
Appendix

A Algorithm

The algorithm for training an IGC model is described in Algorithm 1.

Algorithm 1: Training algorithm
Input :data {un}Nn=1, initial model parameters θ0, initial learning rate η, number of batches B, number

of random noise samples M , number of epochs Nepochs

Output :Model parameters θ∗

Partition data into B mini batches {Ub}Bb=1

For each batch b, generate a set of M random noise samples Zb = [z1b , ..., z
M
b ]

for Nepochs do
for b = 1, ..., B do

for m = 1, ...,M do
Get ym

b ← g(zmb ,θ)
end
Map model output to unit space Vb ← Softrank(Yb)
Compute gradient of loss∇θL(Ub,Vb) over batch
Update learning rate η (e.g. using ADAM)
Update model parameters θ ← θ − η∇θL

end
end

B Experiments

B.1 Additional experiments on toy data sets

We provide additional experiments on three toy data sets commonly used in the literature on deep
generative models, the "Swiss Roll", the "Grid of Gaussians", and the "Ring of Gaussians". We test
four copula based models: a Gaussian copula, a TLL2 copula, an GMMN with sigmoid output layer
[16], and our IGC model. For these models we use a linear interpolation of the ECDF of the training
set as models for the marginals of the data distribution. We additionally report results for two implicit
generative models that directly model the data distribution, a GMMN [24; 10] and a GAN [13]. Like
the IGC model, the GMMN based models are trained by minimizing the energy distance. All neural
network models use two layers, 100 neurons per layer, and are trained for 500 epochs. IGC and
GMMN models are trained using the Adam optimizer with standard values. For the GAN we use a
lower learning rate of lr = 0.0002 and a lower momentum β1 = 0.5 as the model did not converge
with the standard settings. We evaluate the models using the average negative log-likelihood of a test
set based on kernel density estimates. We repeat each experiment 10 times with different training and
test sets of size 5000 and random initializations for the neural networks.

Table 3 presents the results. The GAN achieves the best result for the Swiss Roll data. However, the
scores for the GAN show a much higher standard deviation than all other methods. The IGC model
has the second lowest score overall and the lowest score of all copula based methods. For the ring of
Gaussians, the TLL2 copula shows the lowest NLL, closely followed by the IGC and GMMN copula.
Here the GAN shows the worst performance of all models. The Grid of Gaussians is a trivial test
case for the copula based models as it is sufficient to sample from the marginal distributions with an
independence copula. Both the GMMN and the GAN show substantially worse NLL values and fail
at properly approximating the true data distribution as can be seen from the bottom row of Figure 7.

B.2 Learning bivariate copulas

For the Student-t, Gumbel, and Clayton copulas we sample the parameters and rotations uniformly
from the ranges given in Table 4.

Samples form the Gaussian mixture copula are generated by sampling N times from one of the
two components with equal probability and then transforming all samples to the unit space via the

13



(a) True (b) Gauss copula (c) TLL2 copula (d) GMMN copula (e) IGC (f) GMMN (g) GAN

Figure 7: True and exemplary learned densities for the Swiss Roll (top), Ring of Gaussians (middle), and Grid
of Gaussians (bottom).

Table 3: Means and standard deviations of the average negative log-likelihood (lower is better) from 10 repetitions
with random parameter initializations and training and test sets.

swiss roll ring grid

Gaussian copula 6.10 (0.01) 5.72 (0.02) 4.47 (0.01)
TLL2 copula 5.61 (0.01) 5.11 (0.01) 4.47 (0.01)
GMMN copula 5.45 (0.09) 5.24 (0.01) 4.48 (0.01)
IGC 5.26 (0.08) 5.19 (0.03) 4.47 (0.01)
GMMN 5.76 (0.09) 5.40 (0.05) 6.27 (0.05)
GAN 4.82 (0.40) 7.14 (0.52) 5.95 (0.26)

component-wise PIT. Samples for the component j ∈ {1, 2} are drawn from the two-dimensional
Gaussian distribution N (µj , αjΣj), where µj is sampled from U(−5, 5)2, σ12,j is sampled from
U(−0.95, 0.95), αj is sampled from U(0.8, 1.2), and Σj =

( 1 σ12,j

σ12,j 1

)
.

B.3 Learning multivariate vine copulas

The following table presents the parameter ranges of the pair-copulas for the vine copula experiments.
We used uniform sampling for selecting the pair-copula family as well as the parameters and rotations.

