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ABSTRACT

Recent advances in large language models (LLMs) demonstrate substantial capa-
bilities in natural language understanding and generation tasks. With the growing
number of LLMs, how to harness the collective expertise of multiple LLMs is an
exciting open direction. Toward this goal, we propose a new approach that lever-
ages the collective strengths of multiple LLMs through a Mixture-of-Agents (MoA)
methodology. In our approach, we construct a layered MoA architecture wherein
each layer comprises multiple LLM agents. Each agent takes all the outputs from
agents in the previous layer as auxiliary information in generating its response.
MoA models achieves state-of-art performance on AlpacaEval 2.0, Arena-Hard,
MT-Bench, and FLASK, surpassing GPT-4 Omni. For example, our MoA using
only open-source LLMs achieves a score of 65.1% on AlpacaEval 2.0 compared to
57.5% by GPT-4 Omni.1

1 INTRODUCTION

Figure 1: AlpacaEval 2.0 LC win rates im-
prove when provided with responses from the
six models in this figure. Table 1 presents the
template.

Large language models (LLMs) (Zhang et al., 2022a;
Chowdhery et al., 2022; Touvron et al., 2023a; Team
et al., 2023; Brown et al., 2020; OpenAI, 2023) have
significantly advanced the field of natural language
understanding and generation in recent years. These
models are pretrained on vast amounts of data and
subsequently aligned with human preferences to gen-
erate helpful and coherent outputs (Ouyang et al.,
2022). However, despite the plethora of LLMs and
their impressive achievements, they still face inherent
constraints on model size and training data. Further
scaling up these models is exceptionally costly, of-
ten requiring extensive retraining on several trillion
tokens.

At the same time, different LLMs possess unique
strengths and specialize in various tasks aspects. For
instance, some models excel at complex instruction
following (Xu et al., 2023a) while others may be better suited for code generation (Roziere et al.,
2023; Guo et al., 2024). This diversity in skill sets among different LLMs presents an intriguing
question: Can we harness the collective expertise of multiple LLMs to create a more capable and
robust model?Our answer to this question is Yes. We identify an inherent phenomenon we term the
collaborativeness of LLMs — wherein an LLM tends to generate better responses when presented
with outputs from other models, even if these other models are less capable by itself. Figure 1
showcases the LC win rate on the AlpacaEval 2.0 benchmark (Dubois et al., 2024) for 6 popular
LLMs. We first tested each model independently, and then use each of them as an aggregator to

∗Work done while interning at Together AI
1https://github.com/togethercomputer/moa.
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Figure 2: Illustration of the Mixture-of-Agents Structure. This example shows 4 MoA layers where
the first layer has 3 proposers, the second and third layer have 3 aggregators that also serve as
proposers for the next layer, and the last layer has one aggregator.

combine their outputs. We found when a model is provided with answers generated by other models,
its LC win rate significantly improves. This indicates that the collaborativeness phenomenon is
widespread among LLMs. Remarkably, this improvement occurs even when the auxiliary responses
provided by the other models are of lower quality than what an individual LLM could generate
independently.

Based on this finding, this paper introduces a Mixture-of-Agents (MoA) methodology that leverages
multiple LLMs to iteratively enhance the generation quality. The structure of MoA is illustrated
in Figure 2. Initially, LLMs in the first layer, denoted as Agents A1,1, ...A1,n independently gen-
erate responses to a given prompt. These responses are then presented to agents in the next layer
A2,1, ...A2,n (which may reuse a model from the first layer) for further refinement. This iterative
refinement process continues for several cycles until obtaining a more robust and comprehensive
response.

To ensure effective collaboration among models and improve overall response quality, careful
selection of LLMs for each MoA layer is crucial. This selection process is guided by two primary
criteria: (a) Performance Metrics: The win rate of each model plays an important role in determining
their inclusion in MoA. (b) Diversity Considerations: The diversity of model outputs is also crucial,
and responses generated by heterogeneous models contribute significantly more than those produced
by the same model, as we show later in section 3.3. By leveraging these criteria — performance and
diversity — MoA aims to mitigate individual model deficiencies and enhance overall response quality
through collaborative synthesis.

We conduct comprehensive evaluations using AlpacaEval 2.0, Arena-Hard (Li et al., 2024), MT-
Bench (Zheng et al., 2023), FLASK (Ye et al., 2023) benchmarks for assessing the response quality
across various dimensions. The results demonstrate substantial improvements with our proposed
method, achieving SOTA win rate of 65.8% on AlpacaEval 2.0, outperforming GPT-4 Omni.

The contributions of this work are summarized as follows: (1) Novel framework: we propose
a Mixture-of-Agents framework designed to leverage the strengths of multiple LLMs, thereby
improving their reasoning and language generation capabilities. (2) Finding of collaborativeness
of language models: we highlight the inherit collaborativeness among LLMs, where models tend
to generate better quality responses when they have access to outputs from other models, even if
those outputs are of lower quality. (3) State-of-the-art LLM performance: we conducted extensive
experiments using multiple highly-competitive benchmarks such as AlpacaEval 2.0, MT-Bench, and
FLASK; our MoA framework achieves state-of-the-art performance on these benchmarks.

2 MIXTURE-OF-AGENTS METHODOLOGY

In this section, we present our proposed methodology for leveraging multiple models to achieve
boosted performance. We begin by demonstrating that LLMs possess collaborativeness and thus
can improve their responses based on the outputs of other models. Following this, we introduce the
Mixture-of-Agents methodology and discuss its design implications.
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2.1 COLLABORATIVENESS OF LLMS

We begin by demonstrating the collaborativeness of LLMs, specifically their ability to generate higher
quality responses when they can reference outputs from other models. As we have shown in the
introduction and Figure 1, many of today’s available LLMs exhibit this collaborative capability.

