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A APPENDIX

A.1 MULTI-LABEL CLASSIFICATION

In multi-label classification, every data instance can be assigned to multiple classes. It is relevant
in many application domains. Many frameworks investigate the correlation/inter-dependency
information among these multiple classes/ labels, including the weighted approximate pairwise
ranking loss (WARP) Weston et al. (2011), calibrated separation ranking loss (CSRL) Guo &
Schuurmans (2011) and the max-margin learning methods with pairwise ranking loss Hariharan
et al. (2012). Due to noise or crowd-sourcing, many multi-label applications encounter incomplete
labels frequently, where only a subset of true labels on some training instances is available. The
performance of multi-label learning methods with missing labels largely depends on learned label
correlations in the training phase Bucak et al. (2011); Yu et al. (2014); Yang et al. (2016). The major
assumption in these methods is the availability of all the labels on a subset of training data (at least).
Hence, tackling the zero-shot learning setting where some labels are completely missing from the
training instances is more challenging and cannot be addressed with these methods.

A.2 ZERO-SHOT LEARNING RELATED WORKS

Existing ZSL methods generally follow two frameworks based on the relationship between the (seen
and unseen) classes.

In embedding-space based methods like Farhadi et al. (2009); Socher et al. (2013); Lampert et al.
(2009), each class/label is represented by an attribute vector representing the shared attributes between
classes Farhadi et al. (2009) or a word semantic embedding Lampert et al. (2009) learned from a
large text corpus. This approach embeds both seen and unseen classes into a shared vector space. By
utilizing the fully labeled samples from seen classes, a sample embedding function can be learned to
project a sample from its feature space into the shared embedding space. Since the classes (seen and
unseen) are related in the shared space, the function learned from the seen classes can also work for
the unseen classes.

In the second type of the methods, class-similarity-based approaches, the availability of the similarity
among all seen and unseen classes is explored Lampert et al. (2014); Norouzi et al. (2013). In this
approach, a categorical classifier for the seen classes is learned from the labeled data at first. Then,
the learned classifier can calculate its probability distribution on the seen classes for a test sample.
Finally, the probability distribution of the unseen classes is computed based on the class similarity.
These two methods adopt a two-step strategy, and an intermediate transformation in the test stage
is required Guo et al. (2017) resulting in high time complexity and low performance due to the
loss of the information. Many algorithms and methods investigate how to bridge the gap between
seen and unseen categories resulting in a good performance in the testing phase. These methods
all rely on similarities between seen and unseen classes and ignore the benefit of considering the
relationship/structure among classes. For instance, the low value of co-occurrence features for seen
classes like fish and giraffe can occur among unseen classes like whale and zebra. Therefore, when
the classifier recognizes the existence of a zebra in a test image, it can assign a low probability of
existing a whale in that image considering similar feature representations of fish and whale families
and their relationship. This type of information can be very beneficial in recognizing unseen classes.
We build up our approach based on this relationship factor and present it by investigating ZSL in
multi-label classification.

Many of the prior works on zero-shot learning model multi-class learning problems Socher et al.
(2013); Norouzi et al. (2013); Changpinyo et al. (2016). Some of these works investigate different
strategies for transferring embedding Higgins et al. (2005), and some of them explore differently
information sources Mensink et al. (2014); Akata et al. (2015b). There are some existing works Zhang
et al. (2016); Mensink et al. (2014); Sandouk & Chen (2016); Fu et al. (2015) that directly apply
the zero-shot multi-class problem to the zero-shot multi-label problem. However, these frameworks
ignore the structure of the output (label matrix), which is extremely important as proved by the better
performance of multi-label algorithms Chen & Lin (2012); Yu et al. (2014); Kapoor et al. (2012);
Rai et al. (2015); Bhatia et al. (2015). In applications like recommender systems, inductive matrix
completion methods are employed. The strong assumption in these methods is that the features for
both training examples and labels are provided. However, providing a pre-defined set of good features
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may be impossible. Our method overcomes this need by using co-occurrence word-embedding
Mikolov et al. (2013) features like word2vec features.

In Fu et al. (2015), the multi-label zero-shot learning is addressed by mapping images into the
semantic word space, and all possible combinations of the outputs are considered in the testing phase.
This framework’s time and space complexity does not make it a good candidate for large data sets.
Mensink et al. (2014) demonstrate unseen class classifiers as weighted sums of seen class classifiers.
Hence, the weights are approximated from different types of co-occurrence statistics. This method
treats the unseen class classifiers separately and lacks in considering the correlations/dependencies
among the classes. Recently, Gaure et al. (2017) proposed a generative probabilistic framework
to leverage the co-occurrence statistics of the seen labels for multi-label zero-shot learning. This
method highly depends on the auxiliary resources providing quality label co-occurrence statistics.
Lee et al. (2017) modeled the label relations by defining a knowledge graph based on WordNet
hierarchy and then transferred the confidence scores from the seen to unseen labels through the graph.
The performance of this method also largely relies on the quality of the knowledge graph. Ye &
Guo (2018) tried to decrease this dependency on auxiliary resources. In this approach, existing label
embeddings are projected into a low-dimensional semantic space to automatically retrieve better
label relations for knowledge transfer between seen and unseen classes. It can still exploit auxiliary
information for additional help.

