
A More related works

In this section, we discuss more related works in addition to those in Section 2.

Recently, self-supervised learning has also been shown to be vulnerable to backdoor attacks [9, 10].
Yan et al. [7] and Carlini [8] successfully designed backdoor attacks against semi-supervised learning.
It has been shown that backdoored models can be obtained in the near vicinity of clean models,
making it harder to detect backdoored models from clean models [58, 59]. Another line of research
studies on deployment-stage backdoor attacks [60, 61, 62], which inject backdoors into pre-trained
models by perturbing the weights, instead of training them on backdoor samples as in traditional
training-stage backdoor attacks [1, 6]. In this work, we focus on defending training-stage backdoor
attacks.

B More implementation details

In this section, we provide more details on our experimental settings, in addition to those in Sec-
tion 4.1.

B.1 Backdoor attack details

For BadNet-Grid, Trojan-SQ, and SIG, we use the triggers provided in the official codes of [12]4. For
LCBA attack, we use the official poisoned dataset provided in the codes of the original paper5. For
other attacks, we use the backdoor triggers provided in the official codes of [5]6. The visualization
of all 10 attacks are shown in Figure 3. Following [12], we set the target class to 0 on CIFAR10
and ImageNet-12, and 1 on GTSRB; we use all-to-one attack mode for all dirty-label attacks, where
a portion of training samples from non-target classes are poisoned towards the target class; the
poisoning ratio α is set to 10% by default.

BadNet-Grid Badnet-White Blend ℓ0-Invisible ℓ2-Invisible

Smooth Trojan-SQ Trojan-WM SIG LCBA

Figure 3: Visualization of different attacks on CIFAR10. The poisoned images are shown below the
name of each attack.

B.2 Backdoor defense details

For all defense methods, we use the same model structures and backdoor attack settings as described
in Section 4.1 and Appendix B.1. Below we describe other detailed settings of each defense method.

Normal training (i.e., “No defense”) On CIFAR10 and GTSRB, we train for 200 epochs using
Adam optimizer with initial learning rate 1× 10−3, cosine annealing learning rate scheduler, weight

4https://github.com/bboylyg/ABL
5https://github.com/MadryLab/label-consistent-backdoor-code
6https://github.com/YiZeng623/I-BAU

15

decay 5× 10−4, and batch size 256. On ImageNet-12, we train for 90 epochs using SGD optimizer
with initial learning rate 0.1, cosine annealing learning rate scheduler, weight decay 5× 10−4, and
batch size 256.

Our method In stage 1, we set the loss trade-off parameters λ1 = 10 and λ2 = 0.1. Other
hyper-parameters in stage 1 (e.g., learning rate, batch size, etc.) are set identical to those used in
normal training. In stage 2, we use the same hyper-parameters as in stage 1, except that we set the
batch size to 32 on CIFAR10 and GTSRB due to the small size of holdout set Dh.

I-BAU The original I-BAU paper conducted experiments on a relatively small convolutional
network. We empirically find the default hyper-parameters in their original paper do not lead to
satisfying performance on WRN16-1, which is a more widely used model structure in backdoor
defense papers [4, 12]. We turn the inner and outer learning rates of I-BAU, which are the two most
important hyper-parameters, in {0.1, 1, 2, 5, 10} and {1× 10−5, 1× 10−4, 1× 10−3}, respectively.
On both datasets, the best overall performance is achieved at 1 inner learning rate and 1× 10−4 outer
learning rate, which we use to report the results of I-BAU.

ANP Following the suggestion in the original paper [11], we tune the trade-off hyper-parameter
between the natural and robustness loss in ANP on the discrete set {0.1, 0.2, 0.4, 0.5, 0.6}. The best
overall performance is achieved at 0.2 on CIFAR10 and 0.1 on GTSRB.

