README.md 2024-10-02

PortLLM: Personalizing Evolving Large Language
Models with Training-Free and Portable Model
Patches

Overview

As large language models (LLMs) increasingly shape the Al landscape, fine-tuning pretrained models has
become more popular than in the pre-LLM era for achieving optimal performance in domain-specific tasks.
However, pretrained LLMs such as ChatGPT are periodically evolved (i.e., model parameters are frequently
updated) making it challenging for downstream users with limited resources to keep up with fine-tuning the
newest LLMs for their domain application. Even though fine-tuning costs have nowadays been reduced
thanks to the innovations of parameter-efficient fine-tuning such as LoRA, not all downstream users have
adequate computing for frequent personalization. Moreover, access to fine-tuning datasets, particularly in
sensitive domains such as healthcare, could be time-restrictive, making it crucial to retain the knowledge
encoded in earlier fine-tuned rounds for future adaptation. In this paper, we present PORTLLM, a training-free
framework that (i) creates an initial lightweight model update patch to capture domain-specific knowledge,
and (ii) allows a subsequent seamless plugging for the continual personalization of evolved LLM at minimal
cost. Our extensive experiments cover a series of seven representative datasets, from easier question-
answering tasks {BoolQ, SST2} to harder reasoning tasks {WinoGrande, GSM8K}, and models including
{Mistral-7B, Llama2, Llama3.1, and Gemma2}, validating the portability of our designed model patches and
showcasing the effectiveness of our proposed framework. For instance, PORTLLM achieves comparable
performance to LoRA fine-tuning with reductions of upto 12.21x in GPU Memory. Finally, we provide
theoretical justifications to understand the portability of our model update patches, which offers new insights
into the theoretical dimension of large language models’ personalization.

Setup

conda create -n portllm python=3.10 -y && conda activate portllm

pip3 install -r requirements.txt

git clone --depth 1 https://github.com/EleutherAI/lm-evaluation-harness
cd lm-evaluation-harness

pip install -e

cd

Usage

Note : To fine-tune and use any of the models used in the paper, please make an account on huggingface,
and sign in with your token using the huggingface CLI. If you would like to work with local models, this is not
necessary.

Fine-tuning on Downstream tasks

Replace {dataset} with downstream task you would like to fine-tune on.

1/3



README.md 2024-10-02

accelerate launch scripts/run_{dataset}.py --max_length=256 --batch_size=4
--num_workers=8 --model_name_or_path="mistralai/Mistral-7B-v0.1" --rank=8 -
-lora_alpha=16 --lora_dropout=0.1 --1lr=1e-4 --num_epochs=10 --seed=1234 --
output_dir={OUTPUT_DIR}

For example if you would like to reproduce the results on BoolQ for Mistral-7B, you can fine-tune it with the
following command

accelerate launch scripts/run_boolqg.py --max_length=256 --batch_size=4 --
num_workers=8 --model_name_or_path="mistralai/Mistral-7B-v0.1" --rank=8 --
lora_alpha=16 --lora_dropout=0.1 --1lr=1e-4 --num_epochs=10 --seed=1234 --
output_dir={OUTPUT_DIR}

where OUTPUT_DIR is where you would like to store the model adapter. To see all the possible datasets you
can fine-tune on please check the scripts folder.

Continued Pretraining

For Continued Pretraining we utilize the Axolotl framework. The config files are under configs folder for
Axolotl.

Evaluation

To evaluate a model without its adapter on any dataset simply run the following command

accelerate launch -m 1m_eval --model hf --model_args "pretrained={MODEL}" -
-tasks "{TASKS}" --num_fewshot 0 --batch_size 32

by replacing the {MODEL} with the model of your choice and {TASKS} by the task you would like to evaluate
on. For example if you would like to evaluate Mistral-7B on GSM8K simply do the following

accelerate launch -m 1m_eval --model hf --model_args
"pretrained=mistralai/Mistral-7B-v0.1" --tasks "gsm8k" --num_fewshot 0 --
batch_size 32

If you would like to also evaluate the adapter performance run the following command

accelerate launch -m 1m_eval --model hf --model_args
"pretrained=mistralai/Mistral-7B-v0.1, peft={PEFT}" --tasks "gsm8k" --
num_fewshot 0 --batch_size 32

where you can replace {PEFT} with the adapter weights.

2/3



README.md 2024-10-02

Merge Adapters
To merge adapters with the model itself please run the following command
python3 merge_adapters.py --base_model_name_or_path {BASE_MODEL} \
--peft_model_path {PEFT_MODEL} \

--output_dir {OUTPUT_DIR} \
--push_to_hub

where you can replace the {BASE_MODEL}, {PEFT_MODEL}, and {OUTPUT_DIR} with your choice.