A.3 ALGORITHM

We present the double oracle method in this section. The algorithm requires our feature representations
(joint, layer-wise, taxonomy, and pairwise features) and the learning parameters 6 as input.

Algorithm 1 Double Oracle Algorithm for Min-Max ML-ZSL Equilibria (training phase)

Require: Unary features {¢'(-,x)}; Pairwise features {¢*7(-,-,x)};
Parameters 0; Initial label yipital
Ensure: Nash equilibrium, (Pini, Praxi)
I: Smim' — Smaxi — {yinilial}
2: repeat
(Pnzini7 Pmaxi7 Vmami) — solveGame(lIl(Smm), 1OSSHam (Smaxia Smini))
(ymaxi-neWu Vmax) — maxymaxiEY”,[,,,me,-m- [1055Ham (Ymaxh ymini) v (ymaxi)]
if (Vmam # Vmaximum) then
maxi < Smaxi U Y maxi-new
end if
(Pm[nh Pmaxh ‘/m[ni) — SOlveGame(‘Il(Smaxi); 10SSHam (Smaxi; Smini))
9: (ymim'—newu Vmin) — minymini Ey:)zuxiNPmm’ [IOSSHam (Ymaxiu Y mini
10: if (Vmini 7é Vminimum) then
11: Snini < Sini U Ymini-new
12:  endif
13: until Vi = Vinaximum = Vinini = Vininimum
14: Return(Pm,-m», Pmaxt)

B AN

The set of strategies (label vector assignments) .S for each player is initialized randomly. The game
matrix is defined by leveraging the initial set of strategies for maximizer S,,,,; and minimizer S,
The termination condition vy,42i = Vmazimum = Ymini = Uminimum presents the saddle point
in the algorithm where the maximizer/minimizer cannot improve vp,z;/mini anymore, it is called
Umazimum/minimum- Lhe €quilibria reach the optimal solution at this point. As it is presented
in algorithm 1, the general structure of the algorithm relies on two main procedures: solveGame
and finding the best possible strategy/ response (i.e., argmax or argmin). This minimax zero-sum
game can be solved in polynomial time using linear programming Neumann et al. (1944). It is
illustrated as solveGame in the algorithm. W (S,,,,;) presents the potentials for the label vectors of as

‘IJ (Smaxi) é {\Ij (ymaXi’ X) }Ymaxi ESpaxi*
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A.4 EQ. 8 TO EQ. 9 TRANSFORMATION PROOF

In this section, we provide the detailed step-by-step transformation from equation 8 to equation 9 :
The transformation steps a-c are described in the following: a) Flipping the min and max order using

min max Epn . e o Sz~ - [loss(Ymini, Y i s.t. 13
Prini (¥Yminil®) Pmazi ¥Ymawzil®) e~PpataYminile~Pmini¥mawil*~Pmazi [ ( e W“ITZ)] a3
n n
]Em“‘PDamiYmami\INPmam‘ [Zd) (I*Ymami)} = E(me)NPDam {Z‘ﬁ (&, Y )} (14)
i=1 1=1
2y i J 2y i J
Eon PpotaYmawi|©~Pmazi Z¢ (2. Y ami0 Yinaei) | < E@,Y)~Ppata qu) (z, YY", Y7) (15)
73 i#j
@ i 5S L . st =
h Pmazir(r%?iazi\w Pmini?‘l(lgnm\m) EonPpataiYmini o~ Pmini¥ masi o~ Pmazi 105(Ymins, Ymazi)] st 2 (16)

b) . .
(: max mln X min
Prazi Ymazil®) 0t 6(:3) Pmini(¥Yminilx)

6" (Z G SR qui(ac,v")) +o T (Z O (@, Y pazis Vihawi) = zqsw(m,w,w)) ]

E(T»Y)Nﬁiymini [z~ PriniiY¥YmazilT~Pmazi [loss(Ymi"i’ Ymazi)+

i=1 i=1 i) i#j
a7

(©

= min max min E(z,v)~P Y imil@~ PoinisY |z~ P, [lOSS(Ymmi,Ymami)-‘r
01,0(1:3) Prazi ¥Ymazil®) Pmini(Xminil®) ’ Data’¥mini 'mini’ ¥ maxi maxi

o' (Z (Y ) — Zq&i(ac,Yi)) + 9997 (Z ¢ (@, Y LYy~ Zqﬁi’j(anYi,Yj)) ] (18)

i=1 i=1 i i

(d) . m .
= min Eg v)~p ;X P (Yo
; Data prawi Y mawi|®) P(Yminglz)

