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Abstract

In this work, we study the convergence in high probability of clipped gradient1

methods when the noise distribution has heavy tails, i.e., with bounded pth mo-2

ments, for some 1 < p ≤ 2. Prior works in this setting follow the same recipe of3

using concentration inequalities and an inductive argument with union bound to4

bound the iterates across all iterations. This method results in an increase in the5

failure probability by a factor of T , where T is the number of iterations. We in-6

stead propose a new analysis approach based on bounding the moment generating7

function of a well chosen supermartingale sequence. We improve the dependency8

on T in the convergence guarantee for a wide range of algorithms with clipped9

gradients, including stochastic (accelerated) mirror descent for convex objectives10

and stochastic gradient descent for nonconvex objectives. Our high probability11

bounds achieve the optimal convergence rates and match the best currently known12

in-expectation bounds. Our approach naturally allows the algorithms to use time-13

varying step sizes and clipping parameters when the time horizon is unknown,14

which appears difficult or even impossible using the techniques from prior works.15

Furthermore, we show that in the case of clipped stochastic mirror descent, several16

problem constants, including the initial distance to the optimum, are not required17

when setting step sizes and clipping parameters.18

1 Introduction19

Stochastic optimization is a well-studied area with many applications ranging from machine learn-20

ing, to operation research, numerical linear algebra and beyond. In contrast to deterministic algo-21

rithms, stochastic algorithms might fail, and a pertinent question is how often does failure happen22

and how to increase the success rate. These questions are especially important in critical appli-23

cations where failure is not tolerable, or when a single run is costly in time and resources. For-24

tunately, the standard stochastic gradient descent (SGD) algorithm has been shown to converge25

with high probability under a light-tailed noise distribution such as sub-Gaussian distributions26

[22, 11, 26, 13, 10, 9, 17], which gives strong guarantee on the success of single runs. However,27

recent observations in popular deep learning applications, such as training attention models [32] and28

convolutional networks [29], reveal a more challenging optimization landscape: the gradient noises29

follow heavy-tailed distributions, where the variance may be infinite [28, 32, 8], whereas the stan-30

dard light-tailed setting assumes that all the moments are bounded. Heavy-tailed gradient noises31

can cause algorithms like SGD to fail, and this mismatch between theory and practice has been sug-32

gested to be one of the reasons for the strong preference of adaptive methods like Adam over SGD33

in modern settings [32].34

In this work, we consider the setting of heavy-tailed noise proposed by Zhang et al., (2020) [32],35

where the (unbiased) gradient noise only has bounded pth moments, for some p ∈ (1, 2]. While36
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standard SGD can fail to converge when the variance is unbounded, i.e. when p < 2, [32] show that37

SGD with appropriate clipping (or Clipped-SGD) converges in expectation under heavy-tailed noise,38

where the convergence rate depends on O
(

1
δ

)
if δ is the targeted maximum failure probability. It is39

more desirable, however, to obtain convergence results in high probability, where the convergence40

rate depends instead on O(log 1
δ ), which gives better guarantees for single runs.41

Recent follow-up works [1, 27, 18] show that variants of Clipped-SGD in fact converge with high42

probability. This is a pleasing result, extending the earlier work by [6] for p = 2. However, there are43

several shortcomings of these results when compared with the corresponding bounds in the light-44

tailed setting. First, the clipped algorithm uses a fixed step size and a fixed clipping parameter45

depending on the number of iterations, which precludes results with unknown time horizons. Sec-46

ondly, the convergence guarantees are worse than the light-tailed bounds by a log T factor, even for47

fixed step sizes and clipping parameters. These issues beg a qualitative question:48

Is heavy-tailed noise inherently harder than light-tailed noise?49

In this work, we answer the above question for Clipped-SGD and the general clipped (accelerated)50

stochastic mirror descent (Clipped-SMD) algorithm. We give an improved analysis framework that51

not only gives tighter bounds matching the light-tailed noise setting, but also allows for step sizes52

and clipping parameters for unknown time horizons. Furthermore, we show that this framework is53

applicable to various settings, from finding minimizers of convex functions with arbitrarily large54

domains using (accelerated) mirror descent, to finding stationary points for non-convex functions55

using gradient descent.56

1.1 Contributions and Techniques57

Our work addresses several open questions posed by previous works including handling general do-58

mains and dealing with an unknown time horizon under heavy-tailed noise. Qualitatively, we close59

the logarithmic suboptimality gap and achieve the optimal rate in several settings. More specifically:60

−We demonstrate a novel approach to analyze clipped gradient methods in high probability that is61

general and applies to various standard settings. In the convex setting, we analyze Clipped-SMD62

and clipped stochastic accelerated mirror descent. In the non-convex setting, we analyze Clipped-63

SGD. Using our new analysis, we show that clipped methods attain time-optimal convergence in64

high probability for both convex and nonconvex objectives under heavy-tailed gradient noise. In the65

convex setting, we obtain an O
(
T

1−p
p

)
convergence rate for arbitrary (not necessarily compact)66

convex domains for Clipped-SMD and O
(
T

1−p
p σ + T−2

)
for accelerated Clipped-SMD, where σ67

is the noise parameter. These rates are time-optimal and match the lower bounds proven in [25, 30].68

In the nonconvex setting, we obtain the optimal convergence rate of O
(
T

2−2p
3p−2

)
for clipped-SGD.69

This bound is also time-optimal and matches the lower bound in [32]; it also complements the70

in-expectation convergence of clipped-SGD provided by [32].71

− Previous works for heavy-tailed noises follow the recipe of using Freedman-type inequalities72

[3, 2] as a blackbox and bound the iterates inductively for all iterations. This process incurs an73

additional log T dependency in the final convergence rate; in other words, the success probability74

goes from 1 − δ to 1 − Tδ. The step sizes and clipping parameters of this approach depend on75

the time horizon T to enable the union bound and induction across all iterations in the analysis, ex-76

cluding the important case when the time horizon is unknown. Our whitebox approach forgoes the77

aforementioned induction, not only circumventing the log T loss but also allowing for an unknown78

time horizon. We further show that our analysis allows for a choice of step size and clipping param-79

eters that do not depend on generally unknown parameters like the noise-parameter σ, the failure80

probability δ, and the initial distance to the optimum, all of which appear impossible using only the81

techniques from prior works.82

− Our whitebox approach analyzes the moment generating function of a well chosen martingale83

difference sequence to obtain tight rates for stochastic gradient methods. This approach is closest to84

the work of [17], which only work in the light-tailed noise setting. In contrast to the light-tailed noise85

setting where all the moments are well controlled, the heavy-tailed setting often requires algorithms86

to incorporate gradient clipping for controlling the possibly infinite moments. However, this makes87

the gradient estimate biased and requires more careful attention to control the bias propagating88
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through the algorithm. Naively applying the technique in [17] is not enough to handle heavy-tailed89

noise. Rather, as will be shown in our analysis, we introduce a novel history-dependent weights for90

the martingale sequence that is able to cope with the propagating bias term of clipped methods for91

heavy-tailed noise across various settings.92

1.2 Related Works93

High probability convergence for light-tailed noises. Convergence in high probability of stochas-94

tic gradient algorithms has been established for sub-Gaussian noises in a number of prior works,95

including [22, 11, 26, 13, 10, 9] for convex problems with bounded domain (or bounded Bregman96

diameter) or with strong convexity. Other works [16, 19, 15] study convergence of variants of SGD97

for nonconvex objectives, where they consider sub-Gaussian and sub-Weibull noises. The most rele-98

vant to ours in this line of work is the one by [17], where a whitebox approach is employed to obtain99

tight rates for stochastic gradient methods in the light-tailed noise setting. However, their technique100

is not directly applicable in the heavy-tailed noise setting, where we need to introduce new ideas to101

handle the biases introduced by gradient clipping.102

High probability convergence for noises with bounded variance and heavy tails. The design of103

new gradient algorithms and their analysis in the presence of heavy-tailed noises has drawn signifi-104

cant recent interest. Starting from the work [24] which propose Clipped-SGD to handle exploding105

gradients in recurrent neural networks, the recent works [29, 28, 32, 8] give new motivation for106

clipped methods in the context of convolutional networks and attention deep networks that attempts107

to explain the dominance of adaptive methods over SGD in practical modern scenarios.108

While the convergence in expectation of vanilla SGD has been extensively studied [4, 22, 12, 17],109

only recently has the convergence of Clipped-SGD with heavy tailed noises been closely examined.110

There, [32] first show the convergence in expectation of Clipped-SGD for nonconvex functions111

and provide a matching lower bound. In the convex regime, several works with different clipping112

strategies for the case of p = 2 have shown high probability convergence for smooth problems113

with bounded domain [21, 23], smooth unconstrained problems [6], and non-smooth problems [7].114

A variant of Clipped-SGD that utilizes momentum [1] has also been shown to converge with high115

probability for bounded pth moments gradient noise. However, the analysis in [1] requires a strong116

assumption which implies that the true gradients are bounded, a restrictive assumption that excludes117

objectives like quadratic functions.118

More recently, [27, 18, 33] give nearly-optimal convergence rates for several Clipped-SGD variants.119

These works follow the recipe of using Freedman-type inequalities [3, 2] as a blackbox and bound120

the iterates inductively for all iterations, which incur an additional log T dependency in the final121

convergence rate. We show in our work that existing convergence rates can be tightened up and122

improved. Tight lower bounds for the optimal convergence rate have been shown by [25, 30] for123

convex objectives and by [32] for nonconvex settings. In both cases, our paper provides optimal124

convergence guarantees.125

In a related but different line of work, [31] show that vanilla SGD can converge with heavy tailed126

noise for a special type of strongly convex functions, and [30] show that stochastic mirror descent127

converges in expectation for a special choice of mirror maps, although only for strongly convex128

objectives with bounded domains.129

2 Preliminaries: Assumptions and Notations130

We study the problem minx∈X f(x) where f : Rd → R and X is the domain of the problem. In131

the convex setting, we assume that X is a convex set but not necessarily compact. We let ‖·‖ be an132

arbitrary norm and ‖·‖∗ be its dual norm. In the nonconvex setting, we take X to be Rd and consider133

only the `2 norm.134

2.1 Assumptions135

Our paper works with the following assumptions:136

(1) Existence of a minimizer: In the convex setting, we assume that there exists x∗ ∈137

arg minx∈X f(x). We let f∗ = f(x∗).138

3



(1’) Existence of a finite lower bound: In the nonconvex setting, we assume that f admits a finite139

lower bound, i.e., f∗ := infx∈Rd f(x) > −∞.140

(2) Unbiased estimator: We assume that our algorithm is allowed to query a stochastic first-order141

oracle that returns a history-independent, unbiased gradient estimator ∇̂f(x) of ∇f(x) for any142

x ∈ X . That is, conditioned on the history and the queried point x, we have E[∇̂f(x) | x] = ∇f(x).143

(3) Bounded pth moment noise: We assume that there exists σ > 0 such that for some 1 < p ≤ 2144

and for any x ∈ X , ∇̂f(x) satisfies E[‖∇̂f(x)−∇f(x)‖p∗ | x] ≤ σp.145

(4) L-smoothness: We consider the class of L-smooth functions: for all x, y ∈ Rd,146

‖∇f(x)−∇f(y)‖∗ ≤ L ‖x− y‖ .147

2.2 Gradient Clipping Operator and Notations148

We introduce the gradient clipping operator and its general properties used in Clipped-SMD (Al-149

gorithm 2) and Clipped-SGD (Algorithm 1). Let xt be the output at iteration t of an algorithm of150

interest. We denote by ∇̂f(xt) the stochastic gradient obtained by querying the gradient oracle. The151

clipped gradient estimate ∇̃f(xt) is taken as152

∇̃f(xt) = min

1,
λt∥∥∥∇̂f(xt)

∥∥∥
∗

 ∇̂f(xt), (1)

where λt is the clipping parameter used in iteration t. In subsequent sections, we let ∆t := f(xt)−153

f∗ denote the optimal function value gap at xt. We let Ft = σ
(
∇̂f(x1), . . . , ∇̂f(xt)

)
be the154

natural filtration at time t and define the following notations for the stochastic error, the deviation,155

and the bias of the clipped gradient estimate at time t:156

θt = ∇̃f(xt)−∇f(xt); θut = ∇̃f(xt)−E
[
∇̃f(xt) | Ft−1

]
; θbt = E

[
∇̃f(xt) | Ft−1

]
−∇f(xt).

