicting the
collider would ignore the dependence between X1 and X3. Thus an additional edge is introduced to
further minimize MMSE/ELBO by NT/DG.

Forks There are two possible ways of manipulating fork-structures: (1) Converting a fork into a
chain and (2) converting a fork into a collider. Note that we cannot change the fork’s origin node, that
is forcing NT/DG to predict e.g. X1 ← X3 → X2 if data comes from a structure X1 ← X2 → X3.
The reason for this is that we would have to replace the conditional independence X3 ⊥⊥ X1|X2 by
X2 ⊥⊥ X3|X1 in the data, which is not allowed by the manipulation-definition.
Converting a fork into a chain is rather straightforward and works again by reordering of variances.
The same holds for conversion of forks into colliders. Again, converting a graph X1 ← X2 → X3 to
a collider X1 → X2 ← X3 will result in adding an additional edge between X1 and X3 to respect
all dependencies.

Colliders As for forks, there are two possible ways to manipulate collider-structures: (1) Making
a collider-structure a chain and (2) making a collider-structure a fork. As for forks, note that we
cannot change the sink node of a collider-structure since this would us require to alter the dependence-
properties of the data.
We can follow the same reasoning as in the last subsections to control the output of NT/DG in the
case of colliders. However, changing a collider-structure to some other will lead to an additional
edge being predicted by NT/DG. Consider the collider X1 → X2 ← X3. By d-separation we have
a conditional dependence X1 ̸⊥⊥ X3|X2. However, for both, a chain-structure X1 → X2 → X3

and a fork-structure X1 ← X2 → X3 the graph implies a conditional independence X1 ⊥⊥ X3|X2.
Since these independencies do not hold in the data, NT and DG will account for this to minimize
MMSE/ELBO and add an additional edge between X1 and X3.

Manipulation Scale Strategy We note that each structure we consider in our theoretical analysis
can be viewed as a set of chains from a purely graphical point of view, i.e. ignoring the probabilistic
semantics: A fork can be seen as two chains originating in the same node and a collider can be seen
as two chains ending in the same node, but starting in different nodes. Therefore we could derive
a simple scaling strategy: Given data X from some distribution p with ground truth graph G and
given a target graph G′ defined over the same set of variables as G, we identify each each in G′ and
apply the following strategy: If G′ is a fork or a chain, we scale the origin node’s variance to 1. Then,
for each chain substructure in G′, we traverse along the chain’s nodes and recursively rescale the
variables: For a variable Xi we apply c · Var(XT

i−1) where c ∈ {2, 4, 8}. The same strategy was
applied for NT and DG.
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C.2 IMPERFECT CONTROL

In real world usually only a subset of variables is measured on a ”wrong“ scale. This amounts to
saying we are only allowed to scale a subset of variables freely. We term such scenarios imperfect
control scenarios as there is no full control over scale anymore. We now investigate if we still can use
our theoretical results and methods to control NT’s/DG’s output, at least s.t. we partially can reach
our desired goal.
In the imperfect scenario we consider a dataset X ∈ Rn×d sampled from a distribution p induced
by a DAG G where n is the number of instantiations of d random variables Xi. We assume to have
access to a subset of features, i.e. A ⊂ {1, . . . , d}. We denote the data accessible and thus manipulate
by X(A). We will now consider the 3-node case in order to show that some manipulations are still
possible under these conditions.
Note that it is sufficient to have control over n− 1 variables in the data sampled from p in order to
perform any arbitrary manipulation successfully, i.e. this would reflect the perfect setting and will not
be part of consideration here.

Chains We start by considering cases in which data X comes from a chain structure X1 → X2 →
X3 and we only are allowed to manipulate a subset of variables. If we are allowed to manipulate
X({2}), it is possible to make NT/DG predicting a collider on X2. The same manipulation can be
performed if we have control over X({3}) since we can scale data s.t. Var(XT

2 ) > Var(XT
3 ).

If we are able to manipulate X({1}) it is possible to force NT to reverse the chain under some
conditions. The success of the manipulation depends on the regularization parameter λ chosen for
NT as it can be seen in Fig. 5. However, we can be sure that at least the edge between X1 and X2

will be reversed by this manipulation, i.e. we will at least make NT predict a fork. For DG we haven’t
found a strong connection between the regularization and the success of the manipulation.