1088(Y minis Ymazi)+

Yminil©~Pminii¥mazilt~Pmaxi |:

0i,0(4:7)
o' (an 6" (2, Y 1ani) — znj ¢i<x,Yi>> +om97T (Z (@, Y i Yihaws) — D 67 (2, Y7, Yﬂ) ] (19)
i=1 i=1 i#j i2)
N ef?é?a‘) Ban~p Pmmi](rr\lfi::nm\z) Prnani (¥ mawil®) ExlenPryiniiYmawilo~Pmasi [loss(Ymmi, Yomani)+
T (i S Y- i(pi(x)Yi)) 4 gEDT (Z 60D (@, Yty Z¢(i’j)($7Yi,Yj)> ]
i=1 i=1 i) i#j

(20)

the minimax duality. We show the constraints (eq. 8 and 9) as = for the sake of space.

b) Introducing the Lagrange dual variable § = [¢?, §%7] for the constraints on unary (nodes) and
pairwise (edges) features.

¢) The domain of P42 (Ymazi|2) is a compact convex set, where the domain of 6 is convex (i.e.
R? where d is the number of features). The objective is concave on Prazi(Ymazi|x) since a non-
negative linear combination of minimums of affine function is concave, while it is convex on 6.
Based on Sion’s minimax theorem Sion (1958), a strong duality holds and we can flip the order of
Prazi(Ymazi|®) and 6 in the optimization.

d) Pushing the expectation over the empirical distribution outside the inner max-min.

¢) Applying the minimax duality Von Neumann & Morgenstern (1945) again to flip the optimization
order of the inner min-max, resulting in Eq.9 in the paper.

Our method gets the benefit of probabilistic min-cut output for knowledge transfer. The node and
edges weights and features direct the min-cut in the right direction. When there is strong/weak
similarity between unseen and seen classes (nodes), the potentials of the edges and nodes ( 0 * ¢ ) get
bigger/smaller, and the min-cut algorithm puts them in connection with node 1/0.

A.5 MORE EXPERIMENTS

We run another set of experiments considering Costa Guo et al. (2017), Conse Norouzi et al. (2013),
FastOtag Zhang & Saligrama (2015) Softmax, TAEP Ye & Guo (2019), and TAEP-C Ye et al. (2015)
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methods to challenge the efficiency of our approach in comparison with more methods on more
data-sets. We report data-set information and the experimental results in tables 4 and 5. For the
experiment setting, we follow Zhang & Saligrama (2015) for all the experiments. Table 5 presents the

[ Name [ #Features | #Seen | #Unseen | #Instances |
SUN 102 645 T2 14340
CUB 312 150 50 11788
AwA 85 40 10 30475
aPY 64 20 12 18627

Table 4: The Statistics of the four zero-shot learning datasets.

experimental results of running seven ZSL methods on four well-known datasets. As it is presented
in this table, Min-Max outperforms Costa, Fast0Tag, TAEP, TAEP-c, softmax, and Conse methods by
0.07,0.16, 0.13, 0.09, 0.21, 0.11 in average, respectively. Hence, our approach outperforms other
methods at least by 0.07, which is promising considering the size of the data sets. We run a set of
experiments following Wang et al. (2018) experiment setting on multi-class ZSL leveraging our multi-
label ZSL. This set of experiments considers different neural network architectures (Inception-V1,
AlexNet, and ResNet-50) and reports the top-k accuracy. We report data-set information and the
experimental results in tables 6 and 7. These tables show that the Min-Max method outperforms
other methods considering different deep-neural network architecture and datasets on both ZSL and
Generalized ZSL.. We run extensive experiments and benchmark our proposed method, Min-Max,
with structural SVM (SSVM) Taskar et al. (2005) implemented using SVM-Struct Vedaldi (2011).
The feature representation in this set of experiments includes unary and pairwise features. In addition,
we use features from Mulan dataset Tsoumakas et al. (2011) as sample features to present joint
features using equation 1. The layer-wise features, as defined in equation 2 are computed For image
data-sets. We leverage VGG 19 Convolutional neural network(CNN) Simonyan & Zisserman (2014)
and extract the features from different convolution layers (1, 3, 6, 8, 11, 13, 15, 18, 20, 22) for
every example. One novelty of our method is exploring which convolutional layers provide more
meaningful features for ZSL and the best combination of these layers. The unary features are the
concatenation of joint, layer-wise, and taxonomy features. Table 1 presents the number of seen and
unseen labels for every experiment. It is considerable that the testing phase includes both seen and
unseen classes while the loss is calculated only based on the prediction of unseen classes. The nodes
and edges in the graph made by these seen and unseen classes carry more informative information
resulting in more accurate graph cuts and generalizations. We run two experiments to highlight that
our methods target non-image (experiment 1) and image domains (experiment 2), and our min-max
ZSL outperforms other methods. Besides, it helps us to highlight the positive effect of adding
hierarchical features for image datasets.:

