
Learning from Offline Heterogeneous Demonstrations
via Reward-Policy Distillation Supplementary

Anonymous Author(s)
Affiliation
Address
email

1 Offline LfD Enhancements Detail1

AVRIL considers a distribution over the reward function and approximates the posterior, p(R|D),2

with a variational distribution, qϕ(R). It is trained by maximizing the Evidence Lower BOund3

(ELBO), shown in Equation 1, where p(R) is the prior distribution for the reward function, πE is4

the expert policy. The second equation follows by the assumption of Boltzmann rationality of the5

demonstrator [1].6

ELBO(ϕ) = Eqϕ [log p(D|R)]−DKL(qϕ(R)||p(R)])

= Eqϕ

 ∑
(s,a)∈D

log
exp (βQπE

R (s, a))∑
b∈A exp (βQπE

R (s, b))

−DKL(qϕ(R)||p(R)])
(1)

Directly optimizing the ELBO is not feasible as the gradient of QπE

R (s, a) with respect to ϕ is7

intractable. Therefore, AVRIL introduces a second variational approximation for QπE

R (s, a) with8

Qθ(s, a) and ensures the variational reward distribution, qϕ(R), is consistent with the variational Q9

function, Qθ(s, a), by Bellman equation, i.e., R(s, a) = Es′,a′∼π[Q
π
R(s, a)− γQπ

R(s
′, a′)].10

Here, we present a lemma to show how AVRIL Enhancement 1 (i.e., extending KL-divergence11

regularization on all actions) impacts reward learning. This enhancement could be viewed as a data12

augmentation technique to encourage a small distance to the prior distribution for any action for13

each state in the demonstration. We formalize the intuition in Lemma 1.14

Lemma 1. Assume the prior reward distribution, p(R(s, a)), is a Gaussian distribution partitioned15

on each state and action pair, minimizing LKL results in qϕ(R(s, a)) = p(R(s, a)) for each operated16

(s, a).17

Following Lemma 1 and our extended operation over b ∈ A, we have the following observation.18

Corollary 1.1. Assume we choose the prior reward distribution p(R(s, a)) to be Standard Gaussian19

distribution, N (0, 1). for s ∈ D, b ∈ A s.t. (s, b) /∈ D, optimizing LAVRIL leads to µϕ(s, b) = 0 and20

σ2
ϕ(s, b) = 1. The proof follows immediately by observing qϕ(R(s, b)) only gets gradient from LKL21

and the optimal solution of LKL is that µϕ(s, a) = 0 and σ2
ϕ(s, a) = 1.22

2 MPP Heterogeneity Analysis Details23

In our analysis, we seek to compare the variance of path features within each RP to the variance of24

path features across RPs, as this would help quantify how diverse expert demonstrations are. The25

demonstration for each RP is multivariate and not normal (after performing tests for normality and26

homoscedasticity), necessitating the use of the PERMANOVA test, which is non-parametric and is27

able to compare multivariate data. More specifically, it tests the null hypothesis that the centroid28

and dispersion for two groups are equivalent. To apply this test to the RP data, we tested each29

possible pair of RPs to see which ones have statistically significant differences in their distribution.30
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Hyperparameters Values
Training Itrs 1000
Learning Rate 0.0001
State Only Reward False
State Dim 4, 9
Action Dim 2
Gamma 0.99
Lambda 1.
Train Test Split 0.8
Min Number of Test Sols 1
Linear Reward False
Offline CQL Training Itrs 1000
Strategy Reward Regularization Coeffficient (MSRD and DROID) 0.01
Strategy Q Function Regularization Coeffficient (DROID) 0.001

Table 1: This table shows the hyperparameters we use for DROID and all benchmark algorithms.
All values separated with commas are for CartPole and MPP, respectively.

