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Abstract
With the increasing popularity of online social applications, stickers
have become common in online chats. Teaching a model to select
the appropriate sticker from a set of candidate stickers based on
dialogue context is important for optimizing the user experience.
Existing methods have proposed leveraging emotional information
to facilitate the selection of appropriate stickers. However, con-
sidering the frequent co-occurrence among sticker images, words
with emotional preference in the dialogue and emotion labels, these
methods tend to over-rely on such dataset bias, inducing spurious
correlations during training. As a result, these methods may select
inappropriate stickers that do not match users’ intended expression.
In this paper, we introduce a causal graph to explicitly identify the
spurious correlations in the sticker selection task. Building upon
the analysis, we propose a Causal Knowledge-Enhanced Sticker
Selection model to mitigate spurious correlations. Specifically, we
design a knowledge-enhanced emotional utterance extractor to
identify emotional information within dialogues. Then an interven-
tional visual feature extractor is employed to obtain unbiased visual
features, aligning them with the emotional utterances representa-
tion. Finally, a standard transformer encoder fuses the multimodal
information for emotion recognition and sticker selection. Exten-
sive experiments on the MOD dataset show that our CKS model
significantly outperforms the baseline models.
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Figure 1: The sample from MOD dataset about the spurious
correlations in the sticker selection task.Words below sticker
images indicate the predicted emotion.
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1 Introduction
With the widespread use of online social applications (e.g. WeChat,
Instagram and X), stickers have become a prevalent way for indi-
viduals to convey their attitudes and emotions in online communi-
cation. These graphical elements of stickers play an important role
in enhancing users’ perceptions of intimacy, positivity, and social
connectedness [21, 40]. Thus, an effective sticker recommendation
system holds the promise of substantially assisting users in express-
ing their emotions vividly and conveying their intended messages,
leading to more engaging and meaningful interactions in online
communication [2, 14, 23].

Toward this end, a number of models [15, 27, 44] have emerged
to tackle the task of sticker selection, aiming for an effective rec-
ommendation. It is the task of selecting the appropriate sticker
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from a candidate sticker set based on the dialogue context. Upon
scrutinizing these models, they typically focus on aligning the text
and sticker image information through sophisticated mechanisms,
overlooking the essential emotional information in the process of
sticker selection. Previous studies [22, 49] point out that exces-
sive reliance on vision-language alignment is not inherently the
most critical aspect. Instead, it’s more important to uncover and
utilize emotional information when selecting stickers. For exam-
ple, a sticker depicting a cat or a dog smiling generally conveys
the emotion of happiness, independent of the particular animal
species in stickers. Specifically, Zhang et al. [49] attempt to in-
corporate emotion into the sticker selection task with a multitask
learning framework. However, this method straightforwardly im-
plements the emotion classification and always learns the frequent
co-occurrence among the sticker image, words with emotional pref-
erence and emotion labels in the dataset. For instance, it is common
to encounter scenarios where the presence of the word “fun” leads
to the selection of a smiling-themed sticker associated with happy
emotion. It might harmfully mislead the model to automatically
lean towards selecting stickers with smiles whenever the word “fun”
appears, as illustrated in Fig. 1. This previously inherent dataset bias
causes the model to over-exploit the spurious correlations among
the sticker image, words with emotional preference and emotion.
Consequently, it is essential to analyze and alleviate the bias in the
sticker selection task.

In light of pedagogy [41], the above limitations in the sticker
selection model can be partially attributed to the model’s over-
dependence on intuitive processing, rendering the models prone
to various decision biases. The behavior of inappropriate sticker
selection is referred to as the “heuristic system” [41]. To address the
limitation, human typically relies on an “analytic system” [41] to
select the appropriate sticker associated with emotion. Specifically,
inspired by the selectivity [22] in human communication behavior,
the “analytic system” first pre-processes to find out the emotional
utterance within the dialogue context since some utterances offer
scarcely emotional information relevant to the sticker selection. As
shown in Fig. 1, the utterance “I am wondering whether or not to go
to my friend’s house?” reflects hesitated emotion. At this step, we
should also extract utterances that convey emotional information,
even explicit emotional words are absent within the utterances. Sub-
sequently, the system engages in systematic information processing,
allowing it to accurately evaluate and interpret the emotional cues
within the dialogue and sticker image. It can mitigate the impact of
various decision biases but requires more mental resources. For ex-
ample, our focus should not be confined to words with an emotional
preference, such as “fun”, as illustrated in Fig. 1. Instead, we should
prioritize the accurate emotional information in the dialogue.

In this paper, we present a causal graph [35] to analyze the cause
of the spurious correlations in sticker selection. Guided by this anal-
ysis, we propose the Causal Knowledge-Enhanced Sticker Selection
(CKS) model to emulate “pre-process” and “process” steps in the
analytic system, which consists of three components: a knowledge-
enhanced emotional utterance extractor (KEUE), an interventional
visual feature extractor (IVE), and a multimodal encoder. For the
“pre-process” step, the KEUE is devised to identify emotional ut-
terances within the dialogue. Considering that the emotional and
non-emotional utterances are not annotated in the dialogue, we

involve the incorporation of six types of commonsense knowledge
generated by ATOMIC [39] model and utilize utterances with gen-
erative commonsense knowledge of causal relationship to assist
in identifying emotional utterances. Moreover, certain words with
emotional preference often appear in emotional utterances, poten-
tially leading the model to select the inaccurate sticker, as illustrated
in Fig. 1. Thus, for the “process” step, the IVE incorporates causal
inference to extract unbiased visual features of the input sticker
image and align them with the emotional utterances representa-
tion. Specifically, we first design a visual knowledge deconfounder
(VKD), which aims to mitigate the negative effect of words with
emotional preference. Given the stylistic diversity of stickers, we
introduce a content invariant module (CIM) to separate the content
variable from the style variable, thereby enhancing the generaliza-
tion capability for the sticker selection. The objective of IVE is to
align unbiased visual features with the emotional utterances repre-
sentation. Finally, a standard transformer encoder [42] is adopted
to fuse the multimodal input information (i.e., dialogue context,
emotional utterances representation, textual information in the
sticker and unbiased visual features) to select the sticker.