Experiments applying unary (joint+layer-wise) and pairwise features: We run experiments
considering three methods, Costa Mensink et al. (2014), SSVM and Min-Max. There is no taxonomy
information or layer-wise features for non-image datasets. Therefore, we ignore them in our feature
representation. We report data-set characteristics and the experimental results in table 8.

Experiments applying unary (joint+ CNN layer-wise+taxonomy) and pairwise features: This
experiment includes two sub-experiments to illustrate the role of taxonomy features and CNN layers.
Both sub-experiments are applied to image datasets. We employ the taxonomy structure of VOC2006,
presented in figure 4 as the taxonomy structure for nine classes: Bicycle, Motorbike, Bus, Car, Cow,
Sheep, Cat, Dog, and Horse. We extract images from VOC2006 and NUS-WIDE datasets, which
have at least two instances from these classes. The seen and unseen classes are presented in table 9
for every experiment. The training is done on seen classes, and the testing is applied to samples from

[ Name [ SUN | AwA | CUB [ aPY [ Average |
Costa 0.35 0.37 0.35 0.34 0.35
FastOTag 0.34 0.32 0.33 0.46 0.36
TAEP 0.39 0.35 0.34 0.43 0.38
TAEP-C 0.36 0.33 0.37 0.39 0.35
Softmax 0.27 0.30 0.31 0.37 0.33
ConSE 0.35 0.39 0.36 0.41 0.37
BiAm 0.38 0.39 0.40 0.43 0.4
Min-Max 0.44 0. 42 0.46 0.48 0.44

Table 5: The Fl-score over 10 runs on four datasets.

18



Under review as a conference paper at ICLR 2023

Table 6: Results on ImageNet. Top-k accuracy for

classes.

Hit@k (%)

Test Set | Model ConvNets 1 2 5 10 20
ConSE | Inception-vl | 83 129 21.8 309 41.7
2-hops SYNC Inception-vl 105 17.7 28.6 40.1 52.0
EXEM | Inception-vl | 12.5 19.5 323 437 552
SEKG | Inception-vl | 18.5 31.3 50.1 624 720
SEKG ResNet-50 | 19.8 333 532 654 746
Min-Max | Inception-vl | 19.7 335 51.0 62.7 72.6
Min-Max | ResNet-50 | 20.3 34.1 549 659 754
ConSE | Inception-vl | 2.6 41 7.3 11.1 164
3-hops SYNC | Inception-vl | 29 49 92 142 209
EXEM | Inception-vl | 3.6 59 10.7 16.1 23.1
SEKG Inception-vl | 3.8 69 13.1 188 26.0
SEKG ResNet-50 41 75 142 202 277
Min-Max | Inception-vl | 43 7.1 142 19.5 26.8
Min-Max | ResNet-50 49 86 155 215 291

ConSE | Inception-vl | 1.3 2.1 38 58 87
All SYNC | Inception-vl | 14 24 45 7.1 109
EXEM | Inception-vl | 1.8 29 53 82 122
SEKG Inception-vl | 1.7 3.0 58 84 118
SEKG ResNet-50 18 33 63 91 127
Min-Max | Inception-vl | 2.1 42 67 101 134
Min-Max | ResNet-50 23 39 74 103 135

different models when testing on only unseen

Hit@k (%)

Test Set Model ConvNets 1 2 5 10 20
DeViSE AlexNet 08 27 79 142 227
2-hops ConSE Ale)fNet 03 62 17.0 249 335
(+1K) SEKG Inception-vl | 7.9 18.6 394 538 653
SEKG ResNet-50 9.7 204 426 57.0 68.2
Min-Max | Inception-vl | 87 19.7 41.0 549 66.9
Min-Max | ResNet-50 | 11.2 23.2 43.8 579 69.7

DeViSE AlexNet 0.5 14 34 59 97
3-hops ConSE Ale)fNet 02 22 59 97 143
(+1K) SEKG Inception-vl | 1.9 4.6 109 16.7 24.0
SEKG ResNet-50 22 51 119 18.0 25.6
Min-Max | Inception-vl | 23 49 11.8 185 258
Min-Max | ResNet-50 33 65 128 195 264

DeViSE AlexNet 03 08 19 32 53

Al ConSE AlegNet 0.2 12 3.0 50 75
(+1K) SEKG Inception-vl | 0.9 2.0 48 7.5 108
SEKG ResNet-50 1.0 23 53 81 117
Min-Max | Inception-vl | 2.1 38 65 91 123
Min-Max | ResNet-50 26 41 71 98 132

Table 7: Results on ImageNet.Top-k accuracy for different models, testing on both seen and unseen
classes.

both seen and unseen classes. We report the results of this experiment in table 9. The numbers in the
seen and unseen columns indicate the class numbers in the VOC2006 taxonomy presented in figure 4.