Therefore, if the PERMANOVA test has a low p-value for two RPs, this indicates that there is a31

significant amount of variation between those two RPs compared to within those two RPs. The32

Bonferroni-Holm method was used to account for the fact that many hypothesis tests are being33

performed.34

3 Experimental Setup35

For fair comparison on all baseline techniques, we share the same network architecture for each36

policy and reward with two hidden layers of 64 units along with GELU activation functions trained37

using Adam for 1000 iterations. For downstream policies, we train offline Conservative Q Learn-38

ing [2] with several improvements proposed in Rainbow [3] for 1000 iterations. Conservative Q-39

learning is an offline RL algorithm designed to guard against overestimation while avoiding explicit40

construction of a separate behavior model. We leverage several improvements including Dueling41

Double Q Networks and Distributional RL from Rainbow [3] to improve the CQL training. We list42

hyperparameters used in all algorithms in Table 1.43

In order to showcase the significance of our results on both the Cartpole and Mars datasets, we44

perform tests for normality and homoscedasticity and find that our metrics do not satisfy the as-45

sumptions of a parametric ANOVA test. Thus, we instead perform a non-parametric Friedman test46

followed by a posthoc Nemenyi–Damico–Wolfe (Nemenyi) test. We show significance by aligning47

subject groups (demonstrations) between different treatments (benchmark techniques) along each48

demonstration.49

3.1 CartPole50

3.1.1 Video Demonstrations51

We include demonstrations of heterogeneous behaviors along with each technique’s learned policies52

in CartPole in the link: https://tinyurl.com/droidcartpolevideos.53

3.1.2 Metrics54

Here, we describe the motivation behind each of the metrics, evaluated from rollouts of the policies55

with respect to expert demonstrations.56

1. Frechet Distance [4]: Compare the spatial and temporal differences of the trajectory from57

the agent’s policy with the expert trajectory to quantify how well the agent captures the58

motion pattern of the expert.59
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2. KL Divergence [5]: By estimating the state distribution within a trajectory by the kernel60

density estimator [6], this quantifies how well the learned policies state visitation matches61

the expert’s.62

3. Undirected Hausdorff Distance [7]: This measures the maxima between the two Directed63

Hausdorff distances: one mapping our learned policy’s trajectory to the expert trajectory,64

and the other mapping the expert trajectory to our learn policy’s trajectory. This metric65

studies how far the agent’s trajectory is from the expert’s trajectory.66

4. Average Log Likelihood: This measures the likelihood of expert demonstration under the67

learned policy.68

3.1.3 Analysis69

We showcase metrics in which DROID outperforms the baseline techniques in CartPole for the three70

experiments (Diverse Demonstration Modeling, Policy Transferability, and Reward Generalizability,71

c.f. main paper Result Section Q1-Q3) in Figure 1 and the statistics in Table 2. In the training task,72

DROID generates rollouts that align closer with expert behaviors, evidenced by stronger Undirected73

Hausdorff performance. Likewise, DROID does significantly better on ”Log Likelihood” on all tasks74

compared to the best baseline. Common reward-policy distillation helps guide DROID’s policies and75

rewards to better modeling expert preferences and thus better captures diversity in expert behaviors.76

3.2 Mars Path Planning77

3.2.1 Domain Introduction78

Exploring Mars has been a fascinating and challenging endeavor for space agencies around the79

world. The Curiosity Rover is the longest active autonomous vehicle NASA has sent to Mars to study80

the climate, geology, and potential habitability of the planet [8]. The Rover has been in operation81

for the past ten years and its path planning has been done by manual labor of Rover Planners (RPs)82

on Earth.83

There are several factors RPs consider when designing paths, including the change in elevation,84

distance to the desired destination, uncertainty about missing data on the terrain, etc. We study a85

dataset of Curiosity Rovers curated paths from 163 sols (a sol being a Martian day, approximately86

24.6 hours). We demonstrate in Section 4 of the main paper that there is significant heterogeneity87

Table 2: This table shows the APA-style statistical test results for Friedman (α = 0.05, d.o.f.=3),
Posthoc Nemenyi (α = 0.05) of DROID with respect to baselines in Cartpole (left). All reported
test statistics are significant other than the italicized metrics where no posthoc analysis is performed.