Note that θut +θbt = θt. Regardless of the convexity of the function f , the following lemma provides157

upper bounds for these quantities. These bounds can be found in prior works [6, 32, 18, 27] for the158

special case of `2 norm. The extension to the general norm follows in the same manner, which we159

omit in this work.160

Lemma 2.1. For stochastic gradients ∇̂f(xt) with bounded pth moment noise, the clipped gradients161

∇̃f(xt) satisfy the following properties:162

‖θut ‖∗ =
∥∥∥∇̃f(xt)− E

[
∇̃f(xt) | Ft−1

]∥∥∥
∗
≤ 2λt. (2)

Furthermore, if ‖∇f(xt)‖∗ ≤
λt
2 then163 ∥∥θbt∥∥∗ =

∥∥∥E [∇̃f(xt) | Ft−1

]
−∇f(xt)

∥∥∥
∗
≤ 4σpλ1−p

t ; (3)

E
[
‖θut ‖

2
∗

]
= E

[∥∥∥∇̃f(xt)− Et
[
∇̃f(xt)

]∥∥∥2

∗
| Ft−1

]
≤ 40σpλ2−p

t . (4)

Finally, we state a simple but important lemma that bounds the moment generating function of a164

zero-mean bounded random variable. The proof can be found in, for example, Lemma 1 of [16].165

Lemma 2.2. Let X be a random variable such that E [X] = 0 and |X| ≤ R almost surely. Then166

for 0 ≤ λ ≤ 1
R167

E [exp (λX)] ≤ exp

(
3

4
λ2E

[
X2
])

.

3 Clipped Stochastic Gradient Descent for Nonconvex Functions168

In this section, we study the convergence of Clipped-SGD for nonconvex functions. Here, we con-169

sider the domain to be Rd equipped with the standard `2 norm. We first outline a blackbox concen-170

tration argument to show convergence in high probability of Algorithm 1 and then follow-up with a171

more powerful whitebox approach that allows for a tight high probability convergence analysis.172
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Algorithm 1 Clipped-SGD
Parameters: initial point x1, step sizes {ηt}, clipping parameters {λt}
for t = 1 to T do

∇̃f(xt) = min

{
1, λt

‖∇̂f(xt)‖

}
∇̂f(xt)

xt+1 = xt − ηt∇̃f(xt)

Comparison to previous works. In the simple setting of known time horizon and without momen-173

tum for Clipped-SGD, the Õ(T
2−2p
3p−2 ) convergence rate has not been shown before to the best of our174

knowledge. The recent work by [27] study this case and only give a suboptimal rate of Õ(T
1−p
p ).175

Note that [1, 18] study other variants of Clipped-SGD with momentums incorporated. Although176

[1, 18] achieve the nearly-optimal time dependency of Õ(T
2−2p
3p−2 ) in the non-convex settings, they177

rely on using blackbox concentration inequalities which result in a suboptimal convergence rate that178

also requires a known time horizon.179

We first present the guarantee for known time horizon T via our whitebox approach in Theorem 3.1180

and defer the statement for unknown T in Theorem B.2 to the appendix.181

Theorem 3.1. Assume that f satisfies Assumption (1’), (2), (3), (4). Let γ := max
{

log 1
δ ; 1
}

and182

∆1 := f(x1)− f∗. For known time horizon T , we choose λt and ηt such that183

λt := λ := max

{(
8γ√
L∆1

) 1
p−1

T
1

3p−2σ
p
p−1 ; 2

√
90L∆1; 32

1
pσT

1
3p−2

}

ηt := η :=

√
∆1T

1−p
3p−2

8λ
√
Lγ

=

√
∆1

8
√
Lγ

min

{(
8γ√
L∆1

) −1
p−1

T
−p

3p−2σ
−p
p−1 ;

T
1−p
3p−2

2
√

90L∆1

;
T

−p
3p−2

321/pσ

}
.

Then with probability at least 1− δ184

1

T

T∑
t=1

‖∇f(xt)‖2 ≤ 720
√

∆1Lγmax

{(
8γ√
L∆1

) 1
p−1

T
2−2p
3p−2σ

p
p−1 ;

2
√

90L∆1T
1−2p
3p−2 ; 321/pσT

2−2p
3p−2

}
= O

(
T

2−2p
3p−2

)
.

Lemma 3.2 is key and provides the starting point of the analysis. Its proof is shown in the Appendix.185

Lemma 3.2. Assume that f satisfies Assumption (1’), (2), (3), (4) and ηt ≤ 1
L then for all t ≥ 1,186

ηt
2
‖∇f(xt)‖2 ≤ ∆t −∆t+1 +

(
Lη2

t − ηt
)
〈∇f(xt), θ

u
t 〉+

3ηt
2

∥∥θbt∥∥2

+ Lη2
t

(
‖θut ‖

2 − E
[
‖θut ‖

2 | Ft−1

])
+ Lη2

tE
[
‖θut ‖

2 | Ft−1

]
. (5)

Remark 3.3. In Lemma 3.2, we decompose the RHS into appropriate terms that allow us to de-187

fine a martingale. This lemma helps us understand why we can achieve a better convergence rate188

O(T
2−2p
3p−2 ) here (for minimizing the norm squared of the gradient) than the best rate of O(T

1−p
p ) in189

the convex setting. We focus on the error term 〈∇f(xt), θt〉 = 〈∇f(xt), θ
u
t 〉+

〈
∇f(xt), θ

b
t

〉
on the190

RHS of (5). Since this error contains the gradient∇f(xt), we leverage some of the gain ‖∇f(xt)‖2191

on the LHS of 5: we use Cauchy-Schwarz to bound
〈
∇f(xt), θ

b
t

〉
≤ 1

2‖∇f(xt)‖2 + 1
2‖θ

b
t‖2 and192

use the some of the gain to absorb the first term. Then setting our parameters λt, ηt appropriately to193

balance the remaining terms helps us achieve the O(T
2−2p
3p−2 ) rate. Contrast this to the general con-194

vex setting in the next section: the mismatch between the error term that contains the distance term195

‖x∗ − xt‖ and the gain term that contains the function value gap f(xt)− f∗ prevents us from using196

the gain to absorb some of the error. Thus, this explains the convergence rate discrepancy between197

the convex case and the non-convex setting (see also Remark 4.6).198

Before giving a sketch of our whitebox approach, we present a sketch of a blackbox argument that199

gives a nearly time-optimal convergence rate. This approach has an additional log T factor in the200

final rate but will serve as a point of comparison for our new techniques, which will close this gap.201
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Blackbox approach. The key lies in the following lemma, which yields the near optimal Õ(T
2−2p
3p−2 )202

convergence rate of Clipped-SGD. In this case, we assume that the clipping parameters λt and the203

step sizes are ηt are fixed. Note that the success probability is only 1− Tδ. This result uses Lemma204

3.2 and Freedman’s inequality (Theorem A.1) primarily as a blackbox to bound the error terms205

inductively by the initial function value gap to optimality.206

Lemma 3.4. For 1 ≤ N ≤ T + 1, let ηt = η, λt = λ (the specific choices are omitted here for207

brevity) and EN be the event that for all k = 1, . . . N ,208

Lη2
k−1∑
t=1

‖θut ‖
2

+
(
Lη2 − η

) k−1∑
t=1

〈∇f(xt), θ
u
t 〉+

3η

2

∥∥θbt∥∥2 ≤ ∆1.

Then EN happens with probability at least 1− (N−1)δ
T for each N ∈ [T + 1].209

With the above lemma, we can obtain a near-optimal convergence rate. However, this rate is still210

suboptimal due to the use of T union bounds as part of the induction proof. We now discuss an211

improved analysis that closes the remaining gap.212

Whitebox approach. Our whitebox approach defines a novel supermartingale difference sequence213

Zt (shown below) and analyzes its moment generating function from first principles. The sequence214

is designed to leverage the structure of the problem and Clipped-SGD via carefully chosen weights215

zt (shown below).216

Zt := zt

(
ηt
2
‖∇f(xt)‖2 + ∆t+1 −∆t −

3ηt
2

∥∥θbt∥∥2 − Lη2
tE
[
‖θut ‖

2 | Ft−1

])
−
(
3z2
tLη

2
t∆t + 6L2z2

t η
4
t λ

2
t

)
E
[
‖θut ‖

2 | Ft−1

]
where zt :=

1

2Ptηtλt maxi≤t
√

2L∆i + 8QtLη2
t λ

2
t

for Pt, Qt ∈ Ft−1 ≥ 1. We also define St :=
∑t
i=1 Zi.217

We now present Lemma 3.5 which is the main result for controlling the above martingale, whose218

proof will offer insights into the main technique in this paper. The technique to prove Lemma 3.5 is219

similar to the standard way of bounding the moment generating function in proving concentration220

inequalities, such as Freedman’s inequality [3, 2]. The main challenge here is to find a way to221

leverage the structure of Clipped-SGD and choose the suitable coefficients zt. Similarly to [17]222

where the authors analyze SGD with sub-Gaussian noise, we analyze the martingale difference223

sequence in a “whitebox” manner. In [17], however, thanks to the light-tailed noise, the weights224

zt can be chosen depending only on the problem parameters and independently of the algorithm225

history. On the other hand, to use Lemma 2.2, we have to make sure that zt ≤ 1
R , where R is an226

upper bound for the martingale elements. The key here is to choose zt depending on the past iterates,227

and use the function value gaps ∆t to absorb the error incurred during the analysis. We give a proof228

sketch and defer the full version to the appendix.229

Lemma 3.5. For any δ > 0, let E(δ) be the event that for all 1 ≤ k ≤ T230

1

2

k∑
t=1

ztηt ‖∇f(xt)‖2 + zk∆k+1 ≤ z1∆1 + log
1

δ
+

k∑
t=1

3ztηt
2

∥∥θbt∥∥2

+

k∑
t=1

(
(3z2

tLη
2
t∆t + 6L2z2

t η
4
t λ

2
t + ztLη

2
t )E

[
‖θut ‖

2 | Ft−1

])
.