Our contributions can be summarized as follows:
• To the best of our knowledge, we are the first to investigate the
inherent bias in the sticker selection task from a causal inference
perspective and analyze that such bias induces the model to learn
such spurious correlations, leading to incorrect sticker selection.
• Our proposed Causal Knowledge-Enhanced Sticker Selection
(CKS) model adopts a causality perspective to effectively mitigate
the issue of the above bias. To achieve this goal, it leverages
commonsense knowledge to identify emotional utterances and
extract unbiased visual features for alignment, streamlining the
sticker selection process.
• Extensive experiments on MOD [13] dataset validate the superi-
ority of our CKS model in mitigating the spurious correlations
and recognizing accurate emotion during sticker selection. In
particular, CKS achieves substantial performance improvement
and significantly surpasses baseline models.

2 Related Work
2.1 Sticker Selection
Previous studies have primarily focused on emoji recommendation
in multimodal dialogue systems [3, 4, 46]. However, in comparison
to stickers, emojis are inherently limited in variety and expression.
In recent years, some works have explored the sticker selection
task [13, 15, 27, 44, 49]. For instance, Laddha et al. [27] employ a
clustering method to predict messages and then substitute them
with stickers. Gao et al. [15] adopt a co-attention matrix to calculate
the attention between utterance and sticker representation. They
further apply a deep interaction network to fuse the multimodal
information for image-text matching. Fei et al. [13] utilize the pre-
trained GPT-2 [38] model to jointly process the information in the
dialogue (i.e., stickers and utterances) for sticker selection. Zhang
et al. [49] propose a multimodal BERT [8] with a multitask learn-
ing method to combine multimodal input information. Specifically,
three auxiliary tasks (i.e., masked context prediction, sticker seman-
tic prediction and sticker emotion classification) are proposed to
enhance the understanding of dialogues and stickers.
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Figure 2: Causal graph of sticker selection. The solid arrow
(→) denotes causation between variables.

2.2 Causal Inference
Causal inference is an effective analytical tool to measure the causal
effect between two variables, rather than depending only on their
statistical correlation [34, 35]. Several approaches attempt to in-
corporate causal inference with deep neural networks (DNNs) in
the field of natural language processing (NLP) [12, 30, 45] and com-
puter vision (CV) [7, 36, 43]. Specifically, Wang et al. [43] propose a
Visual Commonsense R-CNN network, which integrates causal in-
tervention [35] to predict contextual objects for image caption and
visual question answering. Wei et al. [45] leverage counterfactual
inference to model the fine-grained user preference in the knowl-
edge graph based recommendation. Yuan et al. [47] identify the
concept bias in the concept extraction system. Then, they equip the
knowledge-guided prompts as an intervention for the pre-trained
language model to mitigate the bias. Chen et al. [7] mitigate the
bias in object attributes and relationships for visual question gener-
ation. To the best of our knowledge, we are the first to analyze the
spurious correlations in the sticker selection task and address this
problem from a causal view.

3 Causal View at Sticker Selection
3.1 Causal Graph of Sticker Selection
We first formalize the causality to accurately identify the multi-
modal emotion for the sticker selection taskwith a causal graph [35],
as shown in Fig. 2 (a). The cause-and-effect relationships among
seven variables: dialogue context 𝑈 , candidate sticker images 𝐼 ,
sticker visual knowledge 𝑉 , style variable𝑀𝑠 of the sticker images,
content variable 𝑀𝑐 of the sticker images, words with emotional
preference𝑊 in the dialogue and current emotion 𝑌 of the speaker
when selecting the sticker. We explain the relationships in detail:
i) 𝑈 → 𝑌 and 𝑀𝑐 ← 𝐼 → 𝑀𝑠 . Intuitively, the emotion conveyed
by the speaker when selecting a sticker is influenced by the the
dialogue context. Since stylistic differences among stickers, the
sticker image contains the content and style variables. ii)𝑈 → 𝑉

and𝑀𝑐 → 𝑉 ← 𝑀𝑠 . The visual knowledge is obtained through a
series of attention operations on dialogue context, content and style
variables (i.e.,𝑀𝑐 and𝑀𝑠 ) from the sticker image. iii)𝑈 →𝑊 → 𝑉 .
The confounder includes words with specific emotional preference
from the dialogue (i.e.,𝑈 →𝑊 ), as depicted in Fig. 1, where “fun”
serves as the word with emotional preference. Additionally, the
visual knowledge of the sticker is frequently mentioned in the
word with emotion preference, which establishes a direct shortcut
between them (i.e.,𝑊 → 𝑉 ). For example, the model selects the
sticker with visual knowledge of a smile based on the word with
emotional preference “fun” in Fig. 1. iv)𝑊 → 𝑌 and 𝑉 → 𝑌 . The
causal effect exists since the words with emotional preference also

impact the probability outputs of the emotion classifier. The emo-
tion 𝑌 is conditional upon the visual knowledge 𝑉 , showcasing the
impact of extracted visual information on the emotional expres-
sion within the dialogue context. The process of sticker selection is
intrinsically related to the speaker’s emotion 𝑌 . Therefore, as the
causal graph in Fig. 2 (a), we should focus on the accurate emotion.