Forks In case data comes from a fork-structure X1 ← X2 → X3, we can perform the same
manipulation as above in order to make NT/DG predicting a collider in X2. If we either control
X({1}) or X({3}) we can still force NT/DG to predict a chain-structure instead of a fork-structure.
There are no other manipulations possible on forks in the restricted 3-node scenario since either we
would have control over n − 1 nodes leading to a perfect setting or we would have to change the
fork’s origin node which is not possible as shown in Section 3.

Colliders A similar reasoning as for forks applies to colliders. Assuming data from a collider-
structure X1 → X2 ← X3, we can make NT/DG predicting a fork with origin node X2 if we have
control over X({2}). If we have control over X({1}) or X({3}), we can force NT/DG to predict
a chain X1 ← X2 ← X3 with an additional edge X1 ← X3 or a chain X1 → X2 → X3 with an
additional edge X1 → X3 respectively. Again, no other manipulation is possible since we would
either have the perfect setting or we would have to change the collider’s sink-node which is impossible
as shown in Section 3.

Scaling Strategy In the imperfect scenario we apply a different strategy as we are not allowed to
scale each node anymore. In our experiments we only scaled one single variable in the imperfect
scenario. Therefore we have to distinguish between three cases: The target graph is a chain, fork or
collider structure. In case of a chain, we only scaled the variable corresponding to the chain’s sink
node by applying (c+ v) ·Var(Xi) where c is the maximum scale among all variables except Xi in
the data, Xi is the chain’s sink node and v ∈ {1, 2, 4}.
If the target graph is a fork, we rescale the fork’s origin Xi by XT

i

(c+v) where c again is the maximum
variance of all variables in the data and v ∈ {1, 2, 3}. If the target is a collider structure, we apply the
same as for the chain case except that the variable being scaled corresponds to the collider node in
the target graph.

Effect of Measuring a Subset of Variables on Different Scales We provide additional information
on the success rate of our manipulations in imperfect scenarios. As described in Sec. 4 Q2, we
followed the same experimental protocol as for Q1 except that we only manipulated a single variable.
Tab. 7 and 6 provide more insights as well as Fig. 5.
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Table 5: Predictions of structure learners is determined by scale. We generated 10,000 data points
from 10-variable ground truth DAGs (ch=chain, fo=fork or co=collider) with additive Gaussian noise.
Variable dependencies were linear (lin) or non-linear (cos=cosine function used). We simulated
different measurement scales by multiplying each variable with a different scale, experiments were
repeated 30 times with different data from the same distribution to account for stochastic effects.
GESR means GES with SRL.

Predicted Graph
ch fo co

G
ro

un
d

Tr
ut

h
G

ra
ph

ch

lin (NT) 100% 100% 100%
lin (GES) 100% 100% 0%

lin (GESR) 22% 23% 0%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%

fo

lin (NT) 100% 100% 100%
lin (GES) 100% 0% 0%

lin (GESR) 11% 0% 0%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%

co

lin (NT) 100% 100% 100%
lin (GES) 28% 38% 100%

lin (GESR) 10% 10% 35%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%

Table 6: Predictions of structure learners suffer in imperfect scenarios. In {3, 10}-variable
scenarios, our manipulations still consistently force NT/DG to predict the desired DAG with success
rate 100% if we aim to produce a fork or collider. Reversing a chain with access to only one variable is
sometimes possible, however, the success rate depends on the manipulation scale and hyperparameters
of the DAG learner. Also, we saw that in graphs with more variables the success rate decreased. For
our experiments, 10,000 data points were generated from each ground truth DAG (chain, fork, or
collider) using Gaussian noise. The variable dependencies were either linear or non-linear (cosine
function used). We manipulated one variable with three manipulation scales. All manipulations were
repeated 10 times with different data from the same distribution to account for stochastic effects. In
3-variable cases fork origins and collider sinks cannot be changed as this requires new dependencies
in the data (hence n.a.). If ground truth and prediction are chain structures, the prediction is the
reversed chain.