Then Pr [E(δ)] ≥ 1− δ.231

Proof Sketch. Using Lemmas 3.2, 2.2, and the condition for zt, we can show that232

E [exp (Zt) | Ft−1] ≤ 1. This then implies233

E [exp (St) | Ft−1] = exp (St−1)E [exp (Zt) | Ft−1] ≤ exp (St−1) ,

which means (exp (St))t≥1 is a supermartingale. By Ville’s inequality, we have, for all k ≥ 1,234

Pr
[
Sk ≥ log 1

δ

]
≤ δE [exp (S1)] ≤ δ. In other words, with probability at least 1− δ, for all k ≥ 1,235 ∑k

t=1 Zt ≤ log 1
δ . Plugging in the definition of Zt we obtain the desired inequality.236
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Algorithm 2 Clipped-SMD
Parameters: initial point x1, step sizes {ηt}, clipping parameters {λt}, ψ is 1-strongly convex wrt
‖·‖
for t = 1 to T do

∇̃f(xt) = min

{
1, λt

‖∇̂f(xt)‖∗

}
∇̂f(xt)

xt+1 = arg minx∈X

{
ηt

〈
∇̃f(xt), x

〉
+ Dψ (x, xt)

}

We now specify the choice of ηt and λt. The following lemma gives a general condition for the237

choice of ηt and λt that gives the right convergence rate in time T .238

Proposition 3.6. We assume that the event E(δ) from Lemma 3.5 happens. Suppose that for some239

` ≤ T , there are constants C1, C2 and C3 such that for all t ≤ `240

1. λtηt
√

2L ≤ C1; 2. 1
Lηt

(
1
λt

)p
≤ C2; 3.

∑T
t=1 L

(
1
λt

)p
λ2
tη

2
t ≤ C3; 4. ‖∇f(xt)‖ ≤ λt

2 .241

Then for all t ≤ `+ 1242

1

2

t∑
i=1

ηi ‖∇f(xi)‖2 + ∆t+1 ≤
(√

∆1 + 2
√
AC1

)2

for a constant A ≥ max

{
64
(

log 1
δ + 60σpC3

C2
1

)2

+ 48σ2pC2C3+140σpC3

C2
1

; 1

}
.243

Finally, the proof for Theorem 3.1 is a direct consequence of Proposition 3.6 where we defer the244

details to the appendix.245

4 Clipped Stochastic Mirror Descent for Convex Objectives246

In this section, we present and analyze the Clipped Stochastic Mirror Descent algorithm (Algorithm247

2) under heavy-tailed noise, with a general domain and arbitrary norm. In Section D in the appendix,248

we also show the convergence and its analysis for Accelerated Stochastic Mirror Descent.249

We define the Bregman divergence Dψ(x, y) = ψ(x)−ψ(y)−〈∇ψ(y), x− y〉, where ψ : Rd → R250

is a 1-strongly convex differentiable function with respect to the norm ‖·‖ on X . We assume for251

convenience that dom (ψ) = Rd. Algorithm 2 is a generalization of Clipped-SGD for convex252

functions to an arbitrary norm. The only difference from the standard Stochastic Mirror Descent253

algorithm is the use of the clipped gradient ∇̃f(xt) in place of the true stochastic gradient ∇̂f(xt)254

when computing the new iterate xt+1.255

Prior works such as [6] only consider the setting where the global minimizer lies inX . Our algorithm256

and analysis does not require this restriction and instead only uses the following initial gradient257

estimate assumption from [21]:258

(5) Initial gradient estimate: Let x1 be the initial point. We assume that we have access to an259

upperbound∇1 of ‖∇f(x1)‖∗ i.e. ‖∇f(x1)‖∗ ≤ ∇1. This assumption is justified as follows. If the260

noise parameter σ defined in assumption (3) is known, we can use the procedure of [20] to estimate261

‖∇f(x1)‖∗: we take O (ln (1/δ)) stochastic gradient samples at x1, and let g1 be the geometric262

median of these samples; we then set ∇1 := ‖g1‖∗ + 10σ. It follows from [20] that ‖∇f(x1)‖∗ ≤263

∇1 holds with probability at least 1−δ. If the domain contains the global optimum x∗ (∇f(x∗) = 0)264

and the initial distance ‖x1 − x∗‖ is known, we have the following alternative upper bound that265

follows from∇f(x∗) = 0 and smoothness:‖∇f(x1)‖∗ = ‖∇f(x1)−∇f(x∗)‖∗ ≤ L ‖x1 − x∗‖.266

Convergence guarantees. We first state the convergence guarantee for this algorithm in the follow-267

ing Theorem 4.1 which works for an arbitrary norm and a general domain which may not include268

the global optimum. In this theorem, we assume that we know several problem parameters to show269

the main idea of our analysis. In Theorem 4.4, we remove the knowledge of the problem parameters.270

Theorem 4.1. Assume that convex f satisfies Assumptions (1), (2), (3), (4) and (5). Let γ =271

max
{

log 1
δ ; 1
}

; R1 =
√

2Dψ (x∗, x1) , and assume that ∇1 is an upper bound of ‖∇f(x1)‖∗.272
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For known T , we choose λt and ηt such that273

λt = λ = max

{(
26T

γ

)1/p

σ; 2 (3LR1 +∇1)

}
, and

ηt = η =
R1

24λtγ
=

R1

24γ
min

{(
26T

γ

)−1/p

σ−1;
1

2
(3LR1 +∇1)

−1

}
.

Then with probability at least 1− δ274

1

T

T+1∑
t=2

∆t ≤ 48R1 max
{

26
1
pT

1−p
p σγ

p−1
p ; 2 (3LR1 +∇1)T−1γ

}
= O

(
T

1−p
p

)
.

Remark 4.2. This theorem shows that the convergence rate for the known time horizon case is275

O(T
1−p
p ). This rate is known to be optimal, matching the lower bounds shown in [25, 30]. The276

above guarantee is also adaptive to σ, i.e., when σ → 0, we obtain the standardO(T−1) convergence277

rate of deterministic mirror descent.278

Remark 4.3. The term ∇1 in the above theorem comes from the inexact estimation of ‖∇f(x1)‖∗.279

If we assume that the global optimum lies in the domainX , we can simply select∇1 = LR1 without280

using the estimation procedure, as discussed in (5).281

In Theorem 4.1, we use the initial distance R1 to the optimal solution to set the step sizes and282

clipping parameters. This information is generally not available, but can be avoided. For example,283

for constrained problems where the domain radius is bounded by R, we can replace R1 in Theorem284

4.1 by R without change in the dependency. However, for the general problem, we present Theorem285

4.4, where we do not require knowledge of the constants T, σ, δ or R1 to set the step sizes and286

clipping parameters. However, we still need the mild assumption of knowing an upper bound∇1 on287

‖∇f(x1)‖∗. As discussed in (5),∇1 can be estimated with good accuracy when σ is known.288

Theorem 4.4. Assume that convex f satisfies Assumption (1), (2), (3), (4) and (5). Let γ =289

max
{

log 1
δ ; 1
}

; R1 =
√

2Dψ (x∗, x1), and assume that ∇1 is an upper bound of ‖∇f(x1)‖∗.290

We choose λt and ηt such that291

λt = max

{(
52t(1 + log t)2c2

)1/p
; 2

(
Lmax

i≤t
‖xi − x1‖+∇1

)
;
Lc1
6

}
, and

ηt =
c1

24λt
=
c1
24

min

{(
52t(1 + log t)2c2

)−1/p
;

1

2 (Lmaxi≤t ‖xi − x1‖+∇1)
;

6

Lc1

}
,

where the absolute constants c1 and c2 are to ensure the correctness of the dimensions. Then, with292

probability at least 1− δ, we have293

1

T

T+1∑
t=2

∆t ≤
8

Tc1

(
R1 +

c1
3

(
γ +

2σp

c2

))2

max

{(
52T (1 + log T )2c2

)1/p
;

4R1L+
2c1
3
L

(
γ +

2σp

c2

)
+ 2∇1;

Lc1
6

}
= Õ

(
T

1−p
p

)
.

Sketch of the analysis. In the remainder of this section, we provide a sketch of the analysis for294

Theorem 4.1, which starts with the following lemma.295

Lemma 4.5. Assume that convex f satisfies Assumption (1), (2), (3), (4) and ηt ≤ 1
4L , the iterate296

sequence (xt)t≥1 output by Algorithm 2 satisfies the following:297

ηt∆t+1 ≤ Dψ (x∗, xt)−Dψ (x∗, xt+1) + ηt 〈x∗ − xt, θut 〉+ ηt
〈
x∗ − xt, θbt

〉
+ 2η2

t

(
‖θut ‖

2
∗ − E

[
‖θut ‖

2
∗ | Ft−1

])
+ 2η2

tE
[
‖θut ‖

2
∗ | Ft−1

]
+ 2η2

t

∥∥θbt∥∥2

∗ .

Remark 4.6. In contrast to Remark 3.3, there is a mismatch between the gain ∆t+1 and the loss298

〈x∗ − xt, θt〉. Since the distance ‖x∗ − xt‖ and the function value gap ∆t cannot be related in the299

general convex case, we do not obtain the same rate as in the nonconvex case.300
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We now define the following terms for t ≥ 1:301

Zt := zt

(
ηt∆t+1 + Dψ (x∗, xt+1)−Dψ (x∗, xt)− ηt

〈
x∗ − xt, θbt

〉
− 2η2

t

∥∥θbt∥∥2

∗

− 2η2
tE
[
‖θut ‖

2
∗ | Ft−1

])
−
(

3

8λ2
t

+ 24z2
t η

4
t λ

2
t

)
E
[
‖θut ‖

2 | Ft−1

]
,

where zt :=
1

2ηtλt maxi≤t
√

2Dψ (x∗, xi) + 16Qη2
t λ

2
t

for a constant Q ≥ 1. We also define St :=
∑t
i=1 Zi. We have the following lemma, which is302

analogous to Lemma 3.5 in the nonconvex case.303

Lemma 4.7. For any δ > 0, let E(δ) be the event that for all 1 ≤ k ≤ T304

k∑
t=1

ztηt∆t+1 + zkDψ (x∗, xk+1) ≤ z1Dψ (x∗, x1) + log
1

δ
+

k∑
t=1

ztηt
〈
x∗ − xt, θbt

〉
+2

k∑
t=1

ztη
2
t

∥∥θbt∥∥2

∗ +

k∑
t=1

((
2ztη

2
t +

3

8λ2
t

+ 24z2
t η

4
t λ

2
t

)
E
[
‖θut ‖

2
∗ | Ft−1

])
.

(6)

Then Pr [E(δ)] ≥ 1− δ.305

We now specify the choice of ηt and λt. The following proposition gives a general condition for the306

choice of ηt and λt that gives the right convergence rate in time T .307

Proposition 4.8. We assume that the event E(δ) from Lemma 4.7 happens. Suppose that for some308

` ≤ T , there are constants C1, C2, C3, and A such that for all t ≤ `309

1. λtηt = C1; 2.
∑`
t=1

(
1
λt

)p
≤ C2; 3.