An important pathway to extract maximum benefits from collaboration of multiple LLMs is to
characterize how different models are good at in various aspects of collaboration. During the
collaboration process, we can categorize LLMs into two distinct roles:

Proposers excel at generating useful reference responses for use by other models. While a good
proposer may not necessarily produce responses with high scores by itself, it should offer more
context and diverse perspectives, ultimately contributing to better final responses when used by an
aggregator.

Aggregators are models proficient in synthesizing responses from other models into a single, high-
quality output. An effective aggregator should maintain or enhance output quality even when
integrating inputs that are of lesser quality than its own.

Section 3.3 empirically validate the roles of aggregators and proposers. Specifically, we show that
many LLMs possess capabilities both as aggregators and proposers, while certain models displayed
specialized proficiencies in distinct roles. GPT-4o, Qwen1.5, LLaMA-3 emerged as a versatile model
effective in both assisting and aggregating tasks. In contrast, WizardLM demonstrated excellent
performance as an proposer model but struggled to maintain its effectiveness in aggregating responses
from other models.

Given that an aggregator can generate higher-quality responses by building upon outputs from
other models, we propose further enhancing this collaborative potential by introducing additional
aggregators. One intuitive idea is to replicate the exercise with multiple aggregators — initially
using several to aggregate better answers and then re-aggregating these aggregated answers. By
incorporating more aggregators into the process, we can iteratively synthesize and refine the responses,
leveraging the strengths of multiple models to produce superior outcomes. This leads to the design of
our proposed Mixture-of-Agents.

2.2 MIXTURE-OF-AGENTS

The structure of MoA is illustrated in Figure 2. It has l layers and each layer-i consists of n LLMs,
denoted by Ai,1, Ai,2, ..., Ai,n. It is important to note that LLMs can be reused either within the
same layer or across different layers. When many LLMs in a layer are identical, this configuration
leads to a special structure that corresponds to a model generating multiple possibly different outputs
(due to the stochasticity of temperature sampling). We refer to this setting as single-proposer, where
only a sparse subset of models are activated.

Here, each LLM Ai,j processes an input text and generates its continuation. Our method does not
require any fine-tuning and only utilizes the interface of prompting and generation of LLMs. Formally,
given an input prompt x1, the output of i-th MoA layer yi can be expressed as follows:

yi = ⊕n
j=1[Ai,j(xi)] + x1, xi+1 = yi (1)

where + here means concatenation of texts; ⊕ means application of the Aggregate-and-Synthesize
prompt shown in Table 1 to these model outputs. Table 1 represents the template of system prompt,
and the original user query is included immediately after this system prompt.

In practice, we do not need to concatenate prompt and all model responses so only one LLM is needed
to be used in the last layer. Therefore, we use the output of an LLM from the l-th layer (Al,1(xl)) as
the final output and evaluate the metrics based on it.

2.3 ANALOGY TO MIXTURE-OF-EXPERTS

Mixture-of-Experts (MoE) (Shazeer et al., 2017) is a prominent and well-established technique
in machine learning where multiple expert networks specialize in different skill sets. The MoE
approach has shown significant success across various applications due to its ability to leverage
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Table 1: Aggregate-and-Synthesize Prompt to integrate responses from other models.

You have been provided with a set of responses from various open-source models to the latest user query. Your
task is to synthesize these responses into a single, high-quality response. It is crucial to critically evaluate the
information provided in these responses, recognizing that some of it may be biased or incorrect. Your response
should not simply replicate the given answers but should offer a refined, accurate, and comprehensive reply
to the instruction. Ensure your response is well-structured, coherent, and adheres to the highest standards of
accuracy and reliability.

Responses from models:
1. [Model Response from Ai,1]
2. [Model Response from Ai,2]
...
n. [Model Response from Ai,n]

diverse model capabilities for complex problem-solving tasks. Our MoA method draws inspiration
from this methodology.

A typical MoE design consists of a stack of layers known as MoE layers. Each layer comprises a
set of n expert networks alongside a gating network and includes residual connections for improved
gradient flow. Formally, for layer i, this design can be expressed as follows:

yi =

n∑
j=1

Gi,j(xi)Ei,j(xi) + xi (2)

where Gi,j represents the output from the gating network corresponding to expert j, and Ei,j denotes
the function computed by expert network j. The leverage of multiple experts allows the model to
learn different skill sets and focus on various aspects of the task at hand. The gating network G
dynamically routes to the appropriate experts, enabling efficient utilization of computational resources
by activating only the specialized sub-networks necessary.

From a high-level perspective, our proposed MoA framework extends the MoE concept to the model
level by operating at the model level rather than at the activation level. Specifically, our MoA approach
leverages LLMs and operates entirely through the prompt interface rather than requiring modifications
to internal activations or weights. This means that instead of having specialized sub-networks within
a single model like in MoE, we utilize multiple full-fledged LLMs across different layers. Note that in
our approach, we consolidate the roles of the gating network and expert networks using a LLM, as the
intrinsic capacity of LLMs allows them to effectively regularize inputs by interpreting prompts and
generating coherent outputs without needing external mechanisms for coordination. For this work, we
design and evaluate MoA in a dense configuration, where all "expert" LLMs in the network process
the inputs. However, the method can be seamlessly extended to a sparse configuration, dynamically
selecting which LLMs to generate.

Moreover, since this method relies solely on prompting capabilities inherent within off-the-shelf
models: (1) It eliminates computational overhead associated with fine-tuning; (2) It provides flexibility
and scalability: our method can be applied to the latest LLMs regardless of their size or architecture.

3 EVALUATION

This section presents a comprehensive evaluation of our proposed MoA. Our findings show that:

1. We achieve significant improvements on AlpacaEval 2.0, Arena-Hard, MT-Bench, and
FLASK benchmarks. Notably, with open-source models only, our approach outperforms
GPT-4o on AlpacaEval 2.0, MT-Bench, and FLASK.