Predicted Graph
ch fo co

G
ro

un
d

Tr
ut

h
G

ra
ph

ch

lin (NT) 100% 100% 100%
lin (GES) 100% 100% 0%

lin (GESR) 22% 23% 0%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%

fo

lin (NT) 100% 100% 100%
lin (GES) 100% 0% 0%

lin (GESR) 11% 0% 0%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%

co

lin (NT) 100% 100% 100%
lin (GES) 28% 38% 100%

lin (GESR) 10% 10% 35%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%
DAGs with 3 variables

Predicted Graph
ch fo co

ch

lin (NT) 100% 100% 100%
lin (GES) 100% 0% 0%

lin (GESR) 0% 0% 0%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%

fo

lin (NT) 100% 100% 100%
lin (GES) 75% 70% 32%

lin (GESR) 75% 50% 0%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%

co

lin (NT) 100% 100% 100%
lin (GES) 0% 0% 12%

lin (GESR) 0% 0% 12%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%
DAGs with 10 variables
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Table 7: Sensitivity towards Scale depends on hyperparameters. Considering NT, the success
ratios of reversing a chain by our manipulations in the imperfect (3 variables) scenario significantly
depends on the choice of the scaling factor used in the manipulations and the regularization term λ
used. With higher manipulation scale and regularization, the success rate decreases. The dependency
to the regularization can be explained by the fact that a higher regularization leads to sparser graphs,
thus possibly making NT to omit edges which would make the manipulation successful. The
dependency between higher manipulation scales and lower success rates may be due to numerical
instability during optimization if the variances of variables get too high. For each pair of manipulation
scale and regularization we conducted 10.000 experiments, each with a randomly chosen linear
function determining X2 and X3 respectively. The ground truth graph was a chain X1 → X2 → X3

and the target graph was X1 ← X2 ← X3. As noise we used samples from a standard Gaussian.

Regularization λ

0 0.01 0.1 1
M

an
ip

ul
at

io
n

Sc
al

e
2 0.35 0.32 0.23 0.
4 0.30 0.28 0.15 0.
8 0.23 0.21 0.10 0.
10 0.19 0.19 0.10 0.

Table 8: Different measurement scales can have severe side effects on real world data. We find that
measuring variables on different scales leads to worse predictions (Ĝ) of NT/DG w.r.t. the expected
graph G′. M1 and M2 refer to the substructures including {Erk,Akt,PKA} and {PKC,P38, Jnk}
respectively in which variables were measured on different scales. M1 was evaluated for NT and DG
whereas M2 was only evaluated for DG as NT predicted a slightly different DAG on the original data.
cr means that our expectation was a reversed chain, if means that expected a fork being introduced
and ic is short for introducing collider.

NT Results DG Results
M1 M2 M1 M2

s(G,G′) s(Ĝ,G′) s(G,G′) s(Ĝ,G′) s(G,G′) s(Ĝ,G′) s(G,G′) s(Ĝ,G′)
cr 9 15 5 9 12 18 20 22
if 0 2 1 3 12 14 − −
ic 12 14 5 7 13 15 19 23

Table 9: Different measurement scales can have severe side effects on real world data. We find that
measuring variables on different scales leads to worse predictions (Ĝ) of GND/GES w.r.t. the expected
graph G′. M1 and M2 refer to the substructures including {Erk,Akt,PKA} and {PKC,P38, Jnk}
respectively in which variables were measured on different scales. However, GES seems to be more
robust against scale then GND, thus confirming our former findings. cr means that our expectation
was a reversed chain, if means that expected a fork being introduced and ic is short for introducing
collider.

GND Results GES Results
M1 M2 M1 M2

s(G,G′) s(Ĝ,G′) s(G,G′) s(Ĝ,G′) s(G,G′) s(Ĝ,G′) s(G,G′) s(Ĝ,G′)
cr 2 28 3 49 2 6 2 1
if 4 26 1 42 4 0 2 1
ic 0 35 1 41 2 2 2 2

C.3 THRESHOLDING

NT and DG have a thresholding parameter, denoted as τ from here on, which controls how high the
minimum strength has to be in order to consider a connection found as an edge. Thus τ acts as another
parameter making the graph found by NT sparse, in addition to the L1-regularization. We have run
manipulations in the perfect scenario with different values for τ . We chose τ ∈ {0.001, 0.01, 0.3, 0.5}
and obtained the exact same results as described in Section 3 and Section 4 for NT. For DG higher
threhsolding values lead to much sparser graphs. For our experiments we decided to use τ = 0.1 for
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Figure 5: λ and measurement-scale influence success ratio: In Tab. 7 we provide the overall
success rate for each pair of manipulation scale and regulariaztion. Looking at the distribution for
which pairs the manipulations are succesful, we find an interesting symmetric pattern which indicates
a clear rule underlying the dependency between the regularization/manipulation scale and the success
rate.