(
1
λt

)2p

≤ C3

(
1
λt

)p
; 4. ‖∇f(xt)‖∗ ≤

λt
2 .310

Then for all t ≤ `+ 1311

t∑
i=1

ηi∆i+1 + Dψ (x∗, xt+1) ≤ 1

2
(R1 + 8AC1)

2

for A ≥ max
{

log 1
δ + 26σpC2 + 2σ2pC2C3

A ; 1
}

.312

Theorem 4.1 follows from Proposition 4.8. Both proofs can be found in the appendix.313

Extensions. In Section D in the appendix, we also show the convergence and its analysis for314

Accelerated Stochastic Mirror Descent. Our analysis readily extends to non-smooth settings,315

and more generally to functions that satisfy f(y) − f(x) ≤ 〈∇f(x), y − x〉 + G ‖y − x‖ +316
L
2 ‖y − x‖

2
, ∀y, x ∈ X . This condition is satisfied by both Lipschitz functions (when L = 0)317

and smooth functions (when G = 0). The key step is to extend Lemma 4.5. The proof follows from318

[14] and can be found in the appendix.319

5 Conclusion320

In this work, we propose a new approach to design and analyze various clipped gradient algorithms321

in the presence of heavy-tailed noise. Our analysis applies to various standard settings, includ-322

ing Clipped-SMD and accelerated Clipped-SMD for convex objectives with general domains and323

Clipped-SGD for nonconvex objectives, and gives optimal high probability rates in all settings. Our324

algorithms allow for setting step-sizes and clipping parameters when the time horizon and problem325

parameters such as the initial distance are unknown. For future work, since our algorithms have326

the limitation of still requiring the knowledge of parameters like L and p, it is of great interest to327

investigate the existence of a fully-adaptive method, like Adagrad, that converges under heavy-tailed328

noise without requiring the knowledge of any problem parameter. Finally, it would be interesting to329

extend our techniques to the setting of variational inequalities under heavy-tailed noise [5].330
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A Freedman’s inequality418

Lemma A.1 (Freedman’s inequality). Let (Xt)t≥1 be a martingale difference sequence. Assume419

that there exists a constant c > 0 such that |Xt| ≤ c almost surely for all t ≥ 1 and define420

σ2
t = E

[
X2
t | Xt−1, . . . , X1

]
. Then for all b > 0, F > 0 and T ≥ 1421

Pr

[∣∣∣∣∣
T∑
t=1

Xt

∣∣∣∣∣ > b and
T∑
t=1

σ2
t ≤ F

]
≤ 2 exp

(
− b2

2F + 2cb/3

)
.

B Missing Proofs from Section 3422

Proof of Lemma 3.2. By the smoothness of f and the update xt+1 = xt − 1
ηt
∇̃f(xt) we have423

f(xt+1)− f(xt)

≤〈∇f(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

=− ηt
〈
∇f(xt), ∇̃f(xt)

〉
+
Lη2

t

2

∥∥∥∇̃f(xt)
∥∥∥2

=− ηt 〈∇f(xt), θt +∇f(xt)〉+
Lη2

t

2
‖θt +∇f(xt)‖2

=− ηt ‖∇f(xt)‖2 − ηt 〈∇f(xt), θt〉+
Lη2

t

2
‖θt‖2 +

Lη2
t

2
‖∇f(xt)‖2 + Lη2

t 〈∇f(xt), θt〉

=−
(
ηt −

Lη2
t

2

)
‖∇f(xt)‖2 +

Lη2
t

2
‖θt‖2 +

(
Lη2

t − ηt
)
〈∇f(xt), θt〉

=−
(
ηt −

Lη2
t

2

)
‖∇f(xt)‖2 +

Lη2
t

2
‖θt‖2 +

(
Lη2

t − ηt
)︸ ︷︷ ︸

≤0

〈
∇f(xt), θ

u
t + θbt

〉
.

Using Cauchy-Schwarz, we have
〈
∇f(xt), θ

b
t

〉
≤ 1

2 ‖∇f(xt)‖2 + 1
2

∥∥θbt∥∥2
. Thus, we derive424

∆t+1 −∆t ≤ −
(

2ηt − Lη2
t

2

)
‖∇f(xt)‖2 +

Lη2
t

2
‖θt‖2 +

(
Lη2

t − ηt
)
〈∇f(xt), θ

u
t 〉

+
ηt − Lη2

t

2
‖∇f(xt)‖2 +

ηt − Lη2
t

2

∥∥θbt∥∥2

≤ −ηt
2
‖∇f(xt)‖2 +

Lη2
t

2
‖θt‖2 +

(
Lη2

t − ηt
)
〈∇f(xt), θ

u
t 〉+

ηt
2

∥∥θbt∥∥2

≤ −ηt
2
‖∇f(xt)‖2 + Lη2

t ‖θut ‖
2

+
(
Lη2

t − ηt
)
〈∇f(xt), θ

u
t 〉+

(
Lη2

t +
ηt
2

)∥∥θbt∥∥2

≤ −ηt
2
‖∇f(xt)‖2 + Lη2

t ‖θut ‖
2

+
(
Lη2

t − ηt
)
〈∇f(xt), θ

u
t 〉+

3ηt
2

∥∥θbt∥∥2
,

where the third inequality is due to ‖θt‖2 ≤ 2 ‖θut ‖
2

+ 2
∥∥θbt∥∥2

, and the last inequality is due to425

ηt ≤ 1
L . Rearranging, adding, and subtracting E

[
‖θut ‖

2 | Ft−1

]
, we obtain the lemma.426

Proof Sketch of 3.4. We will prove by induction on N that EN happens with probability at least427

1 − (N−1)δ
T . For N = 1, the event happens with probability 1. Suppose that for some N ≤ T ,428

Pr [EN ] ≥ 1 − (N−1)δ
T . We will prove that Pr [EN+1] ≥ 1 − Nδ

T . From the induction hypothesis429

and Lemma 5, we have that for all k ≤ N , ∆k ≤ 2∆1. Since the LHS of 5 is non-negative, by430

summing over t from 1 to N we have,431

∆N+1 ≤
(
η − Lη2

) N∑
t=1

〈−∇f(xt), θ
u
t 〉︸ ︷︷ ︸

A

+
3η

2

N∑
t=1

∥∥θbt∥∥2

︸ ︷︷ ︸
B
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+ Lη2
N∑
t=1

(
‖θut ‖

2 − Et
[
‖θut ‖

2
])

︸ ︷︷ ︸
C

+Lη2
N∑
t=1

Et
[
‖θut ‖

2
]

︸ ︷︷ ︸
D

.

The bounds for B and D are straightforward from Lemma 2.1. First, with probability 1, we have432

‖θut ‖ ≤ 2λ. By the smoothness of f and the fact that f is bounded below, we have ‖∇f(xt)‖ ≤433 √
2L∆t:434

f(x∗) ≤ f(x− 1

L
∇f(x)) ≤ f(x) +

〈
∇f(x), x− 1

L
∇f(x)− x

〉
+

1

2L
‖∇f(x)‖2

= f(x)− 1

2L
‖∇f(x)‖2

=⇒ ‖∇f(x)‖2 ≤ 2L (f(x)− f(x∗)) .

Further, when the event EN happens, we have435

‖∇f(xt)‖ ≤
√

2L∆t ≤
√

4L∆1 ≤
λ

2
.

Thus, we can apply Lemma 2.1 and obtain
∥∥θbt∥∥ ≤ 4σpλ1−p and Et

[
‖θut ‖

2
]
≤ 40σpλ2−p. To436

bound A and C we use Freedman’s inequality (Theorem A.1). We define, for t ≥ 1, the following437

random variables438

Zt =

{
−∇f(xt) if ∆t ≤ 2∆1

0 otherwise.

Thus with probability 1, ‖Zt‖ ≤ ‖∇f(xt)‖ ≤ 2
√
L∆1.439

Upperbound for A. Instead of bounding A =
(
η − Lη2

)∑N
t=1 〈−∇f(xt), θ

u
t 〉, we will bound440

A′ =
(
η − Lη2

)∑N
t=1 〈Zt, θut 〉. We check the conditions to apply Freedman’s inequality. First441

Et
[(
η − Lη2

)
〈Zt, θut 〉

]
= 0. Further, with probability 1, ‖θut ‖

2 ≤ 2λ, and Zt ≤ 2
√
L∆1,442

thus
∣∣(η − Lη2

)
〈Zt, θut 〉

∣∣ ≤ (η − Lη2
)
‖Zt‖ ‖θut ‖ ≤ 4

√
L∆1

(
η − Lη2

)
λ ≤ 4

√
L∆1ηλ. Hence,443 {(

η − Lη2
)
〈Zt, θut 〉

}
is a bounded martingale difference sequence. Therefore, for constant a and444

F to be chosen we have445

Pr

[∣∣∣∣∣
N∑
t=1

(
η − Lη2

)
〈Zt, θut 〉

∣∣∣∣∣ > a and
N∑
t=1

Et
[((

η − Lη2
)
〈Zt, θut 〉

)2] ≤ F ln
4T

δ

]

≤ 2 exp

(
− a2

2F ln 4T
δ + 8

3

√
L∆1ηλa

)

We choose a such that 2 exp
(
− a2

2F ln 4T
δ + 8

3

√
L∆1ηλa

)
= δ

2T . Therefore with probability at least446

1− δ
2T we the following event happens447

EA =

{
either A′ ≤

∣∣∣∣∣
N∑
t=1

(
η − Lη2

)
〈Zt, θut 〉

∣∣∣∣∣ ≤ a
or

N∑
t=1

Et
[((

η − Lη2
)
〈Zt, θut 〉

)2]
> F ln

4T

δ

}

We can choose F such that under event EN , we have
∑N
t=1 Et

[((
η − Lη2

)
〈Zt, θut 〉

)2] ≤ F ln 4T
δ448

with probability 1. Therefore, when EN ∩ EA happens, we have A = A′ ≤ a.449

Finally, combining all the bounds for A,B,C,D using union bound we obtain the lemma.450

Proof of Lemma 3.5. We have451
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E [exp (Zt) | Ft−1] exp
((

3z2
tLη

2
t∆t + 6L2z2

t η
4
t λ

2
t

)
E
[
‖θut ‖

2 | Ft−1

])
(a)

≤ E
[
exp

(
zt

((
Lη2

t − ηt
)
〈∇f(xt), θ

u
t 〉+ Lη2

t

(
‖θut ‖

2 − E
[
‖θut ‖

2 | Ft−1

])))
| Ft−1

]
(b)

≤ exp

(
E
[

3

4

(
zt

((
Lη2

t − ηt
)
〈∇f(xt), θ

u
t 〉+ Lη2

t

(
‖θut ‖

2 − E
[
‖θut ‖

2 | Ft−1

])))2

| Ft−1

])
(c)

≤ exp

(
E
[

3

2
z2
t η

2
t ‖∇f(xt)‖2 ‖θut ‖

2 | Ft−1

]
+ E

[
3

2
L2z2

t η
4
t ‖θut ‖

4 | Ft−1

])
(d)

≤ exp
(

3z2
tLη

2
t∆tE

[
‖θut ‖

2 | Ft−1

]
+ 6L2z2

t η
4
t λ

2
tE
[
‖θut ‖

2 | Ft−1

])
= exp

((
3z2
tLη

2
t∆t + 6L2z2

t η
4
t λ

2
t

)
E
[
‖θut ‖

2 | Ft−1

])
For (a) we use Lemma 3.2. For (b) we use Lemma 2.2. Notice that452

E [〈∇f(xt), θ
u
t 〉] = E

[
‖θut ‖

2
∗ − E

[
‖θut ‖

2
∗ | Ft−1

]]
= 0,

and since ‖θut ‖ ≤ 2λt and ‖∇f(xt)‖ ≤
√

2L∆t for an L-smooth function, we have453 ∣∣∣(Lη2
t − ηt

)
〈∇f(xt), θ

u
t 〉+ Lη2

t

(
‖θut ‖

2 − E
[
‖θu‖2 | Ft−1

])∣∣∣
≤2ηtλt ‖∇f(xt)‖+ Lη2

t

(
‖θut ‖

2
+ E

[
‖θu‖2 | Ft−1

])
≤2ηtλt ‖∇f(xt)‖+ 8Lη2

t λ
2
t

≤2ηtλt
√

2L∆t + 8Lη2
t λ

2
t .