This experiment also considers extracting features from different CNN layers to investigate which
layers provide more informative features for transformation. We only report the best performance
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using "CNN 6, 33" (using layers 6 and 33 of the MatConvNet) and a middle-range performance using
"CNN 13, 21" to express the significance of layer selection.

Name Domainl #Instanced #Featuresf# Labeld #Seen# Unseenl Costal SSVMI Min-Max#cut
ibtex text 7395 1836 139 95 64 0.33 039 122
300kmarks text 87856 2150 202 | 121 81 - 0.38 043 |[11.8
irds audio 645 260 19 11 8 - 0.34 042 [10.2
CALSOO music 502 68 174 | 104 70 - 0.35 040 [12.8
Emotions | music 593 72 6 3 3 - 0.42 049 |13.6
Flags images 194 19 7 4 3 0.41 0.50 |8.6
Scene images 2407 294 6 3 3 0.36 | 0.39 042 [10.2
'Yeast biology | 2417 103 14 8 6 - 041 047 |[11.9
INUS-WIDE images | 269648 128 81 61 20 0.39 | 043 0.51 [12.6
Average - 0.38 045 J11.5

Table 8: Multi-label dataset information and F-score results on the test set for SSVM, Costa, and our Min-Max approach.

SSVM[Min-Max | #cul%|
7SI 7SI i

CNN 13,21 | CNN 13, 21
VOC2006 |{4.7,13,17.19}| {5.8,14,18} | 0.301 | 0.353 | 10.2

NUS-WIDE| {4.7,13,17,19} | {5.8,14,18} | 0.321 | 0.384 |14.2 = .
VOC2006 | {5,8,14,18} |{4,7,13,17,19}| 0.332 | 0378 | 7.2
NUS-WIDE| {5.8,14,18} |{4,7,13,17,19}] 0312 | 0353 |19.1

VOC2006 | {4,5,17,18} (7.8,19) | 0394 | 0349 |21.8 |z zwnee.e.‘| | 6:4-Wheeled

VOC2006 {7,8,19} {4,5,17,18} | 0.373 | 0.381 | 14.5 |:: e

Name Seen Unseen

10 Person

11: Laurasitheria |

Average| 0.339 | 0.383 | 14.5 : 15:
CNN 6 ; 33 CNN 6 ; 33 Cﬂaniodactrla Pegasofera
VOC2006 |{4,7,13,17,19}| ({5,8,14,18} | 0.391 | 0.423 [ 12.1
NUS-WIDE| {4,7,13,17,19} | {5.8,14,18} | 0.370 | 0.464 | 9.5 ‘ Motorblke
VOC2006 | {5.8,14,18} |{4,7,13,17,19}| 0.404 | 0.458 | 14.3
NUS-WIDE| {5,8,14,18} |{4,7,13,17,19}| 0.382 | 0.443 |22.3
VOC2006 | {4,5,17,18} {7.8,19} 0436 | 0.459 |[194
VOC2006 {7,8,19} {4,5,17,18} | 0.425| 0.461 |13.2
Average| 0.393 | 0.451 |17.1

4:Bicycle

16:

13;:Coyr Carnivora |

19:Horse |

14: Sheep

Figure 4: The VOC2006 taxonomy.
Table 9: The F-score for SSVM ML-ZSL and our Min-Max ML-ZSL
approach.

