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1 STATISTICS OF DATASETS
The initial correspondence set is obtained by SIFT provided in the
VLFeat library. The correctness of each correspondence is deter-
mined by manually checking. We show the initial inlier ratios for
the RS, UCD, and MR datasets in Figure 1. The average inlier ratios
for these datasets are 68.50%, 25.37%, and 41.58%.

2 VISUALIZATIONS OF IMAGE MATCHING
We show the image matching results of our RoSe against other
state-of-the-art methods on five representative image pairs: PAN90,
CIAP129, UCD160, UCD169, and Retinal14. PAN90 is character-
ized by significant repeated structures, causing strong ambiguity
in feature descriptors and leading to a low initial inlier ratio of
12.8%. CIAP129 features small overlapping areas, also resulting in
a low initial inlier ratio of 10.1%. UCD160 and UCD169 involve
rotations at varying scales. Retinal14, with a limited number of
initial correspondences (156), presents a challenge for identifying
consistency among inliers. As shown in Figure 2, RANSAC [2],
LAF [3], and RFMSCAN [4] can identify most of the inliers with
only a few misjudgments. LPM [7] is susceptible to a high ratio of
outliers due to its unreliable neighborhood construction, resulting
in some inliers being discarded. Both LOGO [8] and learning-based
methods exhibit poor performance. The former relies on a set of
high inliers for expanding the candidate set, but the high outlier
ratios reduce the reliability of this set, resulting in unsatisfactory
overall performance. Learning-based methods heavily depend on
training data, exhibiting poor generalization ability on other types
of data. As shown in Figure 3, for the image pair CIAP129, RANSAC
exhibits poor performance, suggesting that random sampling strug-
gles to find the optimal model within the given number of iterations
under low inlier ratios. The remaining traditional methods perform
comparatively better. Learning-based methods also fail to produce
reasonable results, showing a significant number of misjudgments.
As depicted in Figures 4 and 5 , the large-scale rotations in UCD160
and UCD169 render most methods ineffective. As shown in Figure
6, for Retinal14, LPM [7], and RFMSCAN [4] perform well, while
other methods either discard a large number of inliers or exhibit
more misjudgments. Our RoSe demonstrates good performance in
all five image pairs, validating the effectiveness and generalization
ability of the algorithm.

3 VISUALIZATIONS OF IMAGE
REGISTRATION

We show the image registration results of our RoSe against other
state-of-the-art methods on three image pairs, UAV1, SAR58, and
CIAP120, as shown in Figures 7, 8 and 9. For UAV1, which involves
projection transformation, methods such as LPM [7], LAF [3], and
RoSe performed well, whereas other methods experienced registra-
tion distortion. RANSAC [2], with its inherent randomness, failed
to consistently produce reliable registration results. Both LPM [7]

and LAF [3] demonstrated effective overall registration, aligning
most areas adequately. However, due to unreliable neighborhood
consistency, some local regions do not maintain inliers, thus caus-
ing distorted registration results. SAR58 features severe noise and
low texture. For most methods, they exhibit noticeable distortions
in the registration results except LAF [3] and RoSe. Most traditional
methods successfully recover the valid transformation function. By
contrast, many learning-basedmethods yield strange registration re-
sults, primarily due to their limited generalization capability, which
is induced by the imposition of the essential matrix loss. CIAP120,
with small overlapping areas and a high proportion of outliers, only
showed favorable results with LPM [7], RFMSCAN [4], and RoSe.
Since the rectified local neighborhood construction significantly en-
hances the reliability of neighborhoods for correspondence and aids
in the rotation-invariant sequence-aware consistency, our Rose can
identify most of inliers, thereby recovering accurate transformation
function and producing high-quality registration results.
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Figure 1: Statistics of initial inliers ratios for the RS, UCD, and MR datasets. The coordinate (𝑥,𝑦) on the curve indicates that
there are (100*𝑥)% image pairs with initial inlier ratio not exceeding 𝑦.

Figure 2: The visualization comparison of RANSAC, LPM [7], LAF [3], LOGO [8], RFMSCAN [4], MS2DGNet [1], NCMNet [6],
PGFNet [5], ConvMatch [9], CLNet [10] and RoSe on the PAN90 image pair for image matching (from top to bottom, left to
right). Each group includes the image matching results along with their corresponding motion vector fields. The head and tail
of each arrow in the motion vector field indicate the positions of the feature points in the two images (blue = true positive,
black = true negative, green = false negative, red = false positive). For clarity, we randomly select up to 100 correspondences to
display in each image pair, true negatives are not shown.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplementary Materials: RoSe: Rotation-Invariant Sequence-Aware Consensus for Robust Correspondence Pruning ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 3: The visualization comparison of RANSAC [2], LPM [7], LAF [3], LOGO [8], RFMSCAN [4], MS2DGNet [1], NCMNet
[6], PGFNet [5], ConvMatch [9], CLNet [10] and RoSe on the CIAP129 image pair.

Figure 4: The visualization comparison of RANSAC [2], LPM [7], LAF [3], LOGO [8], RFMSCAN [4], MS2DGNet [1], NCMNet
[6], PGFNet [5], ConvMatch [9], CLNet [10] and RoSe on the UCD160 image pair.
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Figure 5: The visualization comparison of RANSAC [2], LPM [7], LAF [3], LOGO [8], RFMSCAN [4], MS2DGNet [1], NCMNet
[6], PGFNet [5], ConvMatch [9], CLNet [10] and RoSe on the UCD169 image pair for image matching.

Figure 6: The visualization comparison of RANSAC [2], LPM [7], LAF [3], LOGO [8], RFMSCAN [4], MS2DGNet [1], NCMNet
[6], PGFNet [5], ConvMatch [9], CLNet [10] and RoSe on the Retial14 image pair for image matching.
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[6], PGFNet [5], ConvMatch [9], CLNet [10] and RoSe on the SAR58 image pair for image registration.
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