3.2 Spurious Correlations
Taking a closer look at the causal graph in Fig. 2 (a), we first ana-
lyze the spurious correlations present in the sticker selection task.
Given the fact that only a portion of the dialogue context is useful
for emotion when selecting the sticker of interest, while the rest
offers scarcely information relevant to the sticker selection [22].
Moreover, the words𝑊 with specific emotion preference frequently
exist in the emotional utterance, which also serve as the confounder
between visual knowledge 𝑉 and 𝑌 . As a result, the backdoor path
𝑉 ← 𝑊 → 𝑌 becomes available, causing spurious correlations.
Worse still, previous models have difficulty learning robust repre-
sentations of stickers in various style distributions [16, 20].

Building on the above analysis, previous models frequently learn
such spurious correlations, leading to the misidentification of emo-
tions. We design a causal graph as shown in Fig. 2 (b) to mitigate
spurious correlations. Specifically, these models often struggle to
distinguish between emotional utterances and non-emotional ut-
terances due to their ineffective modeling of the dialogue context.
Inspired by the selectivity in human communication behavior [22],
we design a knowledge-enhanced emotional utterance extractor
(KEUE) to effectively mitigate such spurious correlations, which
can effectively leverage the emotional utterances from the dialogue
context as variable 𝐶 and avoid the effect from the non-emotional
utterances 𝑍 . Furthermore, since the existence of the backdoor
path 𝑉 ← 𝑊 → 𝑌 , the model may be biased toward the visual
knowledge related to the words with emotional preference, while
overshadowing its perception of the broader visual context within
the images. The model might emphasize the localized visual cues
tied to specific words for emotion recognition. To eliminate this
confounding problem, we use the backdoor adjustment [35] by
controlling all possible values of𝑊 . For the distribution shift in
the style variable across different sticker images, we decouple con-
tent representation from style representation with causal inference,
which can enhance the model’s generalization capability under
various sticker styles.

4 Methodology
Formally, given 𝑁 candidate stickers 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑁 }, the sticker
selection task aims to select the appropriate sticker 𝑠 based on the
multi-turn dialog context 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑇 } between two speak-
ers, where 𝑇 represents the number of utterances in the dialogue
and 𝑢𝑇 is the last utterance. It requires a precise comprehension of
the dialogue context, accurate emotion prediction and a convincing
rationale for the sticker selection. Getting inspiration from the “an-
alytic system” [41] in pedagogy, we consider the sticker selection
task from a causal perspective and propose our Causal Knowledge-
Enhanced Sticker Selection (CKS) to imitate the “pre-process” and
“process” steps in the “analytic system” subsequently for debiasing.
The architecture of the CKS model is illustrated in Fig. 3, which
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Figure 3: Overview of our CKS model. It contains three components: (i) the knowledge-enhanced emotional utterance extractor
(KEUE), (ii) the interventional visual feature extractor (IVE), where VKD represents visual knowledge deconfounder in section
4.2.1, and (iii) the multimodal encoder.

consists of three components: (i) knowledge-enhanced emotional ut-
terance extractor (KEUE), which imitates the “pre-process” step and
aims to identify emotional utterances with commonsense knowl-
edge to facilitate further sticker selection. (ii) interventional visual
feature extractor (IVE), which incorporates causal inference to dis-
entangle the visual features of stickers, and obtain unbiased visual
features to align with the emotional utterances representation from
the knowledge-enhanced emotional utterance extractor for the
“process” step. (iii) multimodal encoder, which utilizes a standard
transformer encoder [42] to process multimodal information (i.e., di-
alogue context, emotional utterances representation, OCR features
and unbiased visual knowledge). The objective of this component is
to distinguish the positive and negative stickers and recognize the
emotion when selecting the sticker. The details of each component
are in the following subsections.

4.1 Knowledge-Enhanced Emotional Utterance Extractor
Considering the selectivity [22] in human communication behav-
ior, humans often concentrate on specific emotional utterances
within the dialogue, selectively ignoring other pieces of dialogue
information. The knowledge-enhanced emotional utterance extrac-
tor (KEUE) aims to distinguish emotional utterances from non-
emotional utterances within the dialogue context.

4.1.1 Dialogue Encoding. We first insert ‘[CLS]’ and ‘[speaker
𝑗]’ ( 𝑗=1,2) tokens in the beginning of each utterance 𝑢𝑖 and utilize a
pre-trained RoBERTa [31] model to obtain the contextual features
of ‘[CLS]’ token {𝑟𝑖 }𝑇𝑖=1, where 𝑟𝑖 ∈ R

𝑑𝑟 and 𝑑𝑟 is the dimension
of the utterance-level representation. We aim to model sequential
dependencies between successive utterances with the temporal
information embedded in the entire dialogue context. Specifically,
we adopt a Bi-directional Long Short-Term Memory (bi-LSTM) [19]

to extract the conversational representation of each utterance:

−→
ℎ𝑖 =

−−−−→
LSTM

(
𝑟𝑖 ,
−−−→
ℎ𝑖−1

)
,
←−
ℎ𝑖 =

←−−−−
LSTM

(
𝑟𝑖 ,
←−−−
ℎ𝑖−1

)
, (1)

where
−→
ℎ𝑖 ∈ R𝑑 and

←−
ℎ𝑖 ∈ R𝑑 are the hidden state of the 𝑖-th utterance

for the forward and backward of LSTM, respectively. Next, we
obtain the representation of the 𝑖-th utterance ℎ𝑖 = [

−→
ℎ𝑖 ;
←−
ℎ𝑖 ], where

ℎ𝑖 ∈ R2𝑑 and [; ] denotes the concatenation operation.