DG. To conclude, thresholding does not have a significant influence on our results in case of NT,
however in case of DG changing τ might lead to different results.

C.4 DATA GENERATING PROCESS.

As we require artificial data in some experiments, we describe a general data generating process used:
First, define a DAG G and obtain 10.000 samples from a Gaussian distribution with µ = 0 and a
standard deviation σ for each exogenous variable Xi. Each endogenous variable Xj is computed by a
function f taking the parents of Xj and adding a Gaussian noise-term ϵj , i.e. Xj = f(PAXj ) + ϵj .

C.5 TECHNICAL DETAILS

Our code is available at https://github.com/J0nasSeng/FooLS. In each manipula-
tion we sampled 10000 samples from a Gaussian distribution for each noise term. Each en-
dogenous node was computed by a linear or non-linear function of its parents and an addi-
tive Gaussian noise term. We tested our manipulations using the original NOTEARS imple-
mentation (https://github.com/xunzheng/notears), the original DG implementation
(https://github.com/fishmoon1234/DAG-GNN), the original GraN-DAG implementa-
tion (https://github.com/kurowasan/GraN-DAG) as well as a python implementation of
GES (https://github.com/juangamella/ges).
For each experiments in the imperfect manipulation-setting we sampled each noise term only once in
order to perform the manipulation on the same data for different manipulation-scales and different
values of λ. The data is available in our repository for reproducibility.
All manipulations were performed on a AMD Ryzen 7 PRO 5850U/Intel Core i7 6700k CPU and
16GB RAM respectively.
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Table 10: Predictions of NT/DG are critically harmed with (A1) Immiscible Structures dropped.
In {3, 10}-variable scenarios, our manipulations consistently force NT/DG to predict certain sub-
structures in the DAG with success rate 100%. If ground truth and prediction are chain structures, the
prediction is the reversed chain.

Predicted Graph
ch fo co

G
ro

un
d

Tr
ut

h
G

ra
ph

ch

lin (NT) 100% 100% 100%
lin (GES) 100% 100% 100%

lin (GESR) 0% 0% 0%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%

fo

lin (NT) 100% 100% 100%
lin (GES) 100% 0% 100%

lin (GESR) 0% 0% 0%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%

co

lin (NT) 100% 100% 100%
lin (GES) 100% 100% 100%

lin (GESR) 0% 0% 0%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%
All variables scaled

Predicted Graph
ch fo co

ch

lin (NT) 100% 100% 100%
lin (GES) 100% 100% 100%

lin (GESR) 0% 0% 0%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%

fo

lin (NT) 100% 100% 100%
lin (GES) 100% 0% 100%

lin (GESR) 0% 0% 0%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%

co

lin (NT) 100% 100% 100%
lin (GES) 100% 100% 0%

lin (GESR) 0% 0% 0%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%
One variable scaled

C.6 HYPERPARAMETERS

NT. We mostly used standard hyperparameters as in Zheng et al. (2018), i.e. a L1-penalty with
weight λ = 0.05, an acyclicity tolerance of 1 · 10−8 and a threshold of 0.3 for discretizing the DAG.
We allowed a maximum number of 100 optimization iterations.

DG. We used DG mostly with standard hyperparameters as in Yu et al. (2019), i.e. a 2-layer MLP as
encoder and decoder. The latent dimension was chosen to have dimension 64. We optimized using
the Adam optimizer with learning rate 0.003, β = (0.9, 0.999), batch size of 100 and trained for 300
epochs. The tolerance of the acyclicity constraint was set to 1 · 10−8.