Thus zt ≤ 1
2ηtλt

√
2L∆t+8Lη2tλ

2
t

. For (c) we use (a + b)2 ≤ 2a2 + 2b2 and E
[
(X − E [X])

2
]
≤454

E
[
X2
]
. For (d) we use ‖∇f(xt)‖2 ≤ 2L∆t and ‖θut ‖ ≤ 2λt. We obtain455

E [exp (Zt) | Ft−1] ≤ 1.

Therefore456

E [exp (St) | Ft−1] = exp (St−1)E [exp (Zt) | Ft−1]

≤ exp (St−1)

which means (exp (St))t≥1 is a supermartingale. By Ville’s inequality, we have, for all k ≥ 1457

Pr

[
Sk ≥ log

1

δ

]
≤ δE [exp (S1)] ≤ δ.

In other words, with probability at least 1− δ, for all k ≥ 1458

k∑
t=1

Zt ≤ log
1

δ
.

Plugging in the definition of Zt we have459

1

2

k∑
t=1

ztηt ‖∇f(xt)‖2 +

k∑
t=1

(zt∆t+1 − zt∆t)

≤ log
1

δ
+

k∑
t=1

3ztηt
2

∥∥θbt∥∥2

+

k∑
t=1

((
3z2
tLη

2
t∆t + 6L2z2

t η
4
t λ

2
t + ztLη

2
t

)
E
[
‖θut ‖

2 | Ft−1

])
.
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Note that we have zt is a decreasing sequence, hence the LHS of the above inequality can be bounded460

by461

LHS =
1

2

k∑
t=1

ztηt ‖∇f(xt)‖2 + zk∆k+1 − z1∆1 +

k∑
t=2

(zk−1 − zk) ∆k

≥ 1

2

k∑
t=1

ztηt ‖∇f(xt)‖2 + zk∆k+1 − z1∆1.

We obtain the desired inequality.462

Proof of Proposition 3.6. We will prove by induction on k that463

1

2

k∑
i=1

ηi ‖∇f(xi)‖2 + ∆k+1 ≤
(√

∆1 + 2
√
AC1

)2

.

The base case k = 0 is trivial. Suppose the statement is true for all t ≤ k ≤ `. Now we show for464

k + 1. Recall that465

zt =
1

2Ptηtλt maxi≤t
√

2L∆i + 8QtLη2
t λ

2
t

.

Let us choose466

Pt =
C1

λtηt
√

2L
≥ 1

Qt =
C2

1

√
A

2Lη2
t λ

2
t

≥ 1.

We have467

zt =
1

2C1 maxi≤t
√

∆i + 4C2
1

√
A
.

Now, we can notice that (zt)t≥1 is a decreasing sequence. By the induction hypothesis468

maxi≤k
√

∆i ≤
√

∆1 + 2
√
AC1. Hence:469

zt
zk

=
2C1 maxi≤k

√
∆i + 4C2

1

√
A

2C1 maxi≤t
√

∆i + 4C2
1

√
A

≤
2C1

(√
∆1 + 2

√
AC1

)
+ 4C2

1

√
A

2C1

√
∆1 + 4C2

1

√
A

=

√
∆1 + 4

√
AC1√

∆1 + 2
√
AC1

≤ 2.

By the choice of λt, for all t ≤ k, ‖∇f(xt)‖ ≤ λt
2 , we can apply the second part of Lemma 2.1 to470

obtain471 ∥∥θbt∥∥ ≤ 4σpλ1−p
t ;

E
[
‖θut ‖

2 | Ft−1

]
≤ 40σpλ2−p

t .

Thus,472

1

2
zk

k∑
t=1

ηt ‖∇f(xt)‖2 + zk∆k+1

≤z1∆1 + log
1

δ
+

k∑
t=1

3ztηt
2

∥∥θbt∥∥2
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+

k∑
t=1

((
3z2
tLη

2
t∆t + 6L2z2

t η
4
t λ

2
t + ztLη

2
t

)
E
[
‖θut ‖

2 | Ft−1

])
≤z1∆1 + log

1

δ
+ 24σ2p

k∑
t=1

ztηtλ
2
t

(
1

λt

)2p

+ 40σp
k∑
t=1

((
3z2
t∆t + 6z2

tLη
2
t λ

2
t + zt

)
Lη2

t λ
2
t

(
1

λt

)p)
.

Since zt
zk
≤ 2 we have473

1

2

k∑
t=1

ηt ‖∇f(xt)‖2 + ∆k+1

≤z1∆1

zk
+

1

zk
log

1

δ
+ 48σ2p

k∑
t=1

ηtλ
2
t

(
1

λt

)2p

+ 80σp
k∑
t=1

((
3zt∆t + 6ztLη

2
t λ

2
t + 1

)
Lη2

t λ
2
t

(
1

λt

)p)
(a)

≤
√

∆1 + 4
√
AC1√

∆1 + 2
√
AC1

∆1 + 2C1

(√
∆1 + 4

√
AC1

)
log

1

δ
+ 48σ2pC2

k∑
t=1

Lη2
t λ

2
t

(
1

λt

)p

+ 80σp
k∑
t=1


 3

(√
∆1 + 2

√
AC1

)2

2C1

(√
∆1 + 2

√
AC1

) +
6

8Qt
+ 1

Lη2
t λ

2
t

(
1

λt

)p
(b)

≤∆1 + 2
√

∆1

√
AC1 + 2C1

(√
∆1 + 4

√
AC1

)
log

1

δ
+ 48σ2pC2C3

+ 80σp

3
(√

∆1 + 2
√
AC1

)
2C1

+
7

4

C3

≤∆1 + 2
√

∆1

√
AC1 + 2C1

(√
∆1 + 4

√
AC1

)(
log

1

δ
+

60σpC3

C2
1

)
+ 48σ2pC2C3 + 140σpC3

(c)

≤∆1 + 2
√

∆1

√
AC1 + 2C1

(√
∆1 + 4

√
AC1

) √A
8

+AC2
1

≤
(√

∆1 + 2
√
AC1

)2

.

For (a), we use
(

1
λt

)p
≤ C2Lηt and the induction hypothesis. For (b), we use474 ∑T

t=1 L
(

1
λt

)p
λ2
tη

2
t ≤ C3 and Qt ≥ 1. For (c), we have475

log
1

δ
+

60σpC3

C2
1

≤
√
A

8

48σ2pC2C3 + 140σpC3 ≤ AC2
1 ,

since476

A ≥ 64

(
log

1

δ
+

60σpC3

C2
1

)2

+
48σ2pC2C3 + 140σpC3

C2
1

.

This concludes the proof.477
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Lemma B.1. The choices of ηt and λt in Theorem 3.1 satisfy the condition (1)-(3) of Proposition478

3.6 for479

C1 =

√
∆1

4
√

2γ
,

C2 =
1

σp
,

C3 =
∆1

2048σpγ
.

Proof. We verify for the first case. The second follows exactly the same. First, we have p > 1 hence480

ηtλt
√

2L =

√
∆1T

1−p
3p−2

8
√
Lγ

√
2L ≤

√
∆1

4
√

2γ
= C1.

Since ηt =
√

∆1T
1−p
3p−2

8λt
√
Lγ

, p > 1 and λt ≥
(

8γ√
L∆1

) 1
p−1

T
1

3p−2σ
p
p−1481

ηtλ
p
t =

√
∆1T

1−p
3p−2

8
√
Lγ

λp−1
t

≥
√

∆1T
1−p
3p−2

8
√
Lγ

8γ√
L∆1

T
p−1
3p−2σp

=
σp

L

which gives482

1

Lηt

(
1

λt

)p
≤ 1

σp
= C2.

Finally, we have λt ≥ 321/pσT
1

3p−2 hence483 (
1

λt

)p
T

p
3p−2 ≤ 1

32σp
.

Therefore,484

T∑
t=1

L

(
1

λt

)p
λ2
tη

2
t =

T∑
t=1

L

(
1

λt

)p(√
∆1T

1−p
3p−2

8
√
Lγ

)2

≤ TL
(

1

λt

)p
T

2−2p
3p−2

∆1

64Lγ

=

(
1

λt

)p
T

p
3p−2

∆1

64γ2

≤ 1

32σp
∆1

64γ2
≤ ∆1

2048σpγ
.

485

Proof of Theorem 3.1. Note that η ≤ T
1−p
3p−2

16
√

90Lγ
≤ 1

L . We have that with probability at least 1 − δ,486

event E(δ) happens. Conditioning on this event, we verify the condition of Lemma 3.6. We select487

the following constants488

C1 =

√
∆1

4
√

2γ
; C2 ≤

1

σp
; C3 ≤

∆1

2048σpγ
; A = 256γ2.
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We verify in Lemma B.1 that for these choice of constants, conditions (1)-(3) of Proposition 3.6 are489

satisfied. Furthermore, we have490

64

(
log

1

δ
+

60σpC3

C2
1

)2

+
48σ2pC2C3 + 140σpC3

C2
1

= 64

(
log

1

δ
+ 60 log

1

δ

32

∆1

∆1

2048

)2

+

(
48

∆1

2048
+ 140

∆1

2048

)
32

∆1

≤ 256γ2 = A.

We only need to show that, for all t, ‖∇f(xt)‖ ≤ λt
2 . We will show this by induction. Indeed, for491

the base case we have ‖∇f(x1)‖ =
√

2L∆1 ≤ λ1

2 . Suppose that it is true for all t ≤ k. We will492

prove that ‖∇f(xk+1)‖ ≤ λk+1

2 . By Lemma 3.6 and the induction hypothesis493

∆k+1 ≤
(√

∆1 + 2
√
AC1

)
≤
(√

∆1 +

√
∆1

2
√

2γ
× 16γ

)2

≤ 45∆1.

Thus we get494

‖∇f(xk+1)‖ =
√

2L∆k+1 ≤
√

90L∆1 ≤
λk+1

2

as needed. From Lemma 4.7 we have495

η

2

T∑
t=1

‖∇f(xt)‖2 + ∆k+1 ≤ 45∆1.