4.1.2 Knowledge Acquisition. Due to the lack of available anno-
tated emotional utterances, we cannot directly calculate the effect
of 𝑈 → 𝐶 → 𝑌 in Fig. 2 (b). Previous studies [6, 39] demonstrate
neural networks can utilize the commonsense knowledge to predict
probable causes-effects of previously unseen events and underlying
emotion. We treat previous utterances along with commonsense
knowledge as emotional utterances 𝐶 .

In our work, we utilize ATOMIC [39] as the commonsense knowl-
edge base due to its vast everyday inferential knowledge. Specif-
ically, we investigate six types of commonsense knowledge from
ATOMIC, as shown in Fig. 4. To provide further clarity, “xReact”,
“xEffect” and “xWant” knowledge types are for intra-emotional
utterances, which signify the influences or outcomes resulting
from utterances within the same speaker in the dialogue. Addi-
tionally, “oReact”, “oEffect”, and “oWant” knowledge types are for
inter-emotional utterances, indicating the effects exerted on oth-
ers or what others would like to do and feel after receiving the
current utterance. To acquire the commonsense knowledge from
the ATOMIC, we utilize the generative commonsense transformer
model (i.e., COMET [5]) to generate commonsense knowledge,
which is pre-trained on ATOMIC. Specifically, we first concatenate
the 𝑖-th utterance in the dialogue with the 𝑘 type of commonsense
knowledge 𝑅𝑘 as input sequence (𝑢𝑖 , 𝑅𝑘 , [GEN]) for COMETmodel,



Deconfounded Emotion Guidance Sticker Selection with
Causal Inference MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

where [GEN] is a special token for commonsense knowledge gener-
ation, 𝑘 ∈ {𝑥𝑒, 𝑥𝑟, 𝑥𝑤, 𝑜𝑒, 𝑜𝑟, 𝑜𝑤} and 𝑥𝑒, 𝑥𝑟, 𝑥𝑤, 𝑜𝑒, 𝑜𝑟, 𝑜𝑤 are short
for knowledge types “xEffect”, “xReact”, “xWant”, “oEffect”, “oReact”
and “oWant”, respectively. Next, we use the BART-based [28] varia-
tion of COMET to generate inferential commonsense knowledge
for the 𝑖-th utterance under the knowledge type 𝑅𝑘 and obtain the
features from the last hidden state as knowledge representation
𝑔𝑘
𝑖
= COMET(𝑢𝑖 , 𝑅𝑘 , [GEN]), where 𝑔𝑘𝑖 ∈ R1024. We then design

gating mechanisms to learn the enriched knowledge representation
for intra- and inter-speaker:

𝑔𝑎𝑖 = sigmoid( [𝑔𝑥𝑒𝑖 + 𝑔
𝑥𝑟
𝑖 + 𝑔

𝑥𝑤
𝑖 ]𝑊𝑎 + 𝑏𝑎),

𝑔𝑒𝑖 = sigmoid( [𝑔𝑜𝑒𝑖 + 𝑔
𝑜𝑟
𝑖 + 𝑔

𝑜𝑤
𝑖 ]𝑊𝑒 + 𝑏𝑒 ),

(2)

where 𝑔𝑎
𝑖
and 𝑔𝑒

𝑖
represent the knowledge representation for intra-

and inter-speaker in the 𝑖-th utterance, respectively. The sigmoid ac-
tivation function is denoted by sigmoid(·).𝑊𝑚 and𝑊𝑒 ∈ R1024×2𝑑 ,
𝑏𝑎 and 𝑏𝑒 are learnable parameters.

4.1.3 Emotional Utterances Representation. Our goal is to ex-
tract the intra- and inter-emotional utterances based on the dialogue
context with commonsense knowledge. Specifically, the attention
scores 𝑠𝛽

𝑖,𝑗
(𝛽 = 𝑎, 𝑒) is used to measure the relevance between the

𝑖-th and 𝑗-th utterances with commonsense knowledge:

𝑠𝑎𝑖,𝑗 = softmax(𝐹𝑞 (ℎ𝑖 ) [(𝐹𝑘 (ℎ 𝑗 ) + 𝐹𝑣 (𝑔𝑎𝑗 ))]
𝑇 ·𝑚𝑎

𝑖,𝑗 ),

𝑠𝑒𝑖, 𝑗 = softmax(𝐹𝑞 (ℎ𝑖 ) [(𝐹𝑘 (ℎ 𝑗 ) + 𝐹𝑣 (𝑔𝑒𝑗 ))]
𝑇 ·𝑚𝑒

𝑖, 𝑗 ),
(3)

where 𝑠𝑎 and 𝑠𝑒 is the attention scores from the intra- and inter-
speaker repestively. The 𝐹𝑞, 𝐹𝑘 , 𝐹𝑣 are linear layers. Meanwhile,
the mask values 𝑚𝑎 and 𝑚𝑒 ensure the temporal sequence and
correctness during dialogue modeling.