2. We conduct extensive experiments to provide better understandings of the internal mecha-
nism of MoA.

3. Through a detailed budget analysis, several implementations of MoA can deliver better
performance to GPT-4 Turbo while being 2× more cost-effective.
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3.1 SETUP

Benchmarks We mainly evaluate models on AlpacaEval 2.0 (Dubois et al., 2024), a leading
benchmark for assessing the alignment of LLMs with human preferences. It contains 805 instructions
representative of real use cases. Each model’s response is directly compared against that of the GPT-4
(gpt-4-1106-preview), with a GPT-4-based evaluator determining the likelihood of preferring
the evaluated model’s response. To ensure fairness, the evaluation employs length-controlled (LC)
win rates, effectively neutralizing length bias.2

Additionally, we also evaluate on Arena-Hard (Li et al., 2024), MT-Bench (Zheng et al., 2023)
and FLASK (Ye et al., 2023). Arena-Hard evaluates performance on 500 challenging user queries,
encompassing a diverse range of topics such as coding, mathematics, and logic puzzles. MT-Bench
uses GPT-4 to grade and give a score to model’s answer. FLASK, on the other hand, offers a more
granular evaluation with 12 skill-specific scores.

Models In our study, we constructed our default MoA by using only open-source models to achieve
competitive performance. The models included are: Qwen1.5-110B-Chat (Bai et al., 2023), Qwen1.5-
72B-Chat, WizardLM-8x22B (Xu et al., 2023a), LLaMA-3-70B-Instruct (Touvron et al., 2023b),
Mixtral-8x22B-v0.1 (Jiang et al., 2024), dbrx-instruct (The Mosaic Research Team, 2024). We
construct 3 MoA layers and use the same set of models in each MoA layer. We use Qwen1.5-110B-
Chat as the aggregator in the last layer. We also developed a variant called MoA w/ GPT-4o, which
prioritizes high-quality outputs by using GPT-4o as the aggregator in the final MoA layer. Another
variant, MoA-Lite, emphasizes cost-effectiveness. It uses the same set of models as proposers but
includes only 2 MoA layers and employs Qwen1.5-72B-Chat as the aggregator. This makes it more
cost-effective than GPT-4o while achieving a 1.8% improvement in quality on AlpacaEval 2.0. We
ensure strict adherence to the licensing terms of all models utilized in this research. For open-source
models, all inferences were ran through Together Inference Endpoint.3 We mainly use large models
to prioritize accuracy here, but we observed similar performance improvements with smaller models
as well. The results can be found in Appendix A.

3.2 BENCHMARK RESULTS

In this subsection, we present our evaluation results on three standard benchmarks: AlpacaEval 2.0,
Arena-Hard, MT-Bench, and FLASK. These benchmarks were chosen to comprehensively assess the
performance of our approach and compare with the state-of-the-art LLMs.

AlpacaEval 2.0 We conducted comparisons against leading models such as GPT-4 and other
state-of-the-art open-source models. The detailed results are presented in Table 2 where our MoA
methodology achieved top positions on the AlpacaEval 2.0 leaderboard, demonstrating a remarkable
8.2% absolute improvement over the previous top model, GPT-4o. Moreover, it is particularly
noteworthy that our model outperformed GPT-4o using solely open-source models, achieving a
margin of 7.6% absolute improvement from 57.5% (GPT-4o) to 65.1% (MoA). Our MoA-Lite setup
uses less layers and being more cost-effective. Even with this lighter approach, we still outperform the
best model by 1.8%, improving from 57.5% (GPT-4o) to 59.3% (MoA-Lite). This further highlights
the effectiveness of our method in leveraging open-source models capabilities with varying compute
budget to their fullest potential.

Arena-Hard In the Arena-Hard benchmark, our MoA with GPT-4o achieved a 90.3% score,
significantly outperforming GPT-4o’s single model score 79.2%. Even the more cost-effective MoA-
Lite variant showed strong results with a 71.3% win rate. These results highlight the robustness and
efficiency of our approach in challenging prompts.

MT-Bench Though improvements over individual models on the MT-Bench are relatively incre-
mental, this is understandable given that current models already perform exceptionally well on this
benchmark, as a single model alone can achieve scores greater than 9 out of 10. Despite the marginal

2This metric tracks closely with human preferences, achieving a Spearman correlation of 0.98 with actual
human evaluations (Dubois et al., 2024).

3https://api.together.ai/playground/chat
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Table 2: Results on AlpacaEval 2.0, Arena-Hard, and MT-Bench. MoA and MoA-Lite correspond to
the 6 proposers with 3 layers and with 2 layers respectively. MoA w/ GPT-4o corresponds to using
GPT-4o as the final aggregator in MoA. MoA-Lite-Single has the same aggregator but only contains
one proposer which is Qwen1.5 110B Chat. We ran our experiments three times and reported the
average scores along with the standard deviation. † denotes our replication of the AlpacaEval results.
We ran all the MT-Bench scores ourselves to get turn-based scores. ‘Agg.’ denotes the aggregated
score with formula: (AlpacaEval-LC-win + Arena-Hard-win + MT-Bench-score × 10)/3.