GraN-DAG. We used GraN-DAG with standard hyperparameters except for the pns-threshold which
was set to 0.85 as well as a hard threshold used to filter weak connections from the adjacency (was
set to 0.05 or 0.3 depending on experiment). The model used was NonLinGaussANM.

GES. We used standard hyperparameters for GES as well. The only parameter changed was the score
for GESR-experiments. Here we used a modified version of BIC in which no free variance terms
occur in loss computation.

C.7 SCALE SENSITIVITY ON 10 NODES WITH (A1) IMMISCIBLE STRUCTURES DROPPED

To examine whether our manipulations still work in d-dimensional cases where assumption (A1)
Immiscible Structures does not hold, we conduct experiments with d = 10 nodes and artificially
generated data. To do so, we generated 20 random DAGs of which none did constitute a single
chain, fork or collider and used this to sample data from it. We used (1) linear functions with random
parameters and noise from a standard normal distribution and (2) the cos-function with random
parameters and standard Gaussian noise to sample data using the generated DAG. The standard
deviation of the noise was set to 1. After that we applied the manipulation strategy from above with
three different scaling factors. We applied NT/DG 10 times for each manipulation scale to account
for stochastic effects. We can confirm that our manipulations still work in all cases. However, we
obtained that new edges are added or existing edges are removed. The results are shown in Tab. 10.
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Table 11: Measurement scale matters in real world. Even on the real world dataset where we
cannot control/check assumptions, our manipulations can be applied successfully in all cases. We
use identifier to refer to certain manipulations as defined in Sec. C.8: The identifiers are of the form
(SL Mi{m}). Here, SL is eitehr NT, DG, GraN-DAG or GES and refers to a column. Mi refers to a
certain substructure and {m} refers to either reversing a chain (rc), introducing a fork (if), introducing
a collider (ic) or introducing a chain from another substructure (ich).

NT DG GraN-DAG GES
M1rc 10/10 10/10 10/10 10/10
M1if 10/10 10/10 10/10 10/10
M1ic 10/10 10/10 10/10 10/10
M2rc 10/10 n.a. 10/10 10/10
M2if 10/10 n.a. 10/10 10/10
M2ic 10/10 n.a. 10/10 10/10

M3ich n.a. 10/10 n.a. n.a.
M3if n.a. 10/10 n.a. n.a.
M3ic n.a. 10/10 n.a. n.a.

C.8 REAL WORLD DATA: SACHS DATASET

We conducted experiments on the dataset of (Sachs et al., 2005) since it is a widely used real-world
dataset for evaluation of structure learning algorithms. We ran NT, DG, GraN-DAG and GES on the
original and manipulated data to see if the results behave as expected. For NT and GES the following
was done: First a pre-processed the dataset was performed by applying a log-transformation on each
variable. We applied the variance-manipulations on two sub-structures of the graph to see if our
expectations hold. We now briefly describe the manipulations we performed followed by an identifier
of the form (SL Mi{m}). Here, SL is eitehr NT or DG, Mi refers to a certain substructure and {m}
refers to either reversing a chain (rc), introducing a fork (if), introducing a collider (ic) or introducing
a chain from another substructure (ich). The identifiers can be used to look up exact results in Tab.
11.

NT. In order to reverse the chain Erk→ Akt→ PKA we scaled Erk by 5, Akt by 1.5 and PKA by
0.01 (NT M1cr). To create a fork in Akt we scaled Erk by 5, Akt by 0.5 and PKA by 1.1 (NT M1if).
Scaling Erk by 1.5, Akt by 5 and PKA by 0.01 yields a collider in Akt (NT M1ic).
The chain PKC→ P38→ Jnk was also manipulated: Flipping the chain can be achieved by scaling
PKC by 1.1, P38 by 0.3 and Jnk by 0.1 (NT M2rc). Creating a fork in P38 can be achieved by scaling
PKC by 3, P38 by 0.3 and Jnk by 1.1 (NT M2if). Scaling PKC by 1.1, P38 by 3 and Jnk by 0.1
yields a collider at P38 (NT M2ic).