Once we obtain the attention scores for the emotional utterances,
the representation of the 𝑖-th utterance can be formulated as:

ℎ̂𝑖 =
∑︁

𝑗∈𝑆 (𝑖 )
𝑠𝑎𝑖,𝑗𝐹𝑞 (ℎ 𝑗 ) +

∑︁
𝑗∉𝑆 (𝑖 )

𝑠𝑒𝑖, 𝑗𝐹𝑞 (ℎ 𝑗 ), (4)

where ℎ̂𝑖 ∈ R𝑑
𝑟
and 𝑆 (𝑖) represents the set of utterances delivered

by the same speaker as the 𝑖-th utterance in the dialogue. Moreover,
it is also essential to consider the 𝑖-th utterance with commonsense
knowledge information:

𝑔𝑖 =
∑︁

𝑗∈𝑆 (𝑖 )
𝑠𝑎𝑖,𝑗 (𝐹𝑘 (ℎ 𝑗 ) + 𝐹𝑣 (𝑔

𝑎
𝑗 )) +

∑︁
𝑗∉𝑆 (𝑖 )

𝑠𝑒𝑖, 𝑗 (𝐹𝑘 (ℎ 𝑗 ) + 𝐹𝑣 (𝑔
𝑒
𝑗 )), (5)

where 𝑔𝑖 ∈ R𝑑
𝑟
. We concatenate ℎ̂𝑖 with 𝑔𝑖 , then proceed through

a Multilayer Perceptron (MLP)MLPℎ𝑔 to obtain the emotional ut-
terances representation for the 𝑖-th utterance:

ℎ𝑖 = MLPℎ𝑔 ( [ℎ̂𝑖 ;𝑔𝑖 ]), (6)

where ℎ𝑖 ∈ R𝑑
𝑟
and [; ] denotes the concatenation operation.

4.2 Interventional Visual Feature Extractor
The interventional visual feature extractor aims to effectively miti-
gate the spurious correlations shown in Fig. 2 from a visual perspec-
tive. Its objective is to procure unbiased visual features that align
with the representation of emotional utterances. Technically, we
first use the same setup as [49] to create a negative sticker sample
for each dialogue during training and ensure the emotional content

Figure 4: An utterance with commonsense knowledge.

of the negative image is inconsistent with that of the positive one.
Then, we use the CLIP [37] visual encoder for sticker image fea-
ture extraction. Specifically, we use the embedding of the ‘[CLS]’
token as the representation of the whole image features for positive
and negative images, denoted as 𝑣𝑝 and 𝑣𝑛 , respectively, where
𝑣𝑝 , 𝑣𝑛 ∈ R𝑑

𝑟
. Finally, we design two modules: visual knowledge

Deconfounder (VKD) and content invariant module (CIM) as de-
picted in Fig. 5, to prevent learning spurious features and preserve
transferable invariant content features of the sticker image.

4.2.1 Visual Knowledge Deconfounder. Upon inspection on
the causal graph in Fig. 2, the confounder𝑊 between 𝑉 and 𝑌

opens the backdoor path 𝑉 ←𝑊 → 𝑌 making them spuriously
correlated. Therefore, we devise a visual knowledge deconfounder
(VKD) to eliminate these spurious correlations using backdoor ad-
justment [35]. The overview of the VKD module is shown in Fig. 5.
Specifically, we implement a causal intervention on variable 𝑉 (i.e.,
𝑃 (𝑌 | 𝑑𝑜 (𝑉 ))) to block the backdoor path, where 𝑑𝑜 (·) operator is
employed to cut𝑊 → 𝑉 with backdoor adjustment:

𝑃 (𝑌 | 𝑑𝑜 (𝑉 )) =
∑︁
𝑖

𝑃 (𝑤𝑖 )𝑃 (𝑌 | 𝑉 ,𝑤𝑖 ), (7)

where 𝑤𝑖 is the 𝑖-th sample in confounder dictionary𝑊 . Consid-
ering that the words with emotional preference cannot be directly
accessed, we adopt the widely recognized six emotion categories
proposed by Ekman [11] (i.e., surprise, happiness, disgust, fear, sad-
ness, anger) to form the confounder dictionary. Specifically, we
utilize a BERT [8] model to process these emotion categories.

By utilizing the Normalized Weighted Geometric Mean (NWGM)
approximation, Eq. 7 can be approximated as:

𝑣 = softmax(FC((𝑣𝑇𝑝𝑊 )𝑊 )), (8)

where 𝑣 ∈ R𝑑
𝑟
is visual features from VKD and FC(·) is a fully-

connected layer.

4.2.2 Content Invariant Module. Considering that the sticker
image contains the content variable𝑀𝑐 and style variable𝑀𝑠 , we
argue that the content of the sticker when selecting it is independent
of the style variable [32, 33]. Therefore, we aim to separate the
content representation from the style representation with causal
inference. Based on the analysis, the content variable𝑀𝑐 is expected
to remain invariant over the randomization on the style variable𝑀𝑠
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Figure 5: Visual knowledge deconfounder (VKD) module.