AlpacaEval 2.0 Arena-Hard MT-Bench

Model Agg. LC win. win. win. Avg. 1st turn 2nd turn

MoA w/ GPT-4o 83.3 65.7±0.7% 78.7±0.2% 90.3±0.5% 9.40±0.06 9.49 9.31
MoA 78.3 65.1±0.6% 59.8±0.3% 77.4±0.5% 9.25±0.10 9.44 9.07
GPT-4 Turbo (04/09) 76.7 55.0% 46.1% 82.0 9.31 9.35 9.28
GPT-4 Omni (05/13) 76.2 57.5% 51.3% 79.2 9.19 9.31 9.07
MoA-Lite 74.1 59.3±0.2% 57.0±0.7% 71.3±0.7% 9.18±0.09 9.38 8.99
GPT-4 Preview (11/06) 73.6 50.0% 50.0% 78.7 9.20 9.38 9.03
WizardLM 8x22B† 70.1 51.3% 62.3% 71.3 8.78 8.96 8.61
MoA-Lite-Single 64.7 47.8% 37.9% 59.5 8.69 9.19 8.19
Qwen1.5 110B Chat 63.3 43.9% 33.8% 56.4 8.96 9.23 8.63
Llama 3 70B Instruct 56.8 34.4% 33.2% 46.6 8.94 9.2 8.68
GPT-4 (03/14) 53.9 35.3% 22.1% 37.9 8.84 9.08 8.61
Qwen1.5 72B Chat 52.4 36.6% 26.5% 36.1 8.44 8.55 8.34
Mixtral 8x22B v0.1 51.7 30.9% 22.2% 36.4 8.78 9.11 8.44
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Figure 3: Results on FLASK where we use the
default 6-proposer MoA setup and Qwen1.5-110B
is the aggregator. We include the results of GPT-
3.5, GPT-4o, and Qwen1.5-110B when used as
standalone models for comparison.
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erating proposed answers 6 times, with Qwen1.5-
110B as aggregator.

enhancements, our approach still secures the top position on the leaderboard. This demonstrates
that even with already highly optimized benchmarks, our method can push the boundaries further,
maintaining the leadership.

FLASK FLASK provides fine-grained evaluation of models. Among those metrics, MoA excels in
several key aspects. Specifically, our methodology shows improvement in robustness, correctness,
insightfulness, compared to the single model score of the aggregator, Qwen-110B-Chat. Additionally,
MoA also outperforms GPT-4 Omni in terms of insightfulness, correctness, factuality, completeness,
and metacognition. One metric where MoA did not do as well was conciseness; the model produced
outputs that were moderately more verbose.
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Figure 5: (a) LC win rate on AlpacaEval 2.0 with different aggregators in the 6-model Mixture-of-
Agents setup. All the curves use the same 6 proposer agents; they only differ in the choice of the final
aggregator. The LLM ranker uses Qwen1.5-110B-Chat model with a prompt format in Appendix
Appendix C. The GPT-4o model is only used to aggregate the output for the purpose of evaluation and
does not participate as a proposer towards the next layer. (b) Spearman correlation between BLEU
scores (calculated using 3-gram, 4-gram, and 5-gram metrics) and win rate of the proposed outputs.

3.3 WHAT MAKES MIXTURE-OF-AGENTS WORK WELL?

In this subsection, we conduct experiments that provide us better understandings of the internal
mechanism of Mixture-of-Agents. We summarize key insights below.

Mixture-of-Agents significantly outperforms LLM rankers. First, we compare Mixture-of-
Agents with an LLM-based ranker which uses the aggregator model to select one of the answers that
are generated by the proposers, instead of generating a new output. The results are shown in Figure 5,
where we can observe that the MoA approach significantly outperforms an LLM-ranker baseline.
The fact that MoA outperforms the ranking approach suggests that the aggregator does not simply
select one of the generated answers by the proposers, but potentially performs more sophisticated
aggregation over all proposed generations.

MoA tends to incorporate the best proposed answers. We also compare the aggregator’s response
with the proposers’ responses via similarity scores such as BLEU (Papineni et al., 2002) which reflects
n-gram overlaps. Within each sample, given n proposed answers by the proposers, we calculate
the Spearman’s rank correlation coefficient between the n similarity scores and the n preference
scores determined by the GPT-4 based evaluator. The results in Figure 5 indeed confirms a positive
correlation between the win rate and the BLEU score. We also provide results with Levenshtein
similarity (RapidFuzz, 2023) or TF-IDF as opposed to BLEU scores in Appendix B. where both
alternative approaches for textual similarities also yield positive correlation with the preference scores.
For similarity comparison between proposers and aggregator, can refer to Appendix G.

Relationship of single model win rates to the MoA system. Our results indicate a positive
relationship between the individual LLM’s performance in each role (proposer or aggregator) and the
final performance of MoA. Through linear regression analysis, presented in Figure 4, with the x-axis
representing the model’s performance as a proposer/aggregator (we adopt adopt the Single-Proposer
setting for the proposer one), and the y-axis representing the MoA’s final performance, we observed
that the regression coefficient for the aggregator model (0.588) is higher than that for the proposer
model (0.281). This suggests that high-quality models are useful for both the aggregator and proposer
roles. The steeper slope for the aggregator fit suggests that the final MoA performance is more
sensitive to the quality of the aggregator model than the proposer.

Effect of model diversity and the number of proposers. We analyze how the number of proposals
affect the final output quality by varying n, the number of proposers in each layer. We show the
results in Table 3 where we find that scores increases monotonically with n, reflecting the benefits
of having more auxiliary information. In addition, we also quantify the impact of using a diverse
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Table 3: Effects of the number of proposer models
on AlpacaEval 2.0. We denote n as either the
number of models in an MoA layer or the number
of proposed outputs in the single-proposer setting.
We use Qwen1.5-110B-Chat as the aggregator
and use 2 MoA layers for all settings in this table.

Setting Multiple-Proposer Single-Proposer

n = 6 61.3% 56.7%
n = 3 58.0% 56.1%
n = 2 58.8% 54.5%
n = 1 47.8% 47.8%

Table 4: Impact of different models serving as
proposers vs aggregators. When evaluating aggre-
gators, all six models serve as proposers; when
evaluating proposers, Qwen1.5-110B-Chat serves
as the aggregator. We use 2 MoA layers here.

Model As aggregator As proposer

Qwen1.5-110B-Chat 61.3% 56.7%
Qwen1.5-72B-Chat 59.3% 53.3%
LLaMA-3-70b-Instruct 45.0% 60.6%
WizardLM 8x22B 52.9% 63.8%
Mixtral-8x22B-Instruct 48.4% 54.8%
dbrx-instruct 41.5% 55.1%

Table 5: Comparison of Multi-Agent Methods.