CartPole
Benchmark KL Frechet Undirected Log
Method Divergence Distance Hausdorff Likelihood

Diverse Demonstration Modeling (n = 40)
Friedman 26.31 49.26 50.76 104.25
DROID vs AVRIL Batch 1.95 2.42 3.11 -3.46
DROID vs AVRIL Single 3.81 4.33 3.63 -5.63
DROID vs MSRD 4.24 6.75 1.10 1.95

Policy Transferability (n = 20)
Friedman 14.10 25.44 28.5 51.54
DROID vs AVRIL Batch 0.86 0.45 3.18 2.81
DROID vs AVRIL Single 0.97 0.46 0.32 3.80
DROID vs MSRD 3.55 4.89 5.26 7.10

Reward (n = 20)
Friedman 2.22 0.54 0.30 13.38
DROID vs AVRIL Batch N/A N/A N/A 2.81
DROID vs AVRIL Single N/A N/A N/A 2.08
DROID vs MSRD N/A N/A N/A 3.43
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Figure 1: This barchart indicates along which metrics DROID outperforms the baseline techniques
in offline imitation learning, generalization, and reward transfer tasks using a posthoc Nemenyi-
Friedman analysis paired along each Sol.

between RP’s paths. Each RP has a specific priority among safety, efficiency, risk, and mission88

constraints that inform their path design. This motivates us to design an autonomous path-planning89

approach that learns from these heterogeneous experts.90

3.2.2 Dataset Curation91

The data consists of features that were created through a series of interviews with RPs, scientists,92

and engineers that ideally capture the decision-making process for rover path planning. The features93

were engineered to codify the reasoning behind the RP’s decisions. For example, RPs would visually94

analyze the terrain and map waypoints to avoid “rough” terrains but without quantifiable measures95

of what is considered rough. We identify the following features to encode the mental models and96

strategies of RPs with considerations of risks, efficiency, safety, and mission requirements.97

Table 3: This table shows the APA-style statistical test results for Friedman (α = 0.05, d.o.f.=3),
Posthoc Nemenyi (α = 0.05) of DROID with respect to baselines in MPP. All reported test statistics
are significant other than the italicized metrics where no posthoc analysis is performed

Mars Path Planning
Benchmark Undirected Distance from Final Log
Methods Hausdorff Waypoint Distance Likelihood

Diverse Demonstration Modeling (n = 114)
Friedman 153.94 71.58 223.59 29.74
DROID vs AVRIL Batch 2.82 2.98 2.54 4.61
DROID vs AVRIL Single 3.10 1.33 11.95 4.36
DROID vs MSRD 2.79 2.31 3.74 14.62

Policy Transferability (n = 49)
Friedman 41.29 19.53 68.98 83.59
DROID vs AVRIL Batch 4.39 4.99 3.35 1.56
DROID vs AVRIL Single 4.70 2.15 5.05 0.78
DROID vs MSRD 5.08 2.14 6.41 6.57

Reward (n = 49)
Friedman 10.81 0.47 78.68 0.77
DROID vs AVRIL Batch 3.48 N/A 5.91 N/A
DROID vs AVRIL Single 3.24 N/A 6.10 N/A
DROID vs MSRD 2.72 N/A 6.03 N/A
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Distance Feature – The distance feature measures the percent added distance the rover must take98

with the addition of intermediate waypoints in relation to the direct distance between the start and99

end waypoints. The aim of this feature is to drive the rover’s necessary additional distance. It100

is assumed that the path between waypoints is driven straight as RPs rarely drive curved paths101

and rather set additional intermediate points in the event the rover needs to avoid hazards between102

waypoints.103

Unknown Data Feature – In the construction of the height maps, data could be missing where the104

cameras are unable to see terrain beyond a hill or obstructions like a large rock or the rover itself.105

By traversing terrains with missing data, the RP places the rover at a higher risk of being damaged.106

The design of the Unknown Data Feature is to minimize the distance the rover traverses over terrain107

without data. We compute the unknown data feature as the percent data missing in the height map108

for proposed trajectories.109

Roughness Feature – Rover Planners ideally drive on relatively smooth surfaces, avoiding rough110

terrain that could potentially damage the rover’s hardware. Similarly, Rover Planners also look to111

avoid terrain that is too soft, to prevent a similar fate as Spirit getting stuck in sand [9]. Here,112

the roughness is computed as the difference of consecutive surface angles as the rover traverses to113

the goal point. The maximum roughness and the average roughness over proposed trajectories are114

measured to avoid large holes or rocks as well as minimize traveling on rough terrains.115

