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A Multi-Object Navigation Dataset
We introduce a benchmark dataset for multi-object naviga-
tion for our evaluation and future use by researchers. We use
houses from ProcThor-10K (Deitke et al. 2022) dataset to
build a photo-realistic MultiON benchmark dataset of 1325

episodes. We have provided the dataset file in the supple-
mentary material where each episode is described using the
following properties:
1. data type : This corresponds to either ‘val’ or ‘test’ based
on which set of data was used from ProcThor-10K to con-10

struct the episode.
2. house idx : This corresponds to index of the specific house
in the ProcThor-10K dataset.
3. num rooms : Number of rooms in the house
4. num targets : Number of targets in the house (Currently15

we have limited the dataset to 3 targets)
5. targets : List of unique targets in the house along with
their ground truth locations
6. start position : Start position randomly sampled from all
reachable positions in the house20

7. start heading : Start heading randomly sampled from 0,
90, 180 and 270 degrees
8. shortest path targets order : The order of targets that re-
sults in shortest path using A* planner. This is evaluated by
running A* planner on all possible target orders.25

9. shortest path length : Length of the shortest path com-
puted via A* planner along the shortest path targets order

B Additional Implementation Details
We provide additional implementation details for both the
high-level and the low-level planner.30

B.1 High-Level Planner
Figure 1 shows the structure of prompts used for identify-
ing the room type and determining the feasibility of locating
target objects in a room.

B.2 Low-Level Planner35

For the low-level POINTNAV planner, we first implement
a shortest path oracle using A* algorithm on the grid of
reachable positions in the house, and then train a POINT-
NAV agent using the DAGGER (Ross et al. 2011) algorithm
with the A* oracle as the expert.40

Figure 1: Prompt used to compute the feasibility of finding
an object in a particular room as well for identifying which
room the agent is in.

We perform DAGGER dataset aggregation over two
rounds. In the first round, 2,000 episodes were collected
using a random agent. In the second round, 800 addi-
tional episodes were collected using an agent trained using
episodes from the first round. The aggregated dataset con- 45

tains a total of 2,800 episodes or 7× 105 simulator steps for
IL. For each episode, we choose a scene from the ProcThor-
10k train split, randomly sample a start location and sample
a random object from the scene as the goal location. The
robot then performs the task by taking expert action with 50

p = 0.2 and agent action from p = 0.8. The robot’s obser-
vations and expert actions are stored for behavior cloning.

For behavior cloning, the objective function is to mini-
mize cross entropy loss of predicted action against expert
action prediction at every step. For agent architecture, fol- 55

lowing (Wijmans et al. 2019), we use a standard architecture
shown in Figure 2. As discussed in the Approach section, our
agent receives an RGBD image and the agent’s pose with re-
spect to the goal location as the input. A GroupNorm (Wu
et al. 2018) ResNet18 (He et al. 2016) encodes the input 60

RGBD image, and a 2-layer 512 hidden size gated recurrent
unit (GRU) (Cho et al. 2014) combines history and sensor
inputs to predict the next action. We use the Adamax op-
timizer with lr 10−4 and weight decay 10−4. We optimize



Figure 2: Low-level POINTNAV architecture.

the objective function with batch size of 16 episodes for 5065

epochs.
We evaluate the POINTNAV performance of the agent

on the publicly available AI2Thor OBJECTNAV dataset1
ProcThor-10k-val split, given the ground truth location of
the object as the goal for POINTNAV evaluation. The evalu-70

ation split contains 1550 episodes. When multiple instances
of the target object are available, we arbitrarily select the
first instance as the POINTNAV goal. Our low-level plan-
ner achieves 84.5% POINTNAV success rate (success ra-
dius 1.5m, max 300 steps) and 0.782 SPL. On the subset75

of episodes where the starting position and the goal posi-
tion are in the same room, performance increases to 98.5%
success rate and 0.930 SPL.

C Memory via LLM
As mentioned in the primary manuscript, SayNav uses the80

3D scene graph to support memory for future planning. For
instance, it automatically annotates the room nodes that have
already been investigated and won’t plan for the room if
the agent happens to visit the same room again. This type
of implementation to support memory works perfectly for85

our chosen task. However, we also wanted to explore the
possibility of making the LLM track its own plans. Hence,
we also implemented SayNav’s memory via LLM by us-
ing Conversational Chains module of the LangChain frame-
work2. Here we use two separate instances of identical LLM90

models, one to generate the high level plans and another to
track the generated plans. The LLM tracking the generated
plan, uses the Room Tracking Prompt in Figure 3 and is
also equipped with a conversational memory. The LLM re-
sponsible for generating the plans receives detailed descrip-95

tion of the surrounding environment while the other LLM
instance only receives the minimal information necessary to
do the tracking. A key advantage of this framework is that
it avoids hitting the maximum token limit on the LLM by
not relying on the entire conversational history (as is usually100

done). We believe that LLM-based tracking might be able to
generalize better to other tasks since it eliminates the need
of a module for tracking plan history, which would require
different implementations for different task (we will test this

1https://github.com/allenai/object-nav-eval
2https://python.langchain.com/docs/modules/chains/how to/memory

in our future work). 105

Figure 3: Prompt used to compute the feasibility of finding
object(s) in a particular room as well for tracking the rooms
explored by the agent.

Table 1 shows the performance of SayNav using LLM
Memory via gpt-3.5-turbo and gpt-4. Note that we use the
same model for both the instances of LLM in our experi-
ments. We do observe substantial drop in SR and SPL met-
rics by using LLM Memory in the case of gpt-3.5-turbo as 110

compared to the results reported in the main article. How-
ever, with gpt-4, the LLM Memory is able to achieve similar
results as compared to the results reported in the main ar-
ticle. This shows that it is feasible to hand-over the task of
tracking to the better LLM models. 115

D Additional Qualitative Results
We have provided a video demo for our agent exploring one
of the multi-room houses. For the same episode we have
shown the log of outputs generated by the agent in Figure 4,
5, and 6. 120
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Figure 4: Example of SayNav’s sequential plan

Figure 5: Example of SayNav’s sequential plan (cont’d)



Figure 6: Example of SayNav’s sequential plan (cont’d)

Scene LL SR SPL Kendall
Graph Planner (%) Tau

GT OrNav 77.86 0.37 0.72
SayNav GT PNav 61.83 0.24 0.76
(gpt-3.5) VO OrNav 58.73 0.40 0.72

VO PNav 46.77 0.29 0.82
GT OrNav 93.93 0.43 0.69

SayNav GT PNav 86.36 0.35 0.77
(gpt-4) VO OrNav 72.09 0.44 0.73

VO PNav 61.60 0.35 0.77

Table 1: Results of SayNav on multi-object navigation task
using LLM Memory
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