Method # Aggregation AlpacaEval2 (LC) Avg Cost ($)

Standalone 0 43.9 -

MoA 1 61.3 0.00852
2 65.7 0.03150

MAD 1 53.5 0.00819
2 50.6 0.03140

Reconcile 1 47.6 0.00818
2 47.7 0.02910

set of LLMs as proposers. For each n, we compare two settings: “single-proposer” where the n
responses are generated by the same LLM with a temperature of 0.7; and “multiple-proposer” where
each response is generated by a different LLMs. Overall, using multiple different LLMs consistently
yielded better results. Both results suggest that having a larger number of diverse LLM agents in each
MoA layer can improve performance. Further scaling the width of MoA is a promising direction of
future investigation.

Specialization of models in the MoA ecosystem. We also conducted experiments to determine
which models excel in specific roles. Specifically, Table 4 shows that GPT-4o, Qwen, LLaMA-3
emerged as a versatile model effective in both assisting and aggregating tasks. In contrast, WizardLM
demonstrated excellent performance as an proposer model but struggled to maintain its effectiveness
in aggregating responses from other models.

Comparison to Existing Multi-Agent Methods We conducted comparative experiments to evalu-
ate MoA against existing multi-agent methods like MAD Liang et al. (2023) and Reconcile Chen
et al. (2023a), which typically focus on tasks with short, deterministic answers and are not directly
applicable to open-ended, contextually rich chat scenarios. We adapted their prompts for chatting and
removed features like JSON outputs and confidence levels for Reconcile.

Our results (Table 5) show that MoA consistently outperforms MAD and Reconcile. With one round
of aggregation, MoA achieves an AlpacaEval2 score of 61.3, surpassing MAD’s 53.5 and Reconcile’s
47.6. This gap widens with two rounds, where MoA scores 65.7 compared to MAD’s 50.6 and
Reconcile’s 47.7. MoA scales better with more aggregation rounds, and maintain cost efficiency,
achieving better performance within similar budget constraints.

3.4 BUDGET AND TOKEN ANALYSIS

To understand the relationship between budget, token usage, and LC win rates, we conducted a budget
and token analysis. Figure 6a and Figure 6b illustrate these relationships.
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Figure 6: (a) Performance trade-off versus cost. The dots (layer > 2) with the same size indicate
MoA with different final aggregator. (b) Performance trade-off versus the number of tera floating
operations (tflops), which we use as a proxy for latency. Note that we calculate the sum over layers
of the max number of tflops among proposers in each MoA layer as multiple proposers can run in
parallel. Our plots illustrate a Pareto frontier that strikes an optimal balance between performance
and cost. We show that the MoA approach lies on this Pareto front, as opposed to GPT-4 Turbo and
GPT-4o which are not cost-optimal and are more expensive compared to MoA approaches of the
same LC win rate. Single Proposer: uses the same model to generate multiple responses in each
MoA layer; Multi Proposer: uses different models in each MoA layer. The actual tflops of GPT-4 is
unknown, so we use the rumored size from the community of an 8x220B architecture.

Cost Effectiveness In Figure 6a, we plot the LC win rate against the average inference cost for
each instance in the AplacaEval 2.0 benchmark. The cost is calculated based on pricing information
available from API provider websites.4 This helps identify cost-effective models that achieve high
performance without incurring excessive expenses. The chart reveals a Pareto front where certain
models strike an optimal balance between cost and performance. Models closer to this Pareto front
are more desirable as they provide better monetary value by delivering high LC win rates at lower
costs. Specifically, if we prioritize the quality, MoA is the best configuration. However, if we want to
strike a good balance between quality and cost, MoA-Lite can match GPT-4o’s cost while achieving
higher level of quality. It outperforms GPT-4 Turbo by approximately 4% while being more than
twice as cost-effective. We have also benchmarked MoA using small models (≤9B) as presented in
Appendix A.

Tflops Consumption Figure 6b depicts the relationship between LC win rate and the number of
tflops. Here we use the number of tflops as a proxy for latency since latency can vary depending on the
inference systems. This analysis is to understand how different models manage their budgets while
maintaining or improving performance levels. Similar to the cost efficiency analysis, a Pareto front
can be observed here as well. Models on this front effectively utilize their computational resources to
maximize their LC win rate. For models accessed via inference endpoints, latency may not directly
correlate with tflops, as other computational demands (e.g., batching) and factors (e.g., server load)
can influence actual response time. However, we use tflops as an approximate indicator of the relative
resource intensity of different models, as it reflects the theoretical computational requirements.

4For open-source models, we calculate the price using data from https://api.together.ai/
models; for OpenAI models, we use pricing details from https://openai.com/api/pricing/. Pric-
ing data was retrieved as of May 22, 2024.
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4 RELATED WORK

4.1 LLM REASONING

In order to improve generation quality of LLMs, recent researches have experienced great progresses
in optimizing LLMs to various downstream tasks through prompt engineering. Chain of Thought
(CoT) (Wei et al., 2022; Kojima et al., 2022) prompting techniques represent a linear problem-
solving approach where each step builds upon the previous one. Fu et al. (2022) applied CoT to
multi-step reasoning tasks. To automate CoT prompting, Auto-CoT (Zhang et al., 2022b) constructs
demonstrations by sampling diverse questions and generating reasoning chains. Active-Prompt (Diao
et al., 2023) focuses on selecting the most uncertain questions for task-specific annotations. PS
Prompt (Wang et al., 2023) decomposes tasks into subtasks. Tree-of-Thought (ToT) (Yao et al., 2023a)
expands on the reasoning process by considering multiple paths of reasoning and self-evaluating
choices. Effective Graph-of-Thought (Yao et al., 2023b) frames thoughts as graphs. Natural Program
prompting (Ling et al., 2023) is proposed for better solving deductive reasoning tasks. And re-reading
prompt (Xu et al., 2023b) revisits question information embedded within input prompts.