Pitch and Roll Feature – Pitch and roll of the rover’s orientation adds another level of safety checks116

that ensures that the rover will not face terrains that risk the rover rolling over.117

Turning Trajectory – We include the turning trajectory as a feature to track. This feature calculates118

the angle the rover must turn at intermediate waypoints. With this feature, the cost of taking sharp119

turns considers the rover’s hardware and long-term health.120

Waypoint Grid Construction – The 64x64 sized waypoint grid is constructed by scaling the terrain
height map along each axis and sampling the terrain map height at each (x,y) coordinate in the scaled
grid. We do so according to an inverse weighted distance from each point along the 4 nearest points
with height map data. We perform this scaling to limit the size of the action space of possible
waypoints we can visit.

H(x, y) =
h1

d1
+ h2

d2
+ h3

d3
+ h4

d4

1
d1

+ 1
d2

+ 1
d3

+ 1
d4

H represents the height evaluated at each point in the gaming area. (x, y) represent the correspond-121

ing coordinates and hi, di represent the height and distance away from the evaluated point in the122

dataset respectively.123

3.2.3 Description of Policy124

The action space exists on a 64 by 64 discrete grid of 4096 possible successor waypoints. This125

was chosen to be large enough so that we can have high precision when selecting waypoints. The126

average distance between grid points is ranges from 0.01m to 0.7m. We define our learned policy127

in Equation 2 from our learned Q-function Qθ.128

πθ(s) = max
a∈A

Qθ(s, a) (2)

As mentioned in Section Preprocessing, we consider the three-waypoint planning problem and there-129

fore, an action, a, (i.e., the intermediate waypoint) determines the trajectory as from the current point130

to the intermediate waypoint and then from the intermediate waypoint to the ending waypoint. We131

calculate the features of the action (i.e., next waypoint) for each of the two segments of the trajectory132

(current point to next waypoint, and next waypoint to goal point).133

3.2.4 Metrics134

Here we include further description of the metrics we study in the MPP problem:135
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Figure 2: This barchart indicates along which metrics DROID outperforms the baseline techniques
on our training, testing, and downstream reward transfer tasks using a posthoc Nemenyi-Friedman
analysis paired along each Sol.

1. Average Distance from Midpoint: The average distances from our policies’ predicted way-136

points to the demonstrated waypoints.137

2. Distance from Endpoint: The average distance from the final waypoint selected by the path138

generated by each technique to the goal point.139

3. Undirected Hausdorff Distance [7]: This metric measures the maxima between the Directed140

Hausdorff distances mapping both our learned policy’s set of waypoints to the expert way-141

points and vice-versa.142

4. Average Log Likelihood: This metric measures the likelihood of expert demonstration un-143

der the learned policy.144

3.2.5 Analysis145

We showcase the specific metrics that DROID outperforms baseline techniques on for MPP in Figure146

2 and statistics in in Table 3. Rather than assuming homogeneity across demonstrations or discard-147

ing data to design a personalized policy for each RP, DROID takes advantage of per-RP modeling148

and knowledge sharing to significantly outperform on 3/4 metrics in Offline IRL benchmark. On the149

policy generalization benchmark, DROID is also able to model the latent objectives from diverse150

experts to induce a trajectory in unseen Sols that align closer to the expert’s true path while suc-151

cessfully capturing the high-level common task goal. Lastly, DROID is the only technique to show152

significantly better performance on downstream reward transfer indicating the learned reward is a153

more useful encoding of an expert’s latent objective and can be used to better interpret the salient154

features for a given expert.155

3.2.6 Additional Qualitative Analysis156

In this section, we discuss the additional contributions of DROID to the goal of interpreting expert157

decision-making and how it is valuable in the domain of path planning for the Mars Curiosity Rover158

and future missions.159

Decomposition Learned Policy First, we analyze the our learned Q-function and study how it160

can provide insight into the decision-making process of our model. We showcase in Figure 3 how161

our technique can highlight the top 10 highest-rated successor waypoints from the start position and162
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Figure 3: These figures show DROID’s policy outputs on a terrain map to plan for the next way-
point from the Start point (left) and Waypoint 1 (right). The orange spheres represent the selected
waypoints of DROID and the expert. Highlighted in green above the terrain map are the top 10
highest-rated successor waypoints. The orange labels correspond to DROID’s found waypoints and
the red labels correspond to the expert demonstration’s waypoints.