(i.e., 𝑃 (𝑀𝑐 | 𝑑𝑜 (𝑀𝑠 ))). Building upon the insight that the extremely
high and low frequency components of images often contain more
style-specific features [18], we can implement the randomization
of these components to simulate intervention on the style variable.
Specifically, we first utilize a discrete cosine transform [1] F (·) to
obtain the frequency spectrum of the input sticker image 𝐼 (i.e.,
F (𝐼 )). We adopt the band-pass filterH(·) to distinguish between
the content variable and style variable:

H(𝑅ℎ, 𝑅𝑙 ) = 𝑒
− 𝑎2+𝑏2

2𝑅ℎ2 − 𝑒
− 𝑎2+𝑏2

2𝑅𝑙 2 , (9)

where (𝑎, 𝑏) is the positions of the spectrum. 𝑅ℎ and 𝑅𝑙 denote the
low and high frequency threshold, respectively. Next, a Gaussian
distribution Gus(𝐼 ) = 𝐼 · (1+N(0, 1)) is employed to randomize the
style variable, N(0, 1) denotes the standard Gaussian distribution
with a mean of 0 and a standard deviation of 1. We generate an
augmented image 𝐼 with inverse discrete cosine transform F̂ (·):

𝐼 = F̂ (Gus(H (𝑅ℎ, 𝑅𝑙 ) · F (𝐼 )) + (1 −H(𝑅ℎ, 𝑅𝑙 )) · F (𝐼 )) . (10)

Subsequently, we also employ the CLIP visual encoder to extract
features from the augmented sticker image as 𝑣 ∈ R𝑑

𝑟
. The con-

textual features of ‘[CLS]’ token represent the image features. To
simulate the process of content invariant with intervention over
style (i.e., 𝑃 (𝑀𝑐 | 𝑑𝑜 (𝑀𝑠 ))), we optimize the CLIP visual encoder
with the standard triplet loss to focus on the content variable during
the above intervention. The triplet loss can be formulated as:

L𝑡𝑟𝑖 =𝑚𝑎𝑥{0, 𝜇 + Dis(𝑣𝑝 , 𝑣) − Dis(𝑣𝑝 , 𝑣𝑛)}, (11)

where 𝜇 denotes a margin and the distance function is defined
as Dis(𝑣1, 𝑣2) = 1−𝑣1 ·𝑣2

| |𝑣1 | |− | |𝑣2 | | . The | | · | | represents the L2 norm or
Euclidean norm of a vector.

4.2.3 Unbiased Visual Feature Representation. We aim to
fuse two types of visual features of the sticker image (i.e., 𝑣𝑝 and
𝑣) to obtain unbiased visual features. Specifically, we first simply
concatenate 𝑣𝑝 with 𝑣 as [𝑣𝑝 ; 𝑣]. Then, a linear layer is utilized to
transform [𝑣𝑝 ; 𝑣] into 𝑑𝑟 -dimensional representation, denoted as
unbiased visual features 𝑣 . Finally, we facilitate the alignment of the
emotional utterances representation with unbiased visual features
for further consistent and accurate emotion recognition. Specifically,
we consider the matched (ℎ𝑇 , 𝑣) pairs as positive samples, while
other samples in the current batch B serve as negative samples.
The contrastive loss [17] L𝑐𝑜 is used for multimodal alignment.

4.3 Multimodal Encoder
We adopt a standard transformer encoder Enc(·) to integrate the
multimodal features for information matching and emotion recog-
nition. Following [49], we concatenate the dialogue context into
a sequence and use BERT Embedding [8] layer to extract its fea-
tures {𝑥𝑖 }𝐿𝑑𝑖=1, where 𝐿𝑑 is the number of tokens in the dialogue.
To extract the textual information in the sticker, we incorporate
PaddleOCR [10] to recognize text within the sticker and utilize
BERT Embedding layer to obtain OCR feature {𝑥𝑖 }𝐿𝑜𝑖=1, where 𝐿𝑜 is
the length of the text. The multimodal encoder jointly processes
the dialogue context, emotional utterances features, OCR features
and unbiased visual features to obtain fusion features 𝑋 :

𝑋 = Enc( [𝑬<head> ;𝑥 ;ℎ𝑇 ;𝑥 ; 𝑣]), (12)

where𝑋 ∈ R𝑑𝑟 serve as the head token of output representation and
[; ] denotes the concatenation operation. 𝑬<head> is the embedding
of the ‘[HEAD]’ token.We train an emotion classifier with the cross-
entropy loss L𝑒𝑚 to predict the speaker’s emotion when selecting
the sticker. Finally, we apply a fully-connected layer to produce the
matching score of the positive or negative sticker. The multimodal
information matching loss can be described as:

L𝑚𝑎 = − log 𝑃 (𝑦𝑚 | 𝑋 ) , (13)

where the label 𝑦𝑚 indicates whether the dialogue information
matches the sticker image, where a positive label is assigned the
value of 1, while the negative label is 0. Note that for the negative
sticker image, we directly employ the features 𝑣𝑛 extracted by CLIP
as visual information input.

4.4 Total Loss
The objective of our CKS model is to minimize the total loss, i.e.,
emotion classification loss, contrastive loss and multimodal match-
ing loss. The definition of total loss is:

L =
1
𝐷

𝐷∑︁
𝑡=1
(L𝑚𝑎 + L𝑐𝑜 + 𝜆1L𝑒𝑚 + 𝜆2L𝑡𝑟𝑖 ), (14)

where 𝐷 is the total number of training samples, 𝜆1 and 𝜆2 stand
for hyperparameters.

