
Appendix for
“Weakly-Supervised Multi-Granularity Map Learning for

Vision-and-Language Navigation”

In the appendix, we provide more implementation details and experimental results of our WS-MGMap.
We organize the appendix as follows.

• In Sec. A, we provide more architecture details on semantic hallucination module, map encoder,
and object localization modules.

• In Sec. B, we provide more experimental details, i.e., training settings and evaluation metrics.
• In Sec. C, we provide more analysis on instruction-relevant object localization results.
• In Sec. D, we provide more ablation results on semantic hallucination module.
• In Sec. E, we provide more ablation results on dagger training paradigm.
• In Sec. F, we provide more experimental results on RxR-Habitat dataset.
• In Sec. G, we provide more analysis on the predicted waypoints for VLN.
• In Sec. H, we provide more visualization examples on instruction-object ambiguity cases.

A More architecture details

The architecture details on semantic hallucination module, map encoder, and objection localization
module for WS-MGMap (Figure 2 in main paper) are shown in Figures A and B. We follow the
PyTorch [6] conventions to describe each layer, and the tensor shapes are represented in (C, H, W)
notations. The meanings of each layer are as follows:

• ConvBR: a combination of nn.Conv2d, nn.BatchNorm2d and nn.ReLU layers with the input
channels, output channels, kernel size, stride and padding augments.

• TransConvBR: a combination of nn.ConvTranspose2d, nn.BatchNorm2d and nn.ReLU
layers with the input channels, output channels, kernel size, stride and padding augments.

• Conv: a nn.Conv2d layer with the input channels, output channels, kernel size, stride and
padding augments.

• AvgPool: a nn.AvgPool2d layer with the the kernel size, stride and padding arguments.

In our experiments, the fine-grained map, global semantic map, and multi-granularity map are of
different sizes (as shown in Figure A) for saving GPU memory. It is flexible to change their sizes,
keeping all map sizes the same, by changing the stride of convolutional layers. For a brief description,
in the main paper, we describe that all maps are of the same size m×m. In Figure B, RGB encoder
is an off-the-shelf ResNet18 [3] pre-trained on ImageNet [1]. Depth encoder is an off-the-shelf
ResNet50 [3] pre-trained on point-goal navigation [10]. L is the number of words in an instruction.
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Figure A: Architecture of semantic hallucination module and map encoder.

1



Cosine
Similarity

RGB

GRU

Attention

Concat

256x1

256x1256xL

ResNet18

ResNet50Depth
256x1

256x1

Multi-Granularity Map 𝐌

Instruction Feature

256x1
Localization Result  𝐏

Object Localization Module

AvgPool (24, 1, 0)

256x24x24

Figure B: Architecture of object localization module.

B More experimental details

Object categories predicted by hallucination module. We select the same 27 common-seen
object categories as CM2 [2] for the semantic hallucination module. We list all 27 object categories
as follows: {void, chair, door, table, cushion, sofa, bed, plant, sink, toilet, tv-monitor, shower, bathtub,
counter, appliances, structure, other, free-space, picture, cabinet, chest-of-drawers, stool, towel,
fireplace, gym-equipment, seating, clothes}.

More implementation details. We use an Adam optimizer with a learning rate of 2.5e-4. For
teacher-forcing training, we train on augmented trajectory data for 30 epochs. For dagger training,
we collect 5,000 trajectories at each iteration (total 10 iterations). During the data collection process
in nth iteration, the agent will take oracle action with probability 0.5n and predicted action otherwise.
At each iteration in dagger training, we train models on all collected trajectories for 4 epochs.

More details on evaluation metrics. We follow VLN-CE [5] to evaluate the navigation process in
terms of success rate (SR), oracle success rate (OS), success weighted by path length (SPL), trajectory
length (TL), and navigation error from goal (NE). A good agent should successfully navigate to the
goal following the path described by an instruction. The details of each metric are described below.

• SR: ratio of agent calling STOP within a threshold distance (3 meters) of the goal in an
allowed time step budget (500 steps).

• OS: ratio of agent reaching within a threshold distance (3 meters) of the goal.

• SPL: success rate weighted by path length, i.e., SPL = s× d/max(d, d̄), where s indicates
the value of success rate, d is the shortest geodesic distance from the starting point to the
goal, d̄ indicates the geodesic distance traveled by the agent.

• TL: average of agent trajectory length in meters.

• NE: average of geodesic distance from agent’s final position to goal in meters.

C More analysis on instruction-relevant object localization

We show additional visualization results of object localization (described in Sections 3.3 and 4.4 in
the main paper) in Figure C. Our WS-MGMap method precisely localizes objects that are out of the
segmentation category list (e.g., refrigerator, shelf, railing in the first three rows, respectively) and
objects that are specified by various attributes (e.g., wooden slatted floor and white door in the last
two rows, respectively). Note that the semantic map shown in the third column is not used by our
methods. Instead, we build a multi-granularity map progressively, containing both fine-grained and
semantic information about environments.