4.2 MODEL ENSEMBLE

A straightforward solution to leverage the strengths of multiple models is reranking outputs from
different models. For instance, Jiang et al. (2023) introduce PAIRRANKER, which performs pairwise
comparisons on candidate outputs to select the best one, showing improvements on a self-constructed
instruction dataset. To address the substantial computational costs associated with multi-LLM
inference, other studies have explored training a router that predicts the best-performing model
from a fixed set of LLMs for a given input (Wang et al., 2024a; Shnitzer et al., 2024; Lu et al.,
2023). Additionally, FrugalGPT (Chen et al., 2023b) proposed reducing the cost of using LLMs
by employing different models in a cascading manner. In order to better leverage the responses of
multiple models, Jiang et al. (2023) trained a GENFUSER, a model that was trained to generate an
improved response to capitalize on the strengths of multiple candidates. Huang et al. (2024) proposed
to fuse the outputs of different models by averaging their output probability distributions.

Another line of work is multi-agent collaboration. Several studies explore using multiple large
language models as agents that collectively discuss and reason through given problems interactively.
Du et al. (2023) establishes a mechanism for symmetric discussions among agents. Around the same
time, MAD (Liang et al., 2023) introduces an asymmetric mechanism design, with different roles, i.e.,
debater and judge. Other similar works include (Chan et al., 2023; Xu et al., 2023c; Liu et al., 2023;
He et al., 2023). Moreover, ReConcile (Chen et al., 2023a) exemplifies an asymmetric discussion
involving weighted voting. To understand discussion more deeply, Zhang et al. (2023) and Chen
et al. (2023c) aim to explain such collaboration mechanism in a social psychology view. Wang et al.
(2024b) compared multi-agent approaches and found a single agent with a strong prompt including
detailed demonstrations can achieve comparable quality to multi-agent approaches.

5 CONCLUSION

This paper introduces a Mixture-of-Agents approach aimed at leveraging the capabilities of multiple
LLMs via successive stages for iterative collaboration. Our method harnesses the collective strengths
of agents in the Mixture-of-Agents family, and can significantly improve upon the output quality of
each individual model. Empirical evaluations conducted on AlpacaEval 2.0, MT-Bench, and FLASK
demonstrated substantial improvements in response quality, with our approach achieving the LC win
rate up to 65%. These findings validate our hypothesis that integrating diverse perspectives from
various models can lead to superior performance compared to relying on a single model alone. In
addition, we provide insights into improving the design of MoA; systematic optimization of MoA
architecture is an interesting direction for future work.
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Limitations. Our proposed method requires iterative aggregation of model responses, which means
the model cannot decide the first token until the last MoA layer is reached. This potentially results
in a high Time to First Token (TTFT), which can negatively impact user experience. To mitigate
this issue, we can limit the number of MoA layers, as the first response aggregation has the most
significant boost on generation quality. Future work could explore chunk-wise aggregation instead of
aggregating entire responses at once, which can reduce TTFT while maintaining response quality.

Broader Impact. This study holds the potential to enhance the effectiveness of LLM-driven chat
assistants, thereby making AI more accessible. Moreover, since the intermediate outputs that are
expressed in natural language, MoA presented improves the interpretability of models. This enhanced
interpretability facilitates better alignment with human reasoning.
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Table 6: Results on small models. When benchmarking each aggregator, we use the following models
as proposers: gemma-2-9b, llama-3.1-8b, mistral-7b-instruct-v0.3, qwen-1.5-7b.

Aggregator Layers Alpaca (LC) Alpaca (win) Arena-Hard MT-Bench

gemma-2-9b 1 48.54 36.26 40.6 8.49
2 56.54 48.20 47.5 8.44
3 56.83 49.47 47.8 8.50

llama-3.1-8b 1 26.06 27.48 28.0 8.34
2 29.52 38.48 34.9 8.39
3 33.34 42.68 36.6 8.49

mistral-7b-instruct-v0.3 1 19.88 15.67 16.3 7.59
2 26.93 24.68 22.1 8.26
3 27.98 27.79 24.1 8.17

qwen-1.5-7b 1 16.58 13.12 12.6 7.64
2 25.54 24.36 20.7 7.98
3 28.94 29.91 23.2 7.86
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Figure 7: (a) Spearman Correlation using TF-IDF similarity; (b) Spearman Correlation using Leven-
shtein similarity.

A RESULTS ON SMALL MODELS

We have benchmarked and observed similar performance improvements with smaller models as well.
As shown in Table 6, for models with ≤9B parameters, MoA can improve performance by up to
12% compared to individual models. Specifically, using gemma-2-9b as the aggregator, we achieve
a 56.83% LC win rate with small models alone, outperforming GPT-4 and comparable to GPT-4o.
These results demonstrate that MoA can achieve significant performance improvements even with
reduced computational resources. Note that for MT-Bench sometimes 3 layer is worse than 2 layer
mostly due to smaller models have less multi-turn capability. 2 layer MoA is consistently better than
the original model.

B SPEARMAN CORRELATION USING DIFFERENT SIMILARITY FUNCTIONS

We present results using TF-IDF-based similarity and Levenshtein similarity when calculating the
Spearman correlation. Specifically, within each sample of n proposed answers, we calculate Spearman
correlation coefficient between the n similarity scores and the n preference scores determined by the
GPT-4-based evaluator. As shown in Figure 7, there is indeed a positive correlation between win rate
and both TF-IDF similarity and Levenshtein similarity.
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C LLM RANKER

This section introduces the setup of the LLM-Ranker used in this paper. The LLM-Ranker is designed
to evaluate and rank the best output generated by some LLMs. Below presents the template for
prompting the model during these evaluations.