Figure 4: This figure shows a heatmap of Sol 2163 of DROID’s Strategy Reward log standard
deviation estimate, where higher value represents greater uncertainty in the reward estimation.

midpoint position respectively. Providing multiple options aligned with the expert’s latent prefer-163

ence could be beneficial for a future assistive tool for RPs. Expert drivers at NASA can also study164

DROID’s recommended waypoint and similar waypoints that are rated highly by our model. If an165

expert disagrees with the best action identified by DROID, we can find several additional options166

that align with that expert’s latent preferences.167

Uncertainty of Reward Estimate We examine the uncertainty in the reward predictions of our168

model by plotting the standard deviation of the strategy reward posterior. As shown in Figure 4,169

we can estimate how uncertain our model is about different parts of the terrain due to the limited170

coverage of the dataset. Intuitively, areas of the state space where the demonstrations have not171

covered, such as the edges of the terrain, have a higher estimate of uncertainty.172

Proposed Application to NASA The explanability provided by DROID has significant potential173

application as a supplementary planning tool for interplanetary exploration. By leveraging a Shapely174

value analysis of the importance of different factors such as the change in elevation and uncertainty175
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about missing data on the terrain, rover planners can gain a deeper understanding of the objective176

function our algorithm extracts for modeling rover path planning. Therefore, DROID can explain177

what features contribute most to its perceived estimate of any human or AI-designed path.178

This may have application to informing the design of future missions by providing more insight179

into the limitations of the rover and the types of environments in which it is best suited to operate.180

As shown on the Curiosity Rover dataset, DROID could be applied to give rapid feedback about181

paths that best avoid sharp rocks (Rough Terrain) which may damage the open holes on the rover’s182

wheels [10], thus improving the longevity of the rover. Similarly, with additional data, such as183

orbital satellite imagery, our approach could be used to evaluate the value of landing sites [11] by184

studying our learned RP objective function on constructed terrain maps.185

Furthermore, the ability to model different strategies taken by human drivers could potentially be186

used in the future by JPL in the development of training programs. We hope a future application187

of DROID would be to capture difficult-to-articulate tribal knowledge among rover planners and188

identify the most important features to trainees. We can describe implicitly understood knowledge189

to help train new drivers at NASA faster and with greater efficiency. By letting DROID explain190

which features have the greatest contribution to the underlying latent RP strategy, human drivers can191

better understand what features to consider when navigating other extraterrestrial terrains.192

Our hope is that DROID lessens the burden for operators to plan out daily schedules for rovers (since193

it performs automated path planning that better optimizes for operator preferences). Moreover, the194

algorithm’s ability to reason under uncertainty makes it particularly useful for fast path planning in-195

ference, even when there is occluded information from cameras or other sensors. With the DROID’s196

ability to learn diverse expert strategies and plan under uncertainty/occlusions, our algorithm could197

further advance fast autonomous rover exploration.198

3.2.7 Ablation199

In this section, we perform an ablation study to evaluate the effectiveness of different components200

of our approach compared to our method DROID. Ablation 1-6 corresponds to the following:201

1. DROID without AVRIL improvements 1 and 2202

2. DROID without AVRIL Improvement 1203

3. DROID without AVRIL Improvement 2204

4. DROID without any distillation205

5. DROID without policy distallation206

6. DROID without reward distillation207

Table 4 summarizes the results of our ablation study in the MPP problem. We find that on the Diverse208

Demonstration modeling task, DROID consistently outperforms all ablation variants across all met-209

rics (other than Distance from Waypoint which where it comes second), indicating the importance of210

both reward and policy distillation in our approach. We also observe that DROID without “AVRIL211