5 Experiment
5.1 Dataset
We evaluate our approach and conduct experiments on the English
version of MOD [13] dataset. The dataset is derived from scenarios
of daily conversational dialogues, which contain 307 stickers and
48 kinds of emotion labels. In accordance with [49], we divide
each dialogue into multiple samples using the same preprocessing
method. Each sample in the dataset comprises segments of the
dialogue context along with an accompanying sticker. Specifically,
there are 212,248 dialogues for training set, 3,183 for validation set,
3,189 for easy test set and 6,986 for hard test set. Notably, the hard
test set includes stickers not encountered in the training set.

5.2 Experimental Details
We implement our method with Pytorch and train our model on
2 Tesla A100 40GB GPU cards. For the visual features extraction,
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we use ViT-B/32 [9] to initialize the CLIP visual encoder. For bi-
LSTM model, the dimension of the hidden state is set to 𝑑=300. The
output feature dimension 𝑑𝑟 of CLIP visual encoder and knowledge-
enhanced emotional utterance extractor is 768. The threshold of
low and high frequency for the band-pass filter in Eq. 9 are 0.005
and 0.7 respectively. The margin parameter 𝜇 for the triplet loss
is 0.2. Additionally, a transformer encoder model with 12 layers
and a width of 512 is adopted for the multimodal encoder. During
training, we adopt Adam optimizer [25] with an initial learning rate
of 1e-5 and weight decay of 3e-4 to optimize the total loss function
L. We set the batch size to 64 and a maximum of 50 epochs. During
inference, the number of candidate stickers 𝑁 is 11 in each dia-
logue. We combine contrastive scores with multimodal information
matching scores for sticker selection. We set hyperparameters 𝜆1
and 𝜆2 for the loss function in Eq. 14 are 0.5 and 0.3, respectively.

5.3 Comparing Models
To verify the superiority of our CKS model, we first compare our
method with six strong baseline models. The details of these base-
line models are elaborated as follows: CLIP [37] and ViLT [24] are
encoder-based vision-language models. We directly fine-tune them
for sticker selection task. MOD-GPT [13] and MMBERT [49] is
a language model based method to jointly process the sticker im-
age and dialogue context. Furthermore, MMBERT is currently the
state-of-the-art model in the sticker selection task. BLIP-2 [29] and
FROMAGe [26] are encoder-decoder based vision-language model.
Considering FROMAGe utilizes a large language model (LLM) (i.e.,
OPT-6.7B [48]) and has pre-trained on a large scale of multimodal
dialogue data, we directly apply it to the sticker selection task
without additional fine-tunings.

5.4 Evaluation Metric
5.4.1 Automatic Evaluation Metrics. Following previous re-
search [15, 49], we evaluate the performance by considering the
top 10 candidate stickers. We employ Recall at position 𝑘 in 10 can-
didates, denoted as R10@𝑘 (𝑘=1, 3, 5), where R10@5 is particularly
suitable for practical application scenarios. We also utilize mean
reciprocal rank (MRR10) to measure the average of the reciprocal
ranks of top-10 stickers. Besides, we also compute the emotion
classification performance accuracy scores (Acc.).

5.4.2 Human Evaluation Criteria. The automatic evaluation
metrics are insufficient to evaluate the accuracy of the sticker se-
lection since people frequently exhibit diverse sticker preference
in online dialogues rather than a single correct sticker. To further
refine our assessment, we invite 5 volunteers with good English
education to perform a manual evaluation. We randomly select 200
samples from each model with the same dialogue id and ask vol-
unteers to evaluate the quality of the ranking stickers using three
criteria: Precision at position 3 and 5 for sticker selection (P𝑠@3
and P𝑠@5) evaluates whether the appropriate sticker exists in the
top-3 and top-5 predicted stickers. Relevance to the top-3 emotional
utterances at position 3 (Rel-c) assesses the degree to the top-3
stickers align with the leading three emotional utterances identified
in the dialogue. Precision at position 3 for emotion classification
(P𝑒@3) evaluates whether the appropriate emotion exists in the
top-5 prediction. Specifically, the Rel-d and Rel-c are scored on a

scale from 0 to 2 (higher values indicate greater relevance), while
P𝑠@3, P𝑠@5 and P𝑚@3 are binary values for each sample. Table 3
shows the result of human evaluation. We choose CLIP, MOD-GPT
and MMBERT as the comparison.

5.5 Results and Analysis
5.5.1 Performance Comparison. Table 1 shows the automatic
evaluation results on the MOD dataset. We observe that: i) For
the validation and easy test set, our CKS outperforms all baseline
models with significant margins on all metrics consistently. For ex-
ample, our model improves the SOTA model MMBERT by “+10.24”
on R10@1, “+9.11” on R10@5, “+11.82” on MRR10 and “+5.75” on
the accuracy of emotion classification in easy test set, showcasing
its ability to select appropriate stickers in a way that resembles hu-
man emotional states. ii) By comparing the results in the hard test
set, our model also achieves better performance over the baseline
models on all metrics. In particular, CKS outperforms the MM-
BERT by “+7.29” and “+12.08” on the MRR10 and accuracy of the
emotion classification scores, respectively. This indicates that our
model can more accurately comprehend the semantic information
of utterances and the content of stickers, resulting in stronger gen-
eralization capabilities for selecting unseen stickers. iii) Notably,
except for CLIP, all compared models incorporate dialogue history
as input. Nonetheless, due to the absence of mining emotional ut-
terances information within the dialogue history and its alignment
with the unbiased visual features, they achieve lower scores than
our model on all metrics. This clearly underscores the importance
of emotional utterances within the dialogue context and unbiased
visual features for sticker selection.