Therefore496

1

T

T∑
t=1

‖∇f(xt)‖2 ≤
90∆1

ηT
= 720

√
∆1Lγmax

{(
8γ√
L∆1

) 1
p−1

T
2−2p
3p−2σ

p
p−1 ; 2

√
90L∆1T

1−2p
3p−2 ; 32

1
pσT

2−2p
3p−2

}
.

497

Theorem B.2. Assume that f satisfies Assumption (1’), (2), (3), (4). Let γ = max
{

log 1
δ ; 1
}

and498

∆1 = f(x1)− f∗. For unknown T , we choose λt and ηt such that499

λt = max

{(
8γ√
L∆1

) 1
p−1 (

2t (1 + log t)
2
) 1

3p−2

σ
p
p−1 ; 2

√
90L∆1; 32

1
pσ
(

2t (1 + log t)
2
) 1

3p−2

}
,

ηt =

√
∆1

(
2t (1 + log t)

2
) 1−p

3p−2

8λt
√
Lγ

.

Then with probability at least 1− δ500

1

T

T∑
t=1

‖∇f(xt)‖2 ≤ 720
√

∆1Lγmax

{(
8γ√
L∆1

) 1
p−1 (

2 (1 + log T )
2
) p

3p−2

σ
p
p−1T

2−2p
3p−2 ;

2
√

90L∆1

(
2 (1 + log T )

2
) p−1

3p−2

T
1−2p
3p−2 ; 32

1
pσ
(

2 (1 + log T )
2
) p

3p−2

T
2−2p
3p−2

}
.

Fact B.3. We have
∑∞
t=1

1
2t(1+log t)2

< 1.501

Proof. We use Fact B.3. Following exactly the same steps as in the case with known T and noticing502

that ηt is decreasing, we obtain the convergence guarantee.503
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C Missing Proofs from Section 4504

Lemma C.1. Suppose that ηt ≤ 1
4L and assume f satisfies Assumption (1), (2), (3) as well as the505

following condition506

f(y)− f(x) ≤ 〈∇f(x), y − x〉+G ‖y − x‖+
L

2
‖y − x‖2 , ∀y, x ∈ X . (7)

Then the iterate sequence (xt)t≥1 output by Algorithm 2 satisfies the following:507

ηt∆t+1 ≤ Dψ (x∗, xt)−Dψ (x∗, xt+1) + ηt 〈x∗ − xt, θut 〉+ ηt
〈
x∗ − xt, θbt

〉
+ 2η2

t

(
‖θut ‖

2
∗ − E

[
‖θut ‖

2
∗ | Ft−1

])
+ 2η2

tE
[
‖θut ‖

2
∗ | Ft−1

]
+ 2η2

t

∥∥θbt∥∥2

∗ + 2G2η2
t .

Proof. By condition (7) and convexity,508

f (xt+1)− f (x∗) ≤ f (xt+1)− f (xt)︸ ︷︷ ︸
condition (7)

+ f (xt)− f (x∗)︸ ︷︷ ︸
convexity

≤ 〈∇f (xt) , xt+1 − xt〉+
L

2
‖xt − xt+1‖2 +G ‖xt − xt+1‖+ 〈∇f (xt) , xt − x∗〉

= 〈∇f (xt) , xt+1 − x∗〉+
L

2
‖xt − xt+1‖2 +G ‖xt − xt+1‖

= 〈θt, x∗ − xt+1〉+
〈
∇̃f(xt), xt+1 − x∗

〉
+
L

2
‖xt − xt+1‖2 +G ‖xt − xt+1‖ .

By the optimality condition, we have509 〈
ηt∇̃f(xt) +∇xDψ (xt+1, xt) , x

∗ − xt+1

〉
≥ 0

and thus510 〈
ηt∇̃f(xt), xt+1 − x∗

〉
≤ 〈∇xDψ (xt+1, xt) , x

∗ − xt+1〉 .

Note that511

〈∇xDψ (xt+1, xt) , x
∗ − xt+1〉 = 〈∇ψ (xt+1)−∇ψ (xt) , x

∗ − xt+1〉
= Dψ (x∗, xt)−Dψ (xt+1, xt)−Dψ (x∗, xt+1) .

Thus512

ηt

〈
∇̃f(xt), xt+1 − x∗

〉
≤ Dψ (x∗, xt)−Dψ (x∗, xt+1)−Dψ (xt+1, xt)

≤ Dψ (x∗, xt)−Dψ (x∗, xt+1)− 1

2
‖xt+1 − xt‖2 ,

where we have used that Dψ (xt+1, xt) ≥ 1
2 ‖xt+1 − xt‖2 by the strong convexity of ψ.513

Combining the two inequalities, and using the assumption that Lηt ≤ 1
4 , we obtain514

ηt∆t+1 + Dψ (x∗, xt+1)−Dψ (x∗, xt)

≤ ηt 〈θt, x∗ − xt+1〉+
Lηt
2
‖xt − xt+1‖2 +Gηt ‖xt − xt+1‖ −

1

2
‖xt+1 − xt‖2

≤ ηt 〈θt, x∗ − xt〉+ ηt 〈θt, xt − xt+1〉 −
3

8
‖xt+1 − xt‖2 +Gηt ‖xt − xt+1‖

≤ ηt 〈θt, x∗ − xt〉+ η2
t ‖θt‖

2
∗ + 2G2η2

t

≤ ηt
〈
θut + θbt , x

∗ − xt
〉

+ 2η2
t ‖θut ‖

2
∗ + 2η2

t

∥∥θbt∥∥2

∗ + 2G2η2
t .

This is what we want to show.515

Proof of Lemma 4.7. We have516
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E [exp (Zt) | Ft−1]× exp

((
3

8λ2
t

+ 24z2
t η

4
t λ

2
t

)
E
[
‖θut ‖

2
∗ | Ft−1

])
(a)

≤E
[
exp

(
zt

(
ηt 〈x∗ − xt, θut 〉+ 2η2

t

(
‖θut ‖

2
∗ − E

[
‖θut ‖

2
∗ | Ft−1

])))
| Ft−1

]
(b)

≤ exp

(
E
[

3

4

(
zt

(
ηt 〈x∗ − xt, θut 〉+ 2η2

t

(
‖θut ‖

2
∗ − E

[
‖θut ‖

2
∗ | Ft−1

])))2

| Ft−1

])
(c)

≤ exp

((
3

2
z2
t η

2
t ‖x∗ − xt‖

2 E
[
‖θut ‖

2
∗ | Ft−1

]
+ 6z2

t η
4
tE
[
‖θut ‖

4
∗ | Ft−1

]))
(d)

≤ exp

((
3

2
z2
t η

2
t ‖x∗ − xt‖

2
+ 24z2

t η
4
t λ

2
t

)
E
[
‖θut ‖

2
∗ | Ft−1

])
(e)

≤ exp

((
3

8λ2
t

+ 24z2
t η

4
t λ

2
t

)
E
[
‖θut ‖

2
∗ | Ft−1

])
.

For (a), we use Lemma 4.5. For (b), we use Lemma 2.2. Notice that517

E [〈x∗ − xt, θut 〉] = E
[
‖θut ‖

2
∗ − E

[
‖θut ‖

2
∗ | Ft−1

]]
= 0,

and since ‖θut ‖∗ ≤ 2λt, we have518 ∣∣∣ηt 〈x∗ − xt, θut 〉+ 2η2
t

(
‖θut ‖

2
∗ − E

[
‖θut ‖

2
∗ | Ft−1

])∣∣∣
≤ ηt ‖x∗ − xt‖ ‖θut ‖∗ + 2η2

t

(
‖θut ‖

2
∗ + E

[
‖θut ‖

2
∗ | Ft−1

])
≤ 2ηtλt ‖x∗ − xt‖+ 16η2

t λ
2
t

≤ 2ηtλt

√
2Dψ (x∗, xt) + 16η2

t λ
2
t .

Thus, zt ≤ 1

2ηtλt
√

2Dψ(x∗,xt)+16η2tλ
2
t

. For (c), we use the inequalities (a + b)2 ≤ 2a2 + 2b2 and519

E
[
(X − E [X])

2
]
≤ E

[
X2
]
. For (e), we use the fact that ‖θut ‖∗ ≤ 2λt and520

ztηt ‖x∗ − xt‖ ≤
ηt ‖x∗ − xt‖

2ηtλt
√

2Dψ (x∗, xt)
≤ 1

2λt
.

We obtain E [exp (Zt) | Ft−1] ≤ 1. Therefore521

E [exp (St) | Ft−1] = exp (St−1)E [exp (Zt) | Ft−1] ≤ exp (St−1) .

which means (exp (St))t≥1 is a supermartingale. By Ville’s inequality, we have, for all k ≥ 1522

Pr

[
Sk ≥ log

1

δ

]
≤ δE [exp (S1)] ≤ δ.

In other words, with probability at least 1− δ, for all k ≥ 1523

k∑
t=1

Zt ≤ log
1

δ
.

Plugging in the definition of Zt we have524

k∑
t=1

ztηt∆t+1 +

k∑
t=1

(ztDψ (x∗, xt+1)− ztDψ (x∗, xt))

≤ log
1

δ
+

k∑
t=1

ztηt
〈
x∗ − xt, θbt

〉
+ 2

k∑
t=1

ztη
2
t

∥∥θbt∥∥2

∗

+

k∑
t=1

((
2ztη

2
t +

3

8λ2
t

+ 24z2
t η

4
t λ

2
t

)
E
[
‖θut ‖

2
∗ | Ft−1

])
.
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Note that we have zt is a decreasing sequence, hence the LHS of the above inequality can be bounded525

by526

LHS =

k∑
t=1

ztηt∆t+1 + zkDψ (x∗, xk+1)− z1Dψ (x∗, x1) +

k∑
t=2

(zk−1 − zk)Dψ (x∗, xk)

≥
k∑
t=1

ztηt∆t+1 + zkDψ (x∗, xk+1)− z1Dψ (x∗, x1) .

We obtain from here the desired inequality.527

Proof of Proposition 4.8. We will prove by induction that on k528

k∑
i=1

ηi∆i+1 + Dψ (x∗, xk+1) ≤ 1

2
(R1 + 8AC1)

2
.

The base case k = 0 is trivial. We have Dψ (x∗, x1) =
R2

1

2 . Suppose the statement is true for all529

t ≤ k ≤ `. Now, we show for k + 1. Recall that530

zt =
1

2ηtλt maxi≤t
√

2Dψ (x∗, xi) + 16Qη2
t λ

2
t

.

Let us choose Q = A > 1. By the induction hypothesis, we have maxi≤t
√

2Dψ (x∗, xi) ≤531

R1 + 8AC1, which implies532

zk ≥
1

2ηkλk (R1 + 8AC1) + 16Aη2
kλ

2
k

=
1

2C1 (R1 + 16AC1)
.

For an upperbound, since
√

2Dψ (x∗, x1) = R1, we have:533

zt ≤
1

2C1 (R1 + 8AC1)
.