Table 4: Parameter ranges for pair-copulas for learning vine copulas

θ1 θ2 rotation

Independence - - -
Gaussian ±[0.5, 0.95] - 0◦

Student-t ±[0.5, 0.95] [2, 10] 0◦

Clayton [2, 10] - {0◦, 90◦, 180◦, 270◦}
Gumbel [2, 10] - {0◦, 90◦, 180◦, 270◦}
Frank [10, 25] - 0◦

Joe [2, 10] - {0◦, 90◦, 180◦, 270◦}
BB1 [1, 5] [1, 5] {0◦, 90◦, 180◦, 270◦}
BB7 [1, 6] [2, 20] {0◦, 90◦, 180◦, 270◦}

14



B.4 Training times

Table 5 shows the average training times for the IGC model and a vine copula model with TLL2
pair-copulas for the different data sets. Note that the IGC model for the FashionMNIST experiment
is a three-layer neural network with 200 neurons per layer which is trained for 100 epochs while in
all other cases a two-layer network with 100 neurons per layer was trained for 500 epochs. Timings
are for a desktop PC with a Intel Core i7-7700 3.60Ghz CPU and 8GB RAM.

Table 5: Average training times for IGC and vine copula (TLL2)

IGC vine copula (TLL2) D Ntrain

Learning bivariate copulas 49s <1s 2 1000
Learning vine copulas 131s 5s 5 5000
Exchange rates 33s 4s 5 1169
Magic 61s 4s 5 2466
FashionMNIST AE 1472s 1743s 25 60000

B.5 Autoencoder architecture

We used the following architecture for the autoencoder and the VAE:

• Encoder:

x ∈ R32×32×1 → Conv(32, 4, 2) → BN → ReLU

→ Conv(64, 4, 2) → BN → ReLU

→ Conv(128, 4, 2) → BN → ReLU

→ FC(256) → ReLU

→ FC(25) → z ∈ R25 (AE)

→ FC(50) → N (µ,σI) → z ∈ R25 (V AE)

• Decoder:

z ∈ R25 → FC(4096) → ReLU → Reshape((4, 4, 256))

→ ConvT (128, 4, 2) → BN → ReLU

→ ConvT (64, 4, 2) → BN → ReLU

→ ConvT (32, 4, 2) → BN → ReLU

→ ConvT (1, 1, 1) → Sigmoid → y ∈ R32x32x1

Conv(a, b, c) denotes a convolutional layer with a filters, a kernel of height and width b, and a
stride with height and width c. ConvT (a, b, c) denotes a deconvolutional layer. FC(a) denotes a
fully connected layer with a neurons. Sigmoid and ReLU denote the sigmoid and ReLU activation
functions and BN denotes batch normalization layers. We use a padding of 2 to achieve an image
resolution of 32× 32 pixels and normalize the inputs to the range [0, 1]. The models are trained with
the binary cross entropy as reconstruction loss for 100 epochs using the Adam optimizer with default
parameters.

15



B.6 Significance of FashionMNIST results

In the following tables we present the p-values from the test proposed in [5] for the experiments
on the FashionMNIST data. Values close to one/zero in the row indicate significantly better/worse
performance compared to model in the column.

Table 6: p-values for copula space samples

IGC GMMN Vine Gauss Indep

IGC 0.5561 0.9871 0.9990 1.0000
GMMN 0.4439 0.8645 0.9689 1.0000
Vine 0.0129 0.1355 0.9510 1.0000
Gauss 0.0010 0.0311 0.0490 1.0000
Indep 0.0000 0.0000 0.0000 0.0000

Table 7: p-values the latent space samples

IGC GMMN Vine Gauss Indep

IGC 1.0000 0.9812 1.0000 1.0000
GMMN 0.0000 0.0000 0.0000 1.0000
Vine 0.0188 1.0000 1.0000 1.0000
Gauss 0.0000 1.0000 0.0000 1.0000
Indep 0.0000 0.0000 0.0000 0.0000

Table 8: p-values image space samples

IGC GMMN Vine Gauss Indep VAE

IGC 0.1131 1.0000 1.0000 1.0000 1.0000
GMMN 0.8869 1.0000 1.0000 1.0000 1.0000
Vine 0.0000 0.0000 0.1152 1.0000 1.0000
Gauss 0.0000 0.0000 0.8848 1.0000 1.0000
Indep 0.0000 0.0000 0.0000 0.0000 0.0000
VAE 0.0000 0.0000 0.0000 0.0000 1.0000

16