5.5.2 Ablation Study. We conduct ablation experiments to ver-
ify the effectiveness of different components in our CKS model.
Experimental results are shown in Table 2. In particular, CKS w/o
ITC, CKS w/o ITM, CKS w/o Emo and CKS w/o OCR repre-
sent CKS without contrastive loss L𝑐𝑜 , multimodal information
matching loss L𝑚𝑎 , emotion classification loss L𝑒𝑚 and OCR in-
formation for the multimodal encoder respectively. We find that: i)
Compared to the results of CKS w/o KEUE and CKS, we observe
that the emotional utterances information contributes to a signif-
icant improvement in sticker selection. e.g., Acc. increases from
48.76 to 52.73, MRR10 increases from 48.97 to 54.86. It shows that
the knowledge-enhanced emotional utterance extractor (KEUE)
can effectively discern the emotional information in dialogues and
select stickers that more closely align with human emotion. ii) We
also investigate the effect of the visual knowledge deconfounder
(VKD) and content invariant module (CIM) respectively. The results
show that both modules in the unbiased visual feature extractor
contribute an important improvement, which can alleviate the spu-
rious correlations between sticker images and emotion, facilitating
the sticker selection process. iii) By employing contrastive, multi-
modal information matching and emotion classification loss, our
model also achieves an improvement on all metrics, e.g., “+4.98” on
MRR10 scores compared CKS with CKS w/o Emo. It shows the CKS
model’s capacity to facilitate a more refined alignment between
emotional utterances representation and unbiased visual features.
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Table 1: Main automatic metrics results on validation set, easy test set and hard test set. Bold: the maximum value in the
column. “-” indicates that these baseline models are primarily concentrated on the recall aspect of sticker selection, ignoring
the emotion recognition during the sticker selection.

Val Easy Test Hard Test

Model R10@1 R10@3 R10@5 MRR10 Acc. R10@1 R10@3 R10@5 MRR10 Acc. R10@1 R10@3 R10@5 MRR10 Acc.

CLIP [37] 21.90 47.72 66.04 41.00 - 22.26 48.41 66.07 40.52 - 16.96 39.54 58.88 35.73 -
ViLT [24] 17.31 40.00 63.27 35.37 - 20.86 49.95 70.09 41.65 - 14.55 32.82 56.32 32.16 -

MOD-GPT [13] 21.93 41.33 70.78 42.19 42.73 24.19 42.86 71.91 44.03 43.60 10.95 31.09 57.76 34.39 21.70
MMBERT [49] 23.97 40.75 73.45 44.58 45.27 25.65 43.74 76.17 46.61 51.09 11.43 34.41 59.63 36.58 29.69
BLIP-2 [29] 17.64 35.29 47.18 33.45 - 17.03 37.38 54.19 34.50 - 16.27 34.91 54.13 33.48 -

FROMAGe [26] 9.83 28.96 49.85 29.17 - 11.32 29.01 51.90 29.12 - 9.21 27.65 45.58 25.06 -
CKS 34.14 64.53 81.38 54.86 52.73 35.89 68.35 85.28 58.43 56.84 23.75 52.72 72.01 43.87 41.77

Table 2: Ablation study results. Bold: the maximum value.

Method R10@1 R10@3 R10@5 MRR10 Acc.

CKS w/o KEUE 29.25 59.82 75.81 48.97 48.76
CKS w/o VKD 31.13 59.25 76.53 46.33 49.08
CKS w/o CIM 32.95 62.01 77.91 50.52 50.39
CKS w/o ITC 30.10 60.26 78.23 49.97 49.79
CKS w/o ITM 29.91 60.16 76.97 49.53 49.08
CKS w/o Emo 30.57 59.39 77.22 49.88 -
CKS w/o OCR 32.56 62.20 78.98 53.05 50.38
CKS 34.14 64.53 81.38 54.86 52.73

Table 3:Human evaluation results. Bold: themaximumvalue.

Method P𝑠@3 P𝑠@5 Rel-c P𝑚@3
CLIP [37] 0.49 0.71 1.18 -
MOD-GPT [13] 0.47 0.68 0.92 0.58
MMBERT [49] 0.61 0.83 1.39 0.62
CKS 0.77 0.91 1.69 0.74

5.6 Case Study
Fig. 6 show selected stickers and predicted emotion by MOD-GPT,
MMBERT and CKS. the CKS model is the only model that correctly
selects the curious-themed sticker and predicts the correct emotion
in Fig. 6. Specifically, although the co-occurrence of “sad-themed
sticker + sad emotion label + word with sad emotion” / “word with
sad emotion” = 41.33%, our CKS model selects the curious-themed
sticker for the left speaker and recognizes the curious emotion,
which further validates the effectiveness of our method to alleviates
spurious correlations from dataset bias.

6 Conclusion
In this paper, we point out the spurious correlations in sticker
selection are caused by the harmful dataset bias, i.e., frequent
co-occurrence among the sticker images, words with emotional
preference and emotion of the speaker. We propose the Causal
Knowledge-Enhanced Sticker Selection (CKS) model to effectively
mitigate such spurious correlations from a causal view. Specifically,
we design a knowledge-enhanced emotional utterance extract to
obtain emotional utterances and the interventional visual feature

Figure 6: A case study of selected stickers and predicted emo-
tion by MOD-GPT, MMBERT and CKS.

extractor for the alignment of emotional utterances representa-
tion with unbiased visual features. Extensive experiments on MOD
dataset demonstrate the effectiveness of our CKS, which achieves
state-of-art performance in the sticker selection task.
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