A.6 DISCUSSION

As shown in tables 8 and 9, Min-Max always provides better performance in comparison with other
methods. Considering the experiment results in table 8, Min-Max provides a minimum of 0.02 and
a maximum 0.12 loss less than SSVM over different datasets. The difference is also considerable
in experiments in which taxonomy features are considered (table 9). In experiment 9, Min-Max
outperform other methods by minimum 0.05 and maximum 0.09 using "CNN 6, 33". It beats other
methods by a minimum of 0.07 and a maximum of 0.09 using "CNN 13, 21". This advantage
results from the Min-Max framework’s ability to incorporate correlations between variables into its
prediction as a graph min-cut. Our experiments show that the lower layers of CNN do not provide any
information in ZSL prediction. Combining top layers with other layers provides better performance
than just using top layers. The best performance is achieved by applying features from CNN layers 6
and 33. This experiment demonstrates the benefit of using features from the bottom and top layers
of CNN to extract information regarding the structure of the sample. The degrading performance
of Softmax and SSVM using "CNN 13, 21" compared to "CNN 6, 33" is worth mentioning. The
promising performance of our method relies on three main keys: a) Modeling the problem as a
graph representation and transferring classes relationship in addition to the classes themselves. The
class relationship in our feature representation relies on word2vec, layer-wise, and taxonomy feature
representation. b) In the training phase, the classifier is trained considering the worst data sample
(the sample which maximizes/minimizes the loss value). Hence, the Min-Max method provides
robust predictions. c) Considering taxonomy features. This feature representation is more beneficial
because of graph representation. The learning parameter 6 is already trained and adjusted in the
training phase. The potential value (6 * features) strengthens the nodes and edge weights in their
taxonomy path, and It would lead the min-cut to make a right cut. The same reasoning exists for
pairwise feature representations (classes relationship). The time complexity of Min-Max is reported
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by considering the average number of required min-cuts for a double oracle algorithm to provide the
final result. In the first experiment, it is less than 12 on average, as it is presented in table 8. Thus, we
can conclude from table 8 that the inference from scratch is roughly 12 times slower than SSVM and
other methods. For the second experiment, which leverages the taxonomy features, the number of
cuts is roughly 7-11 min-cuts using CNN 6, 33. During training, however, the strategies from the
previous equilibria can be cached and reused, making training time comparable to other methods in
practice, and showing the algorithm’s efficient time complexity.

Name Seen Unseen SSVM |Softmax |Min-Max |#cuts
ResNet 14 , 25| ResNet 14, 25
VOC2006 |{4,7,13,17,19}| {5,8,14,18} |0.398 | 0.376 0.437 8.9
NUS-WIDE|{4,7,13,17,19}| {5,8,14,18} | 0.430| 0.408 0.465 8.5
VOC2006 | {5,8,14,18} |{4,7,13,17,19}| 0.423 | 0.378 0.463 7.5
NUS-WIDE| ({5,8,14,18} |{4,7,13,17,19}]0.399 | 0.371 0417 | 9.0
VOC2006 | {4,5,17,18} {7,8,19} 0.394 | 0.407 0.425 9.8
VOC2006 {7,8,19} {4,5,17,18} | 0.426 | 0.397 0.453 9.1
Average| 0.412 | 0.390 0.443 8.8
ResNet 7, 33 | ResNet 7, 33
VOC2006 ({4,7,13,17,19}| {5.,8,14,18} |0.466 | 0.441 0487 |11.3
NUS-WIDE|{4,7,13,17,19}| {5,8,14,18} |0.457| 0.471 0.489 8.9
VOC2006 | {5,8,14,18} |[{4,7,13,17,19}|0.471 | 0.467 0498 | 9.8
NUS-WIDE| {5.,8,14,18} [{4,7,13,17,19}| 0.436 | 0.423 0486 | 7.1
VOC2006 | {4,5,17,18} {7,8,19} 0.423 | 0.439 0465 |11.2
VOC2006 {7,8,19} {4,5,17,18} |0.441| 0.432 0474 | 8.7
Average| 0.449 | 0.467 0.483 95

Table 10: The F-score for SSVM, Softmax, and our Min-Max approach (with the average number of
cuts), employing ResNet.

Experiments applying unary (joint+ ResNet layer-wise+taxonomy) and pairwise features: We
repeat the experiment in table 10 using different layers of ResNet He et al. (2016). As it is presented
in table 10, ResNet layers "7, 33" provides better performance in compare with ResNet layers "14,
25". Our approach, Min-Max, provides better performance with comparing with other methods. The
experimental results prove our claim on the better feature representation and efficiency of lower and
top CNN layers in ZSL.

A.7 MORE EXPERIMENT ON SHARPNESS VALUE

In this experiment, we compute the sharpness value of different baselines considering e = 1072 in
the sharpness formula 11. As it is presented in table 11, the Min-Max method still presents a much
less sharpness value compared with the other baselines on three datasets. As presented in table 11,
the methods that provide better performance in the ZSL setting have less sensitivity (sharpness).

[Method/Datasets] VOC2007 | VOC 2012 | NUS-1000 |
e=5.101
ConSE  |53.32 £ 5.64(65.52 £ 3.94[65.37 £ 3.86
LatEm - 59.67 + 4.53]60.94 + 5.58
FastOTag  [48.87 + 4.43(55.34 4 4.14/50.76 + 3.57
DMP 45.12 + 3.87|48.37 + 5.61/|58.63 + 4.52
TAEP-C  [42.21 + 3.32[44.83 + 4.3853.42 + 4.59
LESA 36.12 + 4.23(35.64 + 3.84[48.29 + 5.49
GEN 32.68 + 4.32[30.54 + 3.84[42.51 + 3.61
BiAM 29.74 + 4.39(28.87 + 4.11[38.86 + 5.10
Min-Max(ours) |26.86 + 4.12(27.65 + 3.89/|36.59 + 5.62

Table 11: Sharpness value considering e = 5.10%.