DP The original paper using DP for backdoor defense [30] conducted experiments on the simple
MNIST dataset with a tiny three-layer convolutional neural network. Following [30, 5], we tune
the noise multiplier in range [0.5, 10] to achieve overall effectiveness across different attacks, and
we keep the gradient clipping threshold to 1. In consistency with the results reported in [5], even
with careful hyper-parameter tuning, DP fails to achieve satisfying results on datasets as complex as
CIFAR10 and GTSRB.

NAD and ABL Since our paper uses the same model structures with these two methods, we directly
use the best hyper-parameters reported in their original papers for fair comparison.

B.3 Hardware resources

All experiments are conducted on one NVIDIA RTX A6000 GPU.

C More experimental results

In this section, we provide more experimental results in addition to those in Section 4.

C.1 Potential adaptive attack

In this section, we investigate the performance of our method under adaptive backdoor attacks that
are intentionally designed to by-pass T&R. This is a more challenging setting for defenders, where
the attacker is aware of the applied defense strategy and able to take countermoves. Since the core
mechanism of T&R is to trap backdoor within the classification head and keep the stem network
relatively clean, a potential adaptive attack is to intentionally inject backdoors into the stem network
(i.e., the shallow or middle layers in the entire network).

Luckily, a previous work [13] has already designed an attack, named Latent Backdoor Attack (LBA),
which serves the exact purpose. LBA is originally proposed to encode backdoor into hidden layers
instead of output layers, so that the backdoor can survive transfer learning. It can also serve as the
adaptive attack to our method. We try different settings denoted as LBA-n: LBA backdoor is injected
to all layers before the n-th layer. For example, LBA-14 injects backdoor to the input of the last fully
connected layer. As shown in Table 7, when equipped with the auxiliary image reconstruction task,
our method can successfully defend LBA.

16

Table 7: Results of our method against the adaptive attack LBA-n on CIFAR10.

Auxiliary image
reconstruction task

Replace
classification head

LBA-14 LBA-12 LBA-10
ASR CA ASR CA ASR CA

✗ ✓ 93.64 82.06 90.62 84.12 84.65 83.49
✓ ✓ 4.32 84.52 4.56 84.67 0.68 85.43

C.2 Ablation study on hyper-parameters

In this section, we show the performance of our method under different values of the hyper-parameters
λ1 and λ2 in Eq. (1). Specifically, we first fix λ2 = 0.1 and change λ1 values, and then fix λ1 = 10
and change λ2 values. The results are shown in Table 8. As we can see, the ASR drops as the value
of λ1 increases from 0 to 10. This shows the effectiveness of our auxiliary image reconstruction
task in defending against backdoor attack. As λ1 goes beyond 10, the performance gain on ASR
saturates, while the clean accuracy (CA) decreases. This is because too strong auxiliary loss on
image reconstruction can bias the stem network towards learning image reconstruction features while
ignoring the classification features. On the other hand, using a small but non-zero λ2 also leads to
better ASR than setting λ2 = 0. This indicates that the total variation regularization can potentially
prevent the stem network from learning some high-frequency features which commonly exist in
backdoor samples [19], and thus helps defend backdoor attacks.

Alongside ASR and CA, we also show the mean square error (MSE) of the image reconstruction.
Smaller MSE roughly indicates better image reconstruction quality. We also visualize image recon-
struction results in Figure 4. As we can see, larger λ1 values lead to better image reconstruction
results.

Table 8: Ablation study on the hyper-parameters λ1 and λ2. Reported are results on CIFAR10 with
ℓ2-Invisible attack.

λ1 λ2

0 1 10 20 0 0.1 1

ASR 99.99 53.77 0.74 1.04 3.32 0.74 0.28
CA 85.08 83.70 84.01 81.37 82.46 84.01 83.51

MSE - 0.0145 0.0085 0.0071 0.0097 0.0085 0.0091

C.3 Ablation study on the size of clean holdout set

In this section, we show the performance of our method under different number of available clean
training data (i.e., the size of the clean holdout set Dh) in stage 2. Specifically, we use two different
settings with |Dh| = 1250 and |Dh| = 2500 (i.e., 2.5% and 5% of the entire CIFAR10 training set,
respectively). As shown in Table 9, our method can still success with even 2.5% clean training images
available.