Prompt for ranking with LLMs

You are a highly efficient assistant, who evaluates and selects the best large language model
(LLMs) based on the quality of their responses to a given instruction. This process will be
used to create a leaderboard reflecting the most accurate and human-preferred answers.
I require a leaderboard for various large language models. I’ll provide you with prompts
given to these models and their corresponding outputs. Your task is to assess these responses,
and select the model that produces the best output from a human perspective.

## Instruction

{
"instruction": """{instruction}""",

}

## Model Outputs
Here are the unordered outputs from the models. Each output is associated with a specific
model, identified by a unique model identifier.

{
{

"model_identifier": "{identifier_1}",
"output": """{output_1}"""

},
{

"model_identifier": "{identifier_2}",
"output": """{output_2}"""

},
{

"model_identifier": "{identifier_3}",
"output": """{output_3}"""

},
{

"model_identifier": "{identifier_4}",
"output": """{output_4}"""

},
{

"model_identifier": "{identifier_5}",
"output": """{output_5}"""

},
{

"model_identifier": "{identifier_6}",
"output": """{output_6}"""

}
}

## Task
Evaluate the models based on the quality and relevance of their outputs, and select the model
that generated the best output. Answer by providing the model identifier of the best model.
We will use your output as the name of the best model, so make sure your output only contains
one of the following model identifiers and nothing else (no quotes, no spaces, no new lines, ...).

## Best Model Identifier
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Table 7: Case: Some models produce high quality answers.

Role Preference Content

User - I want to talk about "Smooth", a song by Rob Thomas.

Qwen1.5-110B-Chat 0.35 ... It’s a perfect blend of rock, pop, and Latin music, showcasing
Santana’s signature guitar work and Rob Thomas’s soulful vocals ...

Qwen1.5-72B-Chat 0.00 ...

Llama-3-70B-Instruct 0.00 ... it’s a collaboration between Rob Thomas, the lead vocalist of
Matchbox Twenty, and Santana, the legendary guitarist ...

WizardLM-2-8x22B 0.99 ... It spent 12 weeks at the top of the Billboard Hot 100 chart in the
United States ... capturing the song’s sultry and energetic vibe ...

Mixtral-8x22B-Instruct-v0.1 0.00 ...

dbrx-instruc 0.00 ...

Aggregated
(Qwen1.5-110B-Chat) 0.99 "Smooth" is actually a collaboration between Rob Thomas, who is

the lead singer of the band Matchbox Twenty, and the renowned
Latin rock guitarist Carlos Santana ... This iconic song blends rock,
pop, and Latin music elements, showcasing Santana’s signature
guitar work and Rob Thomas’s distinctive vocals ... The song was a
colossal success, spending 12 weeks at the top of the Billboard Hot
100 ... The music video, set in a vibrant club scene, complements
the song’s sultry vibe ...

Table 8: Case: all proposed responses are not good enough.

Role Preference Content

User - How do you become an author?

Qwen1.5-110B-Chat 0.00 Becoming an author involves several steps and ... 3. **Choose
your niche**:... 8. **Understand the publishing industry**:... 10.
**Self-publishing options**:...

Qwen1.5-72B-Chat 0.00 ...

Llama-3-70B-Instruct 0.16 Becoming an author can be a rewarding and fulfilling career... 1.
**Develop a love for reading and writing**:... 10. **Market and
promote your work**:... 11. **Continuously improve**:...

WizardLM-2-8x22B 0.03 1. ... 4. Finish your work:...

Mixtral-8x22B-Instruct-v0.1 0.00 ...

dbrx-instruc 0.00 ...

Aggregated
(Qwen1.5-110B-Chat) 0.33 Becoming an author involves a dedicated journey... 1. **Cul-

tivate a Love for Writing and Reading**:... 4. **Choose Your
Niche**:... 5. **Finish Your Work**:... 10. **Self-Publishing**:...
11. **Marketing and Promotion**:... 12. **Continuous Learning
and Writing**:...
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D CASE STUDY

We present a case study in this section. Due to the length of the responses generated by all models,
we will only show selected fragments for brevity. To illustrate how the aggregator synthesizes the
response, we underlined similar expressions between the proposed responses and the aggregated
response in different colors. We omit the content that all proposed responses have mentioned.

Table 7 showcases the responses generated by different proposers. The aggregated response generated
by Qwen1.5-110B-Chat reflects a high preference for its own content but also incorporates key points
from Llama-3-70B-Instruct and WizardLM 8x22B. Notably, GPT-4’s preference score for WizardLM
8x22B’s response is 0.99, and the final aggregated answer also achieves a preference score of 0.99.

Meanwhile, Table 8 presents another case where none of the proposed responses achieve a high
GPT-4 preference score. Despite this, the aggregator successfully identifies and incorporates the
strong points from these responses, achieving a preference score of 0.33.

E REASONING EVALUATIONS

Here, we demonstrate that our approach is applicable to reasoning tasks including the MATH dataset
Hendrycks et al. (2021b), Big-Bench Hard (BBH) Suzgun et al. (2023), MMLU Hendrycks et al.
(2021a) and CSQA Talmor et al. (2021). Specifically, BBH evaluates models on 23 multi-step
complex reasoning tasks; MMLU contains 57 tasks on knowledge and reasoning; CSQA includes
difficult commonsense reasoning questions. We posit this covers a wide range of domains including
coding, math, knowledge, commonsense QA and complex reasoning.

The results are presented in Table 9, where we show that our method consistently enhances accuracy.
This indicates that our approach is effective for a variety of reasoning tasks. Notably, our method
is complementary to existing reasoning techniques such as Chain of Thought Wei et al. (2022) and
Self-consistency Wang et al. (2022).

In addition, we investigate whether more layers in MoA can further increase performance on the
MATH dataset. As shown in Table 10, MoA with three layers improves from having just two layers.

Table 9: Performance comparison across reasoning benchmarks.