Since zk is a decreasing sequence, we have534

zk

k∑
t=1

ηt∆t+1 + zkDψ (x∗, xk+1) ≤ z1Dψ (x∗, x1) + log
1

δ
+

k∑
t=1

ztηt
〈
x∗ − xt, θbt

〉
+ 2

k∑
t=1

ztη
2
t

∥∥θbt∥∥2

∗

+

k∑
t=1

((
2ztη

2
t +

3

8λ2
t

+ 24z2
t η

4
t λ

2
t

)
E
[
‖θut ‖

2
∗ | Ft−1

])
.

By the choice of λt, for all t ≤ k, ‖∇f(xt)‖∗ ≤
λt
2 , we can apply Lemma 2.1 and have535 ∥∥θbt∥∥∗ ≤ 4σpλ1−p

t ;

E
[
‖θut ‖

2
∗ | Ft−1

]
≤ 40σpλ2−p

t .

Thus, we have536

zk

k∑
t=1

ηt∆t+1 + zkDψ (x∗, xk+1)

≤z1Dψ (x∗, x1) + log
1

δ
+ 4

k∑
t=1

ztηtσ
pλ1−p
t

√
2Dψ (x∗, xt) + 32

k∑
t=1

ztη
2
t σ

2pλ2−2p
t

+ 40

k∑
t=1

((
2ztη

2
t +

3

8λ2
t

+ 24z2
t η

4
t λ

2
t

)
σpλ2−p

t

)

≤z1Dψ (x∗, x1) + log
1

δ
+

2C1 (R1 + 8AC1)σp

C1 (R1 + 8AC1)

k∑
t=1

(
1

λt

)p
+

16C2
1σ

2p

C1 (R1 + 8AC1)

k∑
t=1

(
1

λt

)2p
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+ 40

(
C2

1

C1 (R1 + 8AC1)
+

3

8
+

6C4
1

C2
1 (R1 + 8AC1)

2

)
σp

k∑
t=1

(
1

λt

)p
≤ R2

1

4 (C1R1 + 8AC2
1 )

+ log
1

δ
+ 2σpC2 +

2σ2pC2C3

A
+ 24σpC2

≤ R2
1

4 (C1R1 + 8AC2
1 )

+A,

where for the last inequality we use
∑k
t=1

(
1
λt

)p
≤ C2 and

(
1
λt

)2p

≤ C3

(
1
λt

)p
. We obtain537

k∑
t=1

ηt∆t+1 + Dψ (x∗, xk+1) ≤ 2C1 (R1 + 16AC1)

(
R2

1

4 (C1R1 + 8AC2
1 )

+A

)
=

1

2
R2

1 +
4AC2

1R
2
1

C1R1 + 8AC2
1

+ 2A
(
C1R1 + 16AC2

1

)
≤ 1

2
R2

1 + 6AC1R1 + 32A2C2
1

≤ 1

2
(R1 + 8AC1)

2
.

538

Proof of Theorem 4.1. Note that our choice of η ensures η ≤ R1

16
1

4LR1
≤ 1

4L . We have that with539

probability at least 1− δ, event E(δ) happens. Conditioning on this event, in 4.8 we choose540

C1 =
R1

24γ
; C2 =

γ

26σp
; C3 =

γ

26Tσp
; A = 3γ.

We have541

λtηt = C1

T∑
t=1

(
1

λt

)p
≤

T∑
t=1

( γ

26T

) 1

σp
= C2(

1

λt

)2p

≤ 1

σp

( γ

26T

)( 1

λt

)p
= C3

(
1

λt

)p
max

{
log

1

δ
+ 26σpC2 +

2σ2pC2C3

A
; 1

}
≤ 3γ = A.

We only need to show that for all t542

‖∇f(xt)‖∗ ≤
λt
2
.

We will show this by induction. Indeed, we have543

‖∇f(x1)‖∗ ≤ ∇1 ≤
λ1

2
.

Suppose that it is true for all t ≤ k. We prove that544

‖∇f(xk+1)‖∗ ≤
λk+1

2
.

By 4.8 we have545

‖xk+1 − x∗‖ ≤
√

2Dψ (x∗, xk+1) ≤ R1 + 8AC1 = 2R1.

Thus546

‖∇f(xk+1)‖∗ ≤ ‖∇f(xk+1)−∇f(x∗)‖∗ + ‖∇f(x1)−∇f(x∗)‖∗ + ‖∇f(x1)‖∗
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≤ L ‖xk+1 − x∗‖+ L ‖x1 − x∗‖+∇1

≤ 3LR1 +∇1 ≤
λk+1

2

as needed. Therefore from Lemma 4.7 we have547

η

T∑
t=1

∆t+1 + Dψ (x∗, xT+1) ≤ 2R2
1,

which gives548

1

T

T+1∑
t=2

∆t ≤
2R2

1

η
= 48R1 max

{
26

1
pT

1−p
p σγ

p−1
p ; 2 (3LR1 +∇1)T−1γ

}
.

549

Theorem C.2. Assume that f satisfies Assumption (1), (2), (3), (4) and (5). Let γ = max
{

log 1
δ ; 1
}

;550

R1 =
√

2Dψ (x∗, x1) assume that∇1 is an upper bound of ‖∇f(x1)‖∗. For unknown T , we choose551

λt = max


(

52t (1 + log t)
2

γ

)1/p

σ; 2 (3LR1 +∇1)

 , and

ηt =
R1

24λtγ
=

R1

24γ
min


(

52t (1 + log t)
2

γ

)−1/p

σ−1;
1

2
(3LR1 +∇1)

−1

 .

Then with probability at least 1− δ552

1

T

T+1∑
t=2

∆t ≤ 48R1 max
{

52
1
pT

1−p
p (1 + log T )

2
p σγ

p−1
p ; 2 (3LR1 +∇1)T−1γ

}
= Õ

(
T

1−p
p

)
.

Proof. We can follow the similar steps. Notice that (ηt) is a decreasing sequence. We also use Fact553

B.3 to verify the second condition of Proposition 4.8. The proof is omitted.554

Proof of Theorem 4.4. Note that ηt ≤ 1
4L . We have that with probability at least 1 − δ, event E(δ)555

happens. Conditioning on this event, in 4.8. We choose556

C1 =
c1
24

; C2 =
1

26c2
; C3 =

1

52c2
; A = γ +

2σp

c2
.

We verify the conditions of Proposition 4.8557

λtηt = C1

T∑
t=1

(
1

λt

)p
≤

T∑
t=1

1

52t(1 + log t)2c2
≤ 1

26c2
= C2(

1

λt

)2p

≤ 1

52tc2

(
1

λt

)p
≤ C3

(
1

λt

)p
max

{
log

1

δ
+ 26σpC2 +

2σ2pC2C3

A
; 1

}
= max

{
log

1

δ
+
σp

c2
+
σp

c2
; 1

}
≤ A,

where we have 2σ2pC2C3

A ≤ 2σ2pC2C3 × c2
2σp ≤

σp

c2
. Also, note that558

‖∇f(xt)‖∗ ≤ ‖∇f(xt)−∇f(x1)‖∗ + ‖∇f(x1)‖∗

≤ L ‖xt − x1‖∗ + ‖∇f(x1)‖∗ ≤
λt
2
.

Therefore, from Lemma 4.7, we have559

ηT

T∑
t=1

∆t+1 + Dψ (x∗, xT+1) ≤ 1

2
(R1 + 8AC1)

2
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Algorithm 3 Clipped-ASMD
Parameters: initial point y1 = z1, step sizes {ηt}, clipping parameters {λt}, and mirror map ψ,
where ψ is 1-strongly convex wrt ‖·‖.
For t = 1 to T do:

Set αt = 2
t+1 .

xt = (1− αt) yt + αtzt.

∇̃f(xt) = min

{
1, λt

‖∇̂f(xt)‖∗

}
∇̂f(xt).

zt+1 = arg minx∈X

{
ηt

〈
∇̃f(xt), x

〉
+ Dψ (x, zt)

}
.

yt+1 = (1− αt) yt + αtzt+1.

=
1

2

(
R1 +

c1
3

(
γ +

2σp

c2

))2

which gives560

1

T

T+1∑
t=2

∆t ≤
1

2TηT

(
R1 +

c1
3

(
γ +

2σp

c2

))2

=
8

Tc1

(
R1 +

c1
3

(
γ +

2σp

c2

))2

max

{(
52T (1 + log T )2c2

)1/p
; 2

(
Lmax
i≤T
‖xi − x1‖+∇1

)
;
L

8

}
.

Note that561

‖xi − x1‖ ≤ ‖xi − x∗‖+ ‖x1 − x∗‖

≤ 2R1 +
c1
3

(
γ +

2σp

c2

)
which gives us the final convergence rate.562

D Clipped Accelerated Stochastic Mirror Descent563

In this section, we extend the analysis of Clipped-SMD to the case of Clipped Accelerated Stochastic564

Mirror Descent (Algorithm 3). We will see that the analysis is basically the same with little mod-565

ification. We present in Algorithm 3 the clipped version of accelerated stochastic mirror descent566

(see [14]), where the clipped gradient ∇̃f(xt) is used to update the iterates in place of the stochastic567

gradient ∇̂f(xt).568

We use the following additional assumption:569

(5’) Global minimizer: We assume that∇f(x∗) = 0.570

In other words, we assume that the global minimizer lies in the domain of the problem. This as-571

sumption is consistent with the works of [6, 27].572

Theorem D.1. Assume that f satisfies Assumption (1), (2), (3), (4) and (5’). Let γ =573

max
{

log 1
δ ; 1
}

; and R1 =
√

2Dψ (x∗, x1).574

1. For known T , we choose a constant c and λt and ηt such that575

c = max

104;
4 (T + 1)

(
26T
γ

) 1
p

σ

γLR1

 ,

λt =
cR1γLαt

8
= max

{
104R1γL

6(t+ 1)
;
T + 1

t+ 1

(
26T

γ

)1/p

σ

}
,

ηt =
1

3cγ2Lαt
=

R1

24γ
min

{
4(t+ 1)

104R1γL
;
t+ 1

T + 1

(
26T

γ

)−1/p

σ−1

}
.
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Then with probability at least 1− δ576

f (yT+1)− f (x∗) ≤ 6 max
{

104Lγ2R2
1(T + 1)−2; 4R1 (T + 1)

−1
(26T )

1
p γ

p−1
p σ

}
.

2. For unknown T , we choose ct, λt and ηt such that577

ct = max

104;
4 (t+ 1)

(
52t(1+log t)2

γ

) 1
p

σ

γLR1

 ,

λt =
ctR1γLαt

8
= max

104R1γL

4(t+ 1)
;

(
52t (1 + log t)

2

γ

)1/p

σ

 ,

ηt =
1

3ctγ2Lαt
=

R1

24γ
min

 4(t+ 1)

104R1γL
;

(
52t (1 + log t)

2

γ

)−1/p

σ−1

 .

Then with probability at least 1− δ578

f (yT+1)− f (x∗) ≤ 6 max

{
104Lγ2R2

1(T + 1)−2; 4R1 (T + 1)
−1
(

52T (1 + log T )
2
) 1
p

γ
p−1
p σ

}
.