A.8 DATASETS:
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In addition to Mulan, VOC 2006, and NUS-WIDE datasets, we consider four more datasets.

Animals with Attributes (AwA) AWA Lampert et al. (2014) is a widely-used dataset for zero-shot
learning. It contains 30,475 images from 50 different animal classes with at least 92 labeled examples
per class. The dataset creators provide a standard split into 40 seen and 10 unseen classes.

Caltech-UCSD-Birds-200-2011 (CUB) CUB Tsai et al. (2017) includes a large number of classes
and attributes, containing 11,788 images from 200 different types of birds annotated with 312
attributes. Akata et al. (2015a) introduced the first zero-shot split of CUB with 150 seen classes and
50 unseen classes.

SUN Attribute(SUN) SUN Patterson & Hays (2012) is a medium-scale in the number of images
dataset containing 14,340 images from 717 types of scenes annotated with 102 attributes. We follow
the standard split presented in Lampert et al. (2014), containing 645 seen classes (where 65 classes
are used for validation) and 72 unseen classes.

Attribute Pascal and Yahoo (aPY) It is a small dataset with 64 attributes and 32 classes Farhadi
et al. (2009). We adopt the split in Xian et al. (2017) and use 20 Pascal classes as seen and 12 Yahoo
classes as unseen classes.

NUS-WIDE dataset comprises nearly 270K images with 81 human-annotated categories, in addition
to the 925 labels obtained from Flickr user tags. As in Huynh & Elhamifar (2020); Zhang et al.
(2016), the 925 and 81 labels are used as seen and unseen classes, respectively.

Open Images (v4) is a large-scale dataset consisting of 9 million training images along with 41,620
and 125,456 validation and testing images, respectively. The scale of Open Images is larger than
other multi-label datasets, such as NUS-WIDE and MS COCO. This dataset is partially annotated
with human labels and machine-generated labels. Here, 7,186 labels, having at least 100 images in
training, are selected as seen classes. The most frequent 400 test labels, which are not present in the
training data, are selected as unseen classes, as in Huynh & Elhamifar (2020).

Microsoft COCO (MS-COCO) is a large-scale dataset for object detection, segmentation, and image
captioning. We follow the 2014 challenge for data split (i.e., 82783 and 40504 images for training and
testing, respectively), including 80 distinct object tags. After discarding images without any labels,
we split the training set into 78081 training images and 4000 validation images, and the test set is
with 40137 images. We extract and fix image features extracted from layers "7, 33" of ResNet-50 He
et al. (2016) for all the baselines considered in our experiments.

A.9 BASELINES:

SSVM is a large margin classifier with a variable margin relying on a structured loss function ¢. The
objective function is defined as follows:

ézargmin)\||9||2+25n 21)
¢ n

s 0T (D, Bn) — Oy, Tn)) > Uy y) — &n Y,
where 6 is the weight vector (learning parameter), the feature function is represented as ¢, ¢ is the loss
function, and ¢ is the slack variable. The SSVM objective function employs an iterative constraint
generation strategy to accelerate the learning process by adding a few constraints per iteration (instead
of the entire constraint set defined by each label y € )). For all experiments, we employ 10-fold
cross-validation on the train data to set the value of C.

Costa Mensink et al. (2014) addresses the ZSL problem by performing classification in the original
feature space with directly trained classifiers. This method relies on the sample transfer strategy
from seen classes to unseen classes based on their transferability and diversity. We mirror the
implementation details of Mensink et al. (2014) and run our experiments.

ConSE This method constructs an image embedding system from any existing multi-label image
classifier and a semantic word embedding model, which contains the n class labels in its vocabulary
Norouzi et al. (2013). We implemented this method following the explanation in Norouzi et al.
(2013).

TAEP Ye & Guo (2019) This approach presents a transfer-aware label embedding method for multi-
label zero-shot image classification. It projects both labels and images into the same semantic space
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to rank the similarity scores of the images with positive and negative labels under a max-margin
learning framework. Furthermore, it employs label embedding projection with a transfer-aware
regularization objective to achieve a promising inter-label relation for information adaptation Ye
& Guo (2019). TAEP-C is an extended version of TAEP which uses Flicker Image Hit-Count as
additional information. We implemented this method following the explanation in Ye & Guo (2019).

FastOtag Zhang et al. (2016) the vector offsets in the word vector space. It develops a model to solve
image tagging (multi-label classification) by estimating input images’ principal directions. We build
upon the code provided by Chen et al. (2013) and implement FastOtag.