Table 9: Ablation study on the size of clean holdout set Dh. Reported are results on CIFAR10 with
ℓ2-Invisible attack. |Dh| = 2500 (i.e., 5% of the entire training set) is the default setting used in our
main experiments.

|Dh| 250 500 1250 2500

ASR 0.77 0.56 0.41 0.74
CA 72.00 76.99 83.31 84.01

C.4 Results on non-poisoned datasets

The main purpose of the backdoor defense methods is to achieve good performance on poisoned
training sets. However, in some practical situations, the model trainer might not know whether the
training set is poisoned or not. A good solution for these situations is to first use backdoor detection

17

Original clean image λ1 = 1 λ1 = 10 λ1 = 20

Original ℓ2-Invisible
poisoned image λ1 = 1 λ1 = 10 λ1 = 20

Original Trojan-WM
poisoned image λ1 = 1 λ1 = 10 λ1 = 20

Figure 4: Qualitative results for image reconstruction in our T&R method on CIFAR10. The first row:
The original clean image and its reconstructed versions under different λ1 values. The second row:
The original ℓ2-Invisible poisoned image and its reconstructed versions under different λ1 values.
The third row: The original Trojan-WM poisoned image and its reconstructed versions under different
λ1 values.

methods [44, 45, 46, 47] which can indirectly tell whether the training set is poisoned7, and then
decide whether it is necessary to apply backdoor defense methods. With that said, for completeness
of the experiments, we show how the defense methods perform on clean training sets (i.e., datasets
with poison ratio α = 0).

We compare our method with the two strongest baselines, ABL and I-BAU, on the clean CIFAR10
training set without any backdoor attacks. The results are shown in Table 10. As we can see, compared
with normal training, both I-BAU and our method can keep acceptable CA when trained on clean
dataset. In contrast, ABL suffers considerable performance drop.

Although the original ABL paper reported no significant CA drop when ABL is applied on clean
training sets [12], we believe this is because the authors of [12] used different hyper-parameter
settings for ABL on clean and poisoned datasets. The results reported in Table 10 are obtained using
the default hyper-parameters provided in the original ABL paper (i.e., the ones for best performance
on poisoned datasets). Since we are assuming the defender has no prior knowledge on whether the
dataset is poisoned or not, it is more reasonable to use the same hyper-parameters for both situations.
In fact, it is quite intuitive to explain why ABL brings performance drop on clean training set. ABL
selects a portion of training samples that is determined as potential backdoor training samples, and

7If a model trained from scratch on the dataset is detected as poisoned, then the training set is likely to be
poisoned. Otherwise, it is likely to be clean.

18

then unlearns those selected samples. If there is no backdoor samples in the training set, then the
selected samples are all clean ones, and unlearning on them will hurt clean accuracy.

Table 10: Clean accuracy (CA) of different defense methods on clean CIFAR10 training set without
backdoor attacks. Note that it is not reasonable to compare the ASR here, since no backdoor is
inserted into the model when the training set is clean.

Normal training ABL I-BAU Ours

89.81 72.72 85.44 83.87

C.5 Results of DP

Due to the space limit of the main text, we report the results of DP [30], which achieves the least
competitive performance among the compared defense methods, in this section. As shown in Table 11
and Table 12, our method largely outperforms DP.

Table 11: Results of DP on CIFAR10.

DP Ours
Attack method ASR CA ASR CA

BadNet-Grid 53.21 27.73 1.21 84.42

BadNet-White 42.92 26.52 3.14 83.96

Blend 86.68 26.52 10.59 83.82

ℓ0-Invisible 35.90 25.00 2.91 84.04

ℓ2-Invisible 60.90 20.76 0.74 84.01

Smooth 95.41 28.18 4.23 83.63

Trojan-SQ 43.57 25.69 6.54 79.92

Trojan-WM 99.62 23.00 12.66 79.97

SIG 97.02 28.73 0.02 82.97

LCBA 82.80 18.95 5.41 82.57

Average 69.80 25.11 4.75 82.93

Table 12: Results of DP on GTSRB.