Remark D.2. One feature of the accelerated algorithm is the interpolation between the two regimes:579

When σ is large, the algorithm achieves theO
(
T

1−p
p

)
convergence rate, which is the same as unac-580

celerated algorithms; however, when σ is sufficiently small, the algorithm achieves the accelerated581

O
(
T−2

)
rate.582

We also start the analysis of accelerated stochastic mirror descent with the following lemma.583

Lemma D.3. Assume that f satisfies Assumption (1), (2), (3), (4) and ηt ≤ 1
2Lαt

, the iterate se-584

quence (xt)t≥1 output by Algorithm 2 satisfies the following585

ηt
αt

(f (yt+1)− f (x∗))− ηt (1− αt)
αt

(f (yt)− f (x∗)) + Dψ (x∗, zt+1)−Dψ (x∗, zt)

≤ηt 〈θut , x∗ − zt〉+ ηt
〈
θbt , x

∗ − zt
〉

+ 2η2
t

(
‖θut ‖

2
∗ − E

[
‖θut ‖

2
∗ | Ft−1

])
+ 2η2

t

∥∥θbt∥∥2

∗ + 2η2
tE
[
‖θut ‖

2
∗ | Ft−1

]
.

Proof of Lemma D.3. We have586

f (yt+1)− f (x∗) = f (yt+1)− f (xt)︸ ︷︷ ︸
smoothness

+ f (xt)− f (x∗)︸ ︷︷ ︸
convexity

≤ 〈∇f (xt) , yt+1 − xt〉+
L

2
‖yt+1 − xt‖2

+ αt 〈∇f (xt) , xt − x∗〉+ (1− αt) (f (xt)− f (x∗))

= (1− αt) 〈∇f (xt) , yt − xt〉︸ ︷︷ ︸
convexity

+αt 〈∇f (xt) , zt+1 − x∗〉

+
Lα2

t

2
‖zt+1 − zt‖2 + (1− αt) (f (xt)− f (x∗))

≤ (1− αt) (f (yt)− f (xt)) + (1− αt) (f (xt)− f (x∗))

+ αt 〈θt, x∗ − zt+1〉+ αt

〈
∇̃f(xt), zt+1 − x∗

〉
+
Lα2

t

2
‖zt+1 − zt‖2

≤ (1− αt) (f (yt)− f (x∗)) + αt 〈θt, x∗ − zt+1〉

+ αt

〈
∇̃f(xt), zt+1 − x∗

〉
+
Lα2

t

2
‖zt+1 − zt‖2 .

By the optimality condition, we have587 〈
ηt∇̃f(xt) +∇xDψ (zt+1, zt) , x

∗ − zt+1

〉
≥ 0
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and thus588 〈
ηt∇̃f(xt), zt+1 − x∗

〉
≤ 〈∇xDψ (zt+1, zt) , x

∗ − zt+1〉 .

Note that589

〈∇xDψ (zt+1, zt) , x
∗ − zt+1〉 = 〈∇ψ (zt+1)−∇ψ (zt) , x

∗ − zt+1〉
= Dψ (x∗, zt)−Dψ (zt+1, zt)−Dψ (x∗, zt+1) .

Thus590

ηt

〈
∇̃f(xt), zt+1 − x∗

〉
≤ Dψ (x∗, zt)−Dψ (x∗, zt+1)−Dψ (zt+1, zt)

≤ Dψ (x∗, zt)−Dψ (x∗, zt+1)− 1

2
‖zt+1 − zt‖2

where we have used that Dψ (zt+1, zt) ≥ 1
2 ‖zt+1 − zt‖2 by the strong convexity of ψ. We have591

f (yt+1)− f (x∗) ≤ (1− αt) (f (yt)− f (x∗)) + αt 〈θt, x∗ − zt+1〉

+
αt
ηt

Dψ (x∗, zt)−
αt
ηt

Dψ (x∗, zt+1) +

(
Lα2

t

2
− αt

2ηt

)
‖zt+1 − zt‖2 .

Dividing both sides by αt
ηt

and using the condition Lηtαt ≤ 1
2 , we have592

ηt
αt

(f (yt+1)− f (x∗)) + Dψ (x∗, zt+1)−Dψ (x∗, zt)

≤ηt (1− αt)
αt

(f (yt)− f (x∗)) + ηt 〈θt, x∗ − zt〉

+ ηt 〈θt, zt − zt+1〉 −
1− Lηtαt

2
‖zt+1 − zt‖2

≤ηt (1− αt)
αt

(f (yt)− f (x∗)) + ηt 〈θt, x∗ − zt〉

+
η2
t ‖θt‖

2
∗

2 (1− Lηtαt)

≤ηt (1− αt)
αt

(f (yt)− f (x∗)) + ηt
〈
θut + θbt , x

∗ − zt
〉

+ 2η2
t ‖θut ‖

2
∗ + 2η2

t

∥∥θbt∥∥2

∗

as needed.593

Similarly to the previous section, we define the following variables594

Zt = zt

(
ηt
αt

(f (yt+1)− f (x∗))− ηt (1− αt)
αt

(f (yt)− f (x∗)) + Dψ (x∗, zt+1)−Dψ (x∗, zt)

− ηt
〈
θbt , x

∗ − zt
〉
− 2η2

t

∥∥θbt∥∥2

∗ − 2η2
tE
[
‖θut ‖

2
∗ | Ft−1

])
−
(

3

8λ2
t

+ 24z2
t η

4
t λ

2
t

)
E
[
‖θut ‖

2 | Ft−1

]
,

where zt =
1

2ηtλt maxi≤t
√

2Dψ (x∗, xi) + 16Qη2
t λ

2
t

for a constant Q ≥ 1. We also let St =
∑t
i=1 Zi. Following the same analysis as in previous595

sections, we can obtain Lemma D.4 and Proposition D.5, for which we will omit the proofs here.596

The only step we need to pay attention to when showing Lemma D.4 is when we bound the sum597

k∑
t=1

ztηt
αt

(f (yt+1)− f (x∗))− ztηt (1− αt)
αt

(f (yt)− f (x∗)) .

If we assume ηt−1

αt−1
≥ ηt(1−αt)

αt
, since zt is a decreasing sequence and α1 = 0, we can lower bound598

the above sum by the last term zkηk
αk

(f (yk+1)− f (x∗)), which gives us the desired inequality.599
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Lemma D.4. Assume that for all t ≥ 1, ηt satisfies ηt−1

αt−1
≥ ηt(1−αt)

αt
. For any δ > 0, let E(δ) be600

the event that for all 1 ≤ k ≤ T601

zkηk
αk

(f (yk+1)− f (x∗)) + zkDψ (x∗, xk+1)

≤z1Dψ (x∗, x1) + log
1

δ
+

k∑
t=1

ztηt
〈
x∗ − xt, θbt

〉
+ 2

k∑
t=1

ztη
2
t

∥∥θbt∥∥2

∗

+

k∑
t=1

((
2ztη

2
t +

3

8λ2
t

+ 24z2
t η

4
t λ

2
t

)
E
[
‖θut ‖

2
∗ | Ft−1

])
.

Then Pr [E(δ)] ≥ 1− δ.602

Finally, we state a general condition for the choice of ηt and λt, which follows exactly the same as603

in Proposition 4.8. The proof for Theorem D.1 is a direct consequence of this.604

Proposition D.5. We assume that the event E(δ) from Lemma D.4 happens. Suppose that for some605

` ≤ T , there are constants C1 and C2 such that for all t ≤ `606

1. λtηt = C1; 2.
∑`
t=1

(
1
λt

)p
≤ C2; 3.

(
1
λt

)2p

≤ C3

(
1
λt

)p
; 4. ‖∇f(xt)‖∗ ≤

λt
2 .607

Then for all t ≤ `+ 1608

ηt
αt

(f (yt+1)− f (x∗)) + Dψ (x∗, zt+1) ≤ 1

2
(R1 + 8AC1)

2

for A ≥ max
{

log 1
δ + 26σpC2 + 2σ2pC2C3

A ; 1
}
.609

Proof of Theorem D.1. 1. Note that ηt ≤ 1
2cγ2Lαt

≤ 1
2Lαt

and610

ηt−1

αt−1
=

t2

8cγ2L

ηt (1− αt)
αt

=
(t+ 1)(t− 1)

8cγ2L

thus ηt−1

αt−1
≥ ηt(1−αt)

αt
. We have that with probability at least 1− δ, event E(δ) happens. Condition-611

ing on this event, in 4.8 We choose612

C1 =
R1

24γ
; C2 =

γ

26σp
; C3 =

γ

26Tσp
; A = 3γ.

We can verify the conditions of Proposition D.5 similarly as in previous section for these choices of613

C1, C2, and C3.614

We will show by induction that for all t ≥ 1, ‖∇f(xt)‖∗ ≤ λt
2 and615

max {‖xt − x∗‖ , ‖yt − x∗‖ , ‖zt − x∗‖} ≤ 2R1.616

For t = 1, notice that x1 = y1 = z1. Thus, we have617

‖∇f(x1)‖∗ = ‖∇f(x1)−∇f(x∗)‖∗ ≤ LR1 ≤
λ1

2
.

Now assume that the claim holds for 1 ≤ t ≤ k. By Proposition D.5, we know that618

2ηk
αk

f (yk+1)− f (x∗) + ‖zk+1 − x∗‖2 ≤ 4R2
1.

Furthermore619

‖yk+1 − x∗‖ ≤ (1− αk) ‖yk − x∗‖+ αk ‖zk+1 − x∗‖ ≤ 2R1

‖xk+1 − x∗‖ ≤ (1− αk) ‖yk+1 − x∗‖+ αk ‖zk+1 − x∗‖ ≤ 2R1
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For k ≥ 1 we have αk+1 = 2
k+2 < 1; αk+1

1−αk+1
= 2

k ≤
4
k+2 ≤ 2αt+1 and αt ≤ 3

2αt+1. Hence,620

‖∇f(xk+1)‖∗ ≤ ‖∇f(xk+1)−∇f(yk+1)‖∗ + ‖∇f(yk+1)−∇f(x∗)‖∗
≤ L ‖xk+1 − yk+1‖+

√
2L (f (yk+1)− f (x∗))

≤ Lαk+1 ‖xk+1 − zk+1‖
1− αk+1

+ 2R1

√
Lαt
2ηt

≤ 4LR1
αk+1

1− αk+1
+ 2

√
3

2
cγR1Lαt

≤ 8γLR1αt+1 + 3

√
3

2
cγLR1αt+1

≤ (8 + 3

√
3

2
c)R1γLαt+1

=
16(8 + 3

√
3
2c)λt+1

2c
≤ λt+1

2

as needed. Therefore, we have621

ηT
αT

(f (yT+1)− f (x∗)) + Dψ (x∗, xT+1) ≤ 2R2
1

which gives622

f (yT+1)− f (x∗) ≤ 2R2
1αT
ηT

= 6R2
1cγ

2Lα2
T

= 6 max
{

104Lγ2R2
1(T + 1)−2; 6R1 (T + 1)

−1
(26T )

1
p γ

p−1
p σ

}
.

2. Following the similar steps to the proof of Theorem D.1, and noticing that (ct) is a increasing623

sequence, we obtain the convergence rate.624
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