Improvement 1” and DROID without “AVRIL Improvement 2” perform worse than DROID, sug-212

gesting that both improvements are effective in improving the performance of our approach. We213

also find that removing policy distillation or reward distillation leads to a significant decrease in214

performance, indicating the importance of both types of distillation in our approach.215

Likewise, table 5 showcases the results of the ablation study in the policy transferability task.216

“DROID without policy distillation” (Ablation 5)’s strong waypoint modeling performance is217

matched by DROID performs comparably and it outperforms Ablation 5 with much stronger per-218

formance on goal point finding. “DROID without any distillation” achieves strong Log Likelhood219

performance but does not match DROID’s generalization capacity where DROID has better Undi-220

rected Hausdorff, suggesting it can model expert’s desired waypoints closer than any other ablated221

techniques.222
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Table 4: This table shows the ablation performance of DROID along the Diverse Demonstration
Modeling task. Bold indicates the best-performing model of the metric.

Method Distance from Waypoint Final Distance Undirected Hausdorff Log Likelihood
Ablation 1 4.871 1.557 8.391 -10.157
Ablation 2 6.084 0.288 7.575 -10.104
Ablation 3 7.126 0.571 7.287 -8.431
Ablation 4 6.720 0.209 7.441 -8.419
Ablation 5 3.910 4.014 7.498 -225.212
Ablation 6 5.556 6.783 9.389 -14.479
DROID 4.592 0.070 6.780 -7.261

Table 5: This table shows the ablation performance of DROID along the Policy Transfer task. Bold
indicates the best-performing model of the metric.

Method Distance from Waypoint Final Distance Undirected Hausdorff Log Likelihood
Ablation 1 8.086 1.842 8.945 -15.010
Ablation 2 8.071 1.615 8.331 -16.334
Ablation 3 9.318 3.933 9.644 -16.503
Ablation 4 8.518 0.576 7.744 -11.391
Ablation 5 6.162 7.295 9.537 -13.610
Ablation 6 8.026 9.078 9.246 -30.037
DROID 6.144 0.277 6.407 -18.483

Overall, our ablation study confirms the effectiveness of our proposed approach and highlights223

the importance of both reward and policy distillation, as well as the two AVRIL improvements,224

in achieving state-of-the-art performance.225

4 Additional Related Works226

In this section, we describe additional related works regarding offline path planning under uncer-227

tainty and navigation beyond an MDP setting.228

Path Planning Algorithm. Several works use human-inspired admissible heuristic functions to229

plan paths [12, 13]. Yet, these functions are handcrafted and require domain expertise to design.230

Model Predictive Path Integral (MPPI) is studied for local path following for rovers [14]. However,231

classical path planning approaches fail without a high-fidelity simulator [15, 16]. Other works look232

at the problem of path planning to maximize a reward function [17, 18, 19] under uncertainty. How-233

ever, these techniques leverage exploration to obtain a better estimate of their cost function, which234

may not be feasible in offline learning. Our algorithm, DROID, learns heterogeneous preferences235

and policies directly from expert demonstrations, without the assumption of a hand-designed reward236

function or a simulator.237

Generalization Performance of Navigation Algorithms. Another important factor in offline path238

planning is the generalization performance of the planning algorithm to novel terrains. To improve239

the generalization performance, existing work attempts to decouple the training of a feature ex-240

traction block and navigation block using Deep RL [20]. However, they perform online planning241

along 2D navigation cost-map to extract an attention map which is not feasible in the offline setting.242

Additionally, Meng et al. [21] proposes a path planning algorithm that balances the trade-off be-243

tween safety and efficiency under uncertainty. However, this approach does not generalize to unseen244

environments that contain new or additional obstacles.245

Path Planning on the Martian Domain. There are several prior works that study path planning246

in the Martian domain but focus on local path planning and do not address long path planning.247

Hedrick et al. [22] proposes efficient Martian path planning and Rover-IRL [11] learns a cost func-248

tion from demonstration but both fail to plan under uncertainty which is a key assumption in the249

Mars domain [10].250
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