LabelEM Akata et al. (2015a) views attribute-based image classification as a label-embedding
problem where each class is embedded in the space of attribute vectors. It introduces a function
that measures the compatibility between an image and a label embedding. The parameters of this
function, given an image, are learned on a training set of labeled samples to locate the correct classes
rank higher than the incorrect ones. We follow Akata et al. (2015a) and implement LabelEM.

DeViSE Frome et al. (2013) presents a deep visual-semantic embedding model trained to identify
visual objects leveraging both labeled image data and semantic information gleaned from unannotated
text. We follow Frome et al. (2013) and implement DeViSE.

GEN Gupta et al. (2021) explores the problem of multi-label feature synthesis in the zero-shot setting.
It presents three different fusion approaches (ALF, FLF, and CLF) to synthesize multi-label features.
ALF synthesizes features by integrating class-specific attribute embeddings at the generator input.
FLF synthesizes features from class-specific embeddings individually and integrates them in feature
space. CLF combines the advantages of both ALF and FLF using each individual-level feature and
attends to the bi-level context. Consequently, individual-level features adapt themselves producing
enriched synthesized features that are pooled to achieve the final output. Lastly, it integrates the fusion
approaches in two generative architectures. We have followed the implementation code provided by
the GEN authors and reported the experimental results.

LESAHuynh & Elhamifar (2020) presents that designing an attention mechanism for recognizing
multiple seen and unseen labels in an image is a non-trivial task as there is no training signal to
localize unseen labels and an image only contains a few present labels that need attention out of
thousands of possible labels. Hence, the LESA authors let the unseen labels select among a set of
shared attentions that are trained to be label-agnostic and focus on only relevant/foreground regions
through their loss instead of generating attention for unseen labels which have unknown behaviors
and could focus on irrelevant regions due to the lack of any training sample. This classifier learns a
compatibility function to distinguish labels based on the selected attention. The loss function consists
of three components guiding the attention to focus on diverse and relevant image regions while
utilizing all attention features. We follow Huynh & Elhamifar (2020) and implement LESA and One
Attention per Cluster.

BiAM Narayan et al. (2021) presents an approach towards region-based discriminability maintaining
multi-label zero-shot classification. This method keeps the spatial resolution to maintain region-level
characteristics and employs a bi-level attention module (BiAM) to enrich the features by comprising
both region and scene context information. The enriched region-level features are then mapped to the
class semantics, and only their class predictions are spatially pooled to obtain image-level predictions,
thereby keeping the multi-class features disentangled. We run our experiments employing the code
provided by the authors.

For other baselines like, SEKG Wang et al. (2018), EXEM Changpinyo et al. (2017), DMP Fu
et al. (2015), , LatEM Xian et al. (2016), we follow their paper and implementation and report the
experimental results.

A.10 MORE EXPLANATION ABOUT MIN-MAX MULTI-LABEL ZSL

- Exact loss and probabilistic method advantage: A classifier can learn better when the objective is
well defined. Leveraging exact loss helps define the objective function more accurately, while other
methods like SVM and Logistic regression approximate the loss.

No Over-fitting: leveraging exact loss does not lead to overfitting due to the well-defined constraints
and min-max distributions. In the training phase, different probabilistic distributions are assigned to
the possible labeling of the nodes by the maximizer and the minimizer to solve this min-max game as
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follows (Eq.5):

min max [, . PD atasYmaxi| %~ Praxi;Ymini |2~ Prini [IOSS (Ymi"i s Yinaxi )]
Prini Praxi

such that: EINPData;ynmxi\INani [¢(X7 mefi)] =c

These probabilistic assignments (P42 and Pp,in;) have two key advantages: 1) Considering eq.
5, they give different weights (based on closeness to true labels) to the labels and their features.
Therefore, the learning parameter is adjusted considering these probabilities. 2) These probabilistic
assignments stimulate the augmentation process by assigning different probabilities to possible
labelings and their features. Therefore, a labeling (and its related feature representation) may get
different probability distributions which are like augmentation. Therefore, there is no over-fitting.

- Explaining Our Method Using A Simple Example: For simplicity, consider a graph with three
nodes(sea, fish, and tiger) and edges (pair-wise features). Our algorithm learns to make min-cut
to recognize present classes in the images. We use our trained classifier in the ZSL setting with
classes like the sea, dolphin, and tiger. Dolphin and fish share more similar feature representations
considering pairwise and taxonomy feature representations. Therefore, the edges (dolphin-sea),
(dolphin-tiger) get similar feature representation to (fish-sea), (fish-tiger). It stimulates the same cut
used for sea, fish, and tiger classes. Thus, making a correct min-cut by our classifier.
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