DP Ours
Attack method ASR CA ASR CA

BadNet-Grid 67.84 14.02 0.20 95.94

BadNet-White 52.20 16.14 0.01 95.74

Blend 83.26 12.87 1.98 95.62

ℓ0-Invisible 84.68 13.44 1.32 95.87

ℓ2-Invisible 82.49 16.94 0.03 96.10

Smooth 96.11 15.27 0.11 96.12

Trojan SQ 61.66 13.20 1.47 95.17

Trojan WM 99.11 13.19 7.06 91.95

SIG 94.71 18.92 0.54 94.56

Average 80.23 14.89 1.41 95.23

D Difference in application scenario with previous works

Our method has less flexible application scenario compared with previous backdoor defense methods.
Specifically, there are three common scenarios for backdoor defense:

19

Scenario 1: The defender gets a pretrained model from an untrusted source (e.g., the Internet), which
is potentially backdoored. The defender has a small clean holdout set to sanitize the backdoored
model, but don’t have access to the original poisoned dataset.

Scenario 2: The defender collects raw data from an untrusted source (e.g., uploaded by untrusted
users or from the Internet), and then trains the model on her own using the collected dataset, which
potentially contains backdoor samples. The defender has a small clean holdout set to sanitize the
backdoored model, as in Scenario 1.

Scenario 3: The defender collects raw data from an untrusted source (e.g., uploaded by untrusted
users or from the Internet), and then trains the model on her own using the collected dataset, which
potentially contains backdoor samples. The defender does not have a small clean holdout set to
sanitize the backdoored model. This is a harder version than Scenario 2, since it doesn’t require the
defender to have a small clean holdout set.

Previous methods FP [3], NAD [4], I-BAU [5] are applicable in Scenario 1 and 2. Previous methods
ABL [12] and DP [30] are applicable in Scenario 2 and 3. Our method is applicable only in Scenario
2. In Scenario 2, where all methods are applicable, our method achieves the best performance,
outperforming previous methods by a considerable margin.

Scenario 2 is very common in the real world, compared with Scenario 1: In many cases, the defenders
would train the model on their own, instead of directly using the (potentially backdoored) models
released by a third-party. For example, the defender may use a model with some specific model size
or architecture adapted for their hardware (e.g., mobile devices) with unique requirements, which
will not be met by the third-party model. Or maybe the defender has a large amount of (potentially
poisoned) internal data, which can lead to better performance than the third-party models trained on a
dataset which is smaller and has distributional shifts. Or maybe the defender has its own advanced
techniques to train a model for the specific task, which can lead to better performance than the general
training techniques available to the third-party model trainer.

Scenario 2 does have one more requirement than scenario 3: It requires a small clean holdout set. We
think this is reasonable, since previous methods [3, 4, 5] also have this requirement (in both scenario
1 and 2). In practice, to make sure the model achieves good performance before its deployment, the
defender usually need to collect some clean samples for evaluation purpose. A small clean holdout
set can be separated from the clean validation set.

20

	Introduction
	Related work
	Backdoor attack methods
	Backdoor defense methods

	Method
	Problem setting and notations
	The proposed method

	Experiments
	Experimental settings
	Main results
	Is the stem network really backdoor-free?
	Ablation study

	Discussion
	Conclusion
	More related works
	More implementation details
	Backdoor attack details
	Backdoor defense details
	Hardware resources

	More experimental results
	Potential adaptive attack
	Ablation study on hyper-parameters
	Ablation study on the size of clean holdout set
	Results on non-poisoned datasets
	Results of DP

	Difference in application scenario with previous works