Model BBH MMLU CSQA MATH Average
Qwen1.5-72B-Chat 0.619 0.6931 0.8231 0.428 0.641
Qwen1.5-110B-Chat 0.6733 0.7624 0.8346 0.500 0.693
Wizard 8x22b 0.7461 0.7989 0.7871 0.544 0.719
Mixtral-8x22B-Instruct-v0.1 0.6693 0.7821 0.8075 0.282 0.635
Llama-3-70b-chat-hf 0.7438 0.7978 0.8305 0.456 0.707
dbrx-instruct 0.3552 0.6867 0.7625 0.314 0.530
MoA-Lite 0.7667 0.8268 0.8444 0.570 0.752

Table 10: Results on the MATH task. We evaluate different aggregators, with all six models serving
as proposers in each MoA layer.

Aggregator Layer 1 Layer 2 Layer 3

Qwen1.5-72B-Chat 0.428 0.526 0.552
Qwen1.5-110B-Chat 0.500 0.570 0.576
Wizard 8x22b 0.544 0.574 0.580
Mixtral-8x22B-Instruct-v0.1 0.282 0.534 0.556
Llama-3-70B-Instruct 0.456 0.584 0.578
dbrx-instruct 0.314 0.456 0.522
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Table 11: Performance comparison of MoA-Lite and MoA searched using our proposed optimization
method.

Model Aggregate AlpacaEval (LC) Arena-Hard MT-Bench
MoA-Lite 74.1 59.3 71.3 9.18
MoA-Lite searched 75.0 62.0 71.8 9.11

F SEARCH FOR AN OPTIMAL MOA ARCHITECTURE

We found an automatic architecture optimization method convenient for practical use, especially
when new models are introduced. We implemented a relatively basic optimization method to select
the set of LLMs as a proof of concept.

Setup Specifically, we fix the number of layers to be two and the aggregator to be Qwen-1.5-110b-
Chat, and set the number of models and which model in proposers to be variables for optimization. We
utilized Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) for this unconstrained optimization
problem.

Validation Data It is important to have a good set of validation data. We randomly sampled 50
problems from AlpacaEval and 50 from Arena-Hard. The combined size of 100 enables us to verify
architecture performances quickly. We averaged the scores of AlpacaEval and ArenaHard to be our
final metric.

We ran the optimization and found the best mixture to be WizardLM-2-8x22b, Qwen-1.5-110b-
Chat, Qwen-1.5-72b-Chat, and three Llama-3-70b-Instruct as proposers and Qwen-1.5-110b-Chat as
aggregator. The resulting mixture outperforms our MoA-Lite on two out of the three benchmarks as
shown in Table 11.

G INDIVIDUAL PROPOSER’S SIMILARITY TO AGGREGATOR

We conducted an ablation study to determine whether the aggregator merely repeats the outputs of the
proposers or performs additional processing. To investigate this, we calculated the similarity between
the outputs of individual proposers and the aggregator using BLEU scores (considering 3-grams,
4-grams, and 5-grams).

The results, shown in Table 12, indicate that the aggregator tends to exhibit the highest similarity with
its own generation (Qwen1.5-110B-Chat). However, the overall similarity scores remain relatively
low, suggesting that the aggregator is not simply replicating the proposers’ outputs but is instead
synthesizing or refining them.

Additionally, we observed that as the layer depth increases, the similarity between the aggregator
and the proposers also increases. This indicates that responses across layers grow more aligned,
potentially reflecting convergence toward a consensus or refinement as the sequence progresses.

H GPT MODELS USED

Here’s a consolidated list of the GPT-family models used across the experiments:

• GPT-3.5-turbo-0125: Referenced in Figure 3.

• GPT-4 Preview: Referenced in Figure 5.

• GPT-4-turbo: A more cost-effective variant of GPT-4 with improved latency and efficiency,
referenced in Figure 6a and Figure 6b.

• GPT-4o: We use gpt-4o-2024-0513 across the paper.
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Table 12: Similarity scores between proposers and aggregators in MoA-Lite and MoA settings.

Aggregator Score
MoA-Lite (Qwen1.5-110B-Chat)
Qwen1.5-110B-Chat 0.3972
WizardLM-2-8x22B 0.3742
Qwen1.5-72B-Chat 0.3528
Llama-3-70B-Instruct 0.3230
Mixtral-8x22B-Instruct-v0.1 0.3149
dbrx-Instruct 0.3062
MoA (Qwen1.5-110B-Chat)
Qwen1.5-110B-Chat 0.5102
WizardLM-2-8x22B 0.4539
Qwen1.5-72B-Chat 0.4009
Llama-3-70B-Instruct 0.3827
Mixtral-8x22B-Instruct-v0.1 0.3730
dbrx-Instruct 0.3640

I EFFECT OF PROPRIETARY MODELS

In this section, we investigate whether a bit more in-depth into the incorporation of gpt-4o-2024-
05-13 in MoA. Specifically, we try to incorporate it both as an aggregator and as a proposer. When
using GPT4-o as a proposer, replacing dbrx-Instruct, we can see a clear boost in performance for
AlpacaEval and Arena-Hard scores while maintaining MT-Bench score demonstrated in Table 13.
Using GPT-4o as an aggregator increases the performance significantly. The aggregate score jumps
from 74.1 to 83.3.

Table 13: When incorporating GPT-4o into MoA, we can see clear benefits in terms of benchmark
improvements. Although more improvements come from using GPT-4o as the aggregator. We use
gpt-4o-2024-05-13 for this experiment.

Model Agg. AlpacaEval 2.0 (LC) Arena-Hard MT-Bench
MoA-Lite 74.1 59.3 71.3 9.18
MoA-Lite w/ GPT-4o replacing dbrx 75.7 63.1 73.1 9.1
MoA-Lite w/ GPT-4o 83.3 65.7 90.3 9.4
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