DG. For DG no pre-processing was performed since it is capable of capturing non-linear dependencies
among variables. The same manipulations as for NT were performed. Although DG is susceptible to
the manipulations as well, it is harder to find a sufficient scaling factor to flip edges. We suspect that
this is due to the non-linearity in the data. Reversing the chain Erk→ Akt→ PKA can be achieved
by scaling Erk by 4, Akt by 0.5 and PKA by 0.2 (DG M1rc). Introducing a fork at Akt is achieved
by scaling Erk by 4, Akt by 0.5 and PKA by 2 (DG M2if). Creating a collider at Akt can be done by
scaling Erk by 0.5, Akt by 2 and PKA by 0.2 (DG M2ic).
The second sub-structure we manipulated in case of DG was Jnk← Plcg→ PKA. Converting this
fork into a chain was done by scaling Jnk by 2, Plcg by 10 and PKA by 0.01 (DG M3ich). Scaling Jnk
by 0.5, Plcg by 10 and PKA by 0.01 yields a collider (DG M3ic). Each manipulation was performed
10 times to account for stochastic effects during optimization. For a summary of our results see Tab.
11.

GraN-DAG. The same scaling values of NT were used, see above.

GES. As GES is more robust than NT, DG and GraN-DAG, we applied a slightly different strategy:
We randomly sampled different scales from a uniform distribution in an interval [0, 200]. Each
scale-configuration was then tested whether the desired graph was learned. Once configurations
fulfilling this criterion were found, we fixed the scales and applied GES on the scaled data 10 times
to account for stochastic effects during search.
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Table 12: Constrained-based algorithms are not susceptible to data scale. We applied the PC
algorithm and the Grow Shrink (GS) algorithm on data generated by following the experimental
protocol for (Q1). The results clearly show that these two algorithms are not susceptible to data scale.

Predicted Graph
ch fo co

G
ro

un
d

Tr
ut

h
G

ra
ph ch lin (PC) 0% 0% 0%

lin (GS) 0% 0% 0%

fo lin (PC) 0% 0% 0%
lin (GS) 0% 0% 0%

co lin (PC) 0% 0% 0%
lin (GS) 0% 0% 0%

C.9 CONSTRAINED BASED METHODS

Beside score based structure learning, another popular framework for structure learning are constraint
based methods which use (conditional) independence tests to identify a graph structure describing
the data. As long as the independence test used by a constraint based method is not susceptible to
data scale, we do not expect such algorithms to be susceptible neither. This is because independence
tests aim to test a null-hypothesis which is either accepted or rejected, depending on whether the
data supports the hypothesis or not, i.e. it is not required to compute a score estimating the quality
of a graph candidate. We followed the same experimental protocol as in (Q1) and applied the PC
algorithm and the Grow Shrink (GS) algorithm on original and scaled data. The results support our
conjecture that constraint based methods are not susceptible to data scale, for details refer to App.
C.9.

D DETAILS ON DAG LEARNERS

In this section we provide some details for the DAG learners analyzed in this work.

D.1 DAG-GNN

DAG-GNN (DG) extends NT to learn structures even if relationships are non-linear as long as they are
invertible by stating structure learning as an encoding-decoding problem. The encoder aims to learn
the inverse function describing the noise variables Z = {Z1, . . . , Zd} as a function of the observed
variables X = {X1, . . . , Xd} while the decoder aims to learn the forward-function describing the
relationship between noise Z and variables X:

µZ , log(σZ) = (I−WT )fθe(X)

µX , log(σX) = fθd((I−WT )Z)
(2)

Here, I is the identity matrix, X the data matrix, W a learnt adjacency matrix, Z is a sample
from q(Z|X), fθe is the encoder network with parameters θe, fθd is the decoder network with
parameters θd, µZ , µX and σZ , σX are mean and standard deviation of the learned q(Z|X) and
p(X|Z) respectively. Encoder- and decoder-parameters as well as the adjacency W are learned
during ELBO optimization with acyclicity-constraint, resulting in an augmented Lagrangian:

Eq(Z|X)

[
log(p(X|Z))

]
−DKL(q(Z|X)||p(Z)) + αh(W) +

ρ

2
|h(W)|2 (3)

In the above equation DKL(q(Z|X)||p(Z)) is the KL divergence between a noise-prior p(Z) and the
learnt posterior q(Z|X), α is the Lagrange multiplier and ρ is the penalty parameter.
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