To quantitatively evaluate the instruction-relevant object localization performance, we measure IoU
between ground-truth and predicted object locations. Specifically, we consider the 10% area with
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the highest probability in 2D distribution P and P̂ (as described in Section 3.3) as ground-truth
and predicted locations. The IoU values for our method, variant w/o fine-grained map, and variant
w/o localization auxiliary task are 36.7%, 32.3%, and 6.9% respectively. These results further
demonstrate that the proposed multi-granularity map and localization auxiliary task help agents
localize instruction-relevant objects for the VLN task.
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Figure C: Visualization of instruction-relevant object localization results.

D More ablation study on semantic hallucination module

Following standard setting in VLN-CE task [5], we equip the agent with a camera with a limited field
of view (the horizontal field-of-view is set to 90 degrees). In this sense, the agent can only capture
RGB-D information about a small area in the environment. Motivated by existing works [2, 7], we
design a hallucination module that helps the agent hallucinate the areas that are out of view range. To
evaluate its effectiveness, we implement a variant that only predicts the semantic map within the field
of view (i.e., w/o hallucination). From Table 1, this variant performs worse than our agent. These
results show the importance of semantic hallucination for VLN.

Table 1: Ablation study on semantic hallucination module.

Val-Unseen

Method TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑
w/o hallucination 10.05 6.51 44.9 37.3 33.2

w/ hallucination (Ours) 10.00 6.28 47.6 38.9 34.3

E More ablation results on DAgger training

During the second training stage, we follow existing works [5, 8, 4] to use Dagger [9] training
techniques. As shown in these works, Dagger training helps to eliminate the negative effect of
disconnection between training and testing caused by imitation learning. To evaluate its effective-
ness, we conduct an experiment by replacing Dagger training with imitation learning. In Table 2,
removing schedule sampling (i.e., using ground-truth trajectories at all times) drops the performance
significantly.
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Table 2: Ablation study on training paradigm.

Val-Unseen

Method TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑
w/o DAgger Training 7.9 7.61 30.0 24.6 22.5

w/ DAgger Training (Ours) 10.00 6.28 47.6 38.9 34.3

F More experimental results on RxR-Habitat dataset.

We leverage the model trained on R2R-Habitat and transfer it to test on RxR-Habitat English data
split. We compare our methods with LAW [8], which is a competitive baseline in the VLN task.
From Table 3, our method outperforms different variants of LAW on both val-seen and val-unseen
data splits. It is worth noting that our model is directly transferred from R2R-Habitat to RxR-Habitat
without finetuning. These results demonstrate the effectiveness and robustness of our method.

Table 3: Comparison on RxR-Habitat dataset (English language split).

Val-Seen Val-Unseen

TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑ TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑
LAW pano [8] 6.27 12.07 17.0 9.0 9.0 4.62 11.04 16.0 10.0 9.0
LAW step [8] 7.92 11.94 20.0 7.0 6.0 4.01 10.87 21.0 8.0 8.0

WS-MGMap (Ours) 10.37 10.19 27.7 14.0 12.3 10.80 9.83 29.8 15.0 12.1

G More analysis on navigation episodes.

We show a navigation example in Figure D. An agent first perceives the environment by progressively
building a multi-granularity map (semantic maps are shown in Figure D for a demonstration purpose
only). Based on the multi-granularity map and instruction, the agent predicts a waypoint at every
three time steps, which leads the agent to navigate following the instruction.

To quantitatively evaluate the quality of predicted waypoints, we report the percentage of predicted
waypoints that locate within ground-truth path area, which is defined as 10% area with the highest
probability in 2D distribution P. Compared with the variant w/o fine-grained map (57.0%) and the
variant w/o localization auxiliary task (55.1%), the predicted waypoints from our method are more
accurate, with 61.2% waypoints located within the ground-truth path area.

Walk toward the kitchen 
and turn left at the counter. 
Proceed down the hallway, 

turn left into the living 
room and wait by the sofa.

prog: 0.0 prog: 0.1 prog: 0.2 prog: 0.5 prog: 0.8 

history pathagent predicted waypoint prog: predicted progress

cabinetfloor couchtablewall counter cushionchair

ground-truth path

Figure D: A navigation example using our WS-MGMap on val-unseen data split.

H More visualization on instruction-object ambiguity.

As described in Introduction section, there exist instruction-object ambiguity cases (e.g., the in-
struction object being a long bench but there are multiple different kinds of benches nearby) in
VLN task. To quantitatively evaluate how often this type of instruction-object ambiguity occurs,
we manually annotate these cases using a crowd-sourcing platform AMT. Quantitatively, there are
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… go left to the 
white couch …

black couch

white couch

… past the back of 
the brown chair …

white chair

brown chair

… go through the 
open door …

closed door

open door

… stop at checkered 
floor …

checkered floor 

wooden floor 

… wait by the glass 
dinning room table …

glass table

wooden table

Figure E: Examples of instruction-object ambiguity cases.

51% instructions containing objects described by specific attributed words (e.g., wooden table). 33%
trajectories of these instructions occur instruction-object ambiguity. We show some examples of such
instruction-object ambiguity cases in Figure E. The first row shows the observation captured during
navigation and the second row shows the object description in instructions. These ambiguity cases
further demonstrate the necessity to build a multi-granularity map to include both object fine-grained
details and semantic information for VLN task.
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