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Abstract
Continual learning (CL) breaks off the one-way training manner
and enables a model to adapt to new data, semantics and tasks
continuously. However, current CL methods mainly focus on single
tasks. Besides, CL models are plagued by catastrophic forgetting
and semantic drift since the lack of old data, which often occurs
in remote-sensing interpretation due to the intricate fine-grained
semantics. In this paper, we propose Continual Panoptic Perception
(CPP), a unified continual learning model that leverages multi-task
joint learning covering pixel-level classification, instance-level seg-
mentation and image-level perception for universal interpretation
in remote sensing images. Concretely, we propose a collaborative
cross-modal encoder (CCE) to extract the input image features,
which supports pixel classification and caption generation syn-
chronously. To inherit the knowledge from the old model without
exemplar memory, we propose a task-interactive knowledge distilla-
tion (TKD) method, which leverages cross-modal optimization and
task-asymmetric pseudo-labeling (TPL) to alleviate catastrophic
forgetting. Furthermore, we also propose a joint optimization mech-
anism to achieve end-to-end multi-modal panoptic perception. Ex-
perimental results on the fine-grained panoptic perception dataset
validate the effectiveness of the proposed model, and also prove
that joint optimization can boost sub-task CL efficiency with over
13% relative improvement on panoptic quality. The project page is
available at https://github.com/YBIO/CPP.
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1 Introduction
Continual learning (CL) enables a model to continuously acquire
knowledge in a sequential manner. Currently, many CL methods
are designed for specific single tasks, which cover natural language
processing [27], computer vision [28, 58, 65], etc. However, the
complex and practical applications urge the model to have the
capacity for CL in multi-task learning (MTL). For example, the
continuously incremental data in remote sensing usually requires
the model to have the ability to continually interpretation on new
data, semantics and tasks.

Over the past decade, CL has been intensively concerned since it
can break through the typical one-off training schema and enable
the model to evolve with continuous data. However, CL encoun-
ters two main challenges including catastrophic forgetting and
semantic drift [56, 65]. These problems occur when the parameter
updates result in the loss of previously learned knowledge, lead-
ing to prediction chaos and model degradation. Traditionally, the
popular fully-supervised methods conduct a complete re-training
on the incremental data that may result in an analogous issue akin
to Alzheimer’s disease, where the model tends to forget its previ-
ously learned knowledge due to parameter changes [28]. However,
current CL approaches face challenges in the trade-off between
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Figure 1: The proposed Continual Panoptic Perception (CPP)
architecture. (a): Single-task CL methods only support sep-
arate training on different tasks. (b): CPP enables a shared
encoder across multi-modal tasks, which also supports multi-
task continual learning within a single model. (c): CPP
achieves class-incremental pixel classification, instance seg-
mentation and image captioning.

preserving old knowledge and learning new ones. A range of re-
searches [3, 4, 9] propose to retrospect known knowledge including
sample selection as exemplar memory [43, 50]. However, these
replay-based methods usually bring extra memory costs and arouse
privacy concerns. Another kind that does not rely on old data uti-
lizes transfer learningmanners like knowledge distillation to inherit
the capability of the old model [46, 53]. In remote-sensing images
(RSIs), the complex semantic relations and fine-grained semantic
classes make CL extremely challenging. And there is still a lack of
exploration on multi-task and multi-modal CL.

As seen in Fig. 1(a), typical single-task CL approaches only sup-
port separate training on different tasks, which limits the CL ca-
pacity on complex practical scenarios. In this paper, we propose
a CL architecture for panoptic perception [64] namely Continual
Panoramic Perception (CPP). As illustrated in Fig. 1(b), CPP enables
multi-task CL within a single model that shares the same image en-
coder for multi-modal interpretation. Particularly, CPP consists of a
collaborative cross-modal encoder (CCE), a task-interactive knowl-
edge distillation (TKD) module and a task-asymmetric pseudo-
labeling (TPL) mechanism. Concretely, the CCE module extracts
image features, which are projected to mask embeddings and text
embeddings synchronously for the corresponding decoder branch.
To alleviate catastrophic forgetting, the proposed TKD module uti-
lizes multi-modal features to address semantic drift to boost distil-
lation efficiency. While TPL integrates the pseudo label to improve
the label confidence for CL steps. Fig. 1(c) illustrates the proposed
CPP training pattern that synchronously proceeds segmentation

and captioning tasks within an integrated model. After each CL
step, new semantics are learned while achieving compatibility with
the old knowledge.

The main contributions of this paper are summarized as follows:

• We propose continual panoptic perception, a novel archi-
tecture supporting multi-task continual learning covering
pixel-level classification, instance-level segmentation and
image-level captioning.

• We present a task-interactive knowledge distillation method,
utilizing cross-task knowledge inheritance and task-asymmetric
pseudo-labeling to reconcile stability and plasticity.

• The proposed method achieves an end-to-end continual
learning manner on remote-sensing panoptic perception
dataset, and also proves the feasibility of joint optimization
across multi-modal CL tasks.

2 Related Work
2.1 Continual Image Segmentation
Continual learning originates from as early as [34] and has been
explored in various fields, including computer vision [65], natural
language processing [60], remote-sensing [33], etc. With respect
to image segmentation, the main challenges are catastrophic for-
getting and semantic drift, which arise from the absence of old
data and parameter updates [8, 22]. According to whether relying
on old data [56], the CL methods can be divided into replay-based
methods [7, 25, 29, 50, 58, 63] and exemplar-free methods [2, 6, 17,
35, 39, 44, 46, 53, 59, 65]. The former involves storing a portion of
past training data or features as exemplar memory, which brings
extra memory costs and raises privacy concerns. The latter usually
utilizes knowledge distillation to inherit the capability of the old
model. Considering reducing reliance on annotations, few-shot CL
methods are also deeply explored in [24, 40, 47, 66]. However, cur-
rent CLmethods are mainly designed for single tasks, the multi-task
continual learning has not been deeply studied.

2.2 Image Captioning
Image captioning [20] describes an image with words or sentences
to meet human-like semantic understanding. Depending on the
network architecture, there are main three branches including
heterogeneous-architecture-based, attention-based, and pre-training-
based methods. Encoder-decoder architectures normally include
a CNN-based visual encoder, an RNN-based language decoder,
and a cross-modal attention block [19, 54]. Attention-based meth-
ods [1, 23] introduce semantic attention mechanisms to model
contextual information among areas in an image. While some re-
cent methods witness large performance boosting via large-scale
pre-training [10, 21] and promoting [52]. Continual image caption-
ing allows generating captions over a series of new tasks coming
with new semantics [15, 37]. Considering the rich semantics in
RSIs, the investigation of continual image caption is a valuable and
promising task.

2.3 Multi-task Learning
Multi-task learning (MTL) aims to jointly learn multiple related
prediction tasks with shared information across tasks [45, 61, 62].
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Figure 2: Illustration of the proposed CPP network. The input consists of the incremental images with corresponding mask
annotation and specific text-format annotation. The output consists of the mask predictions for both old and new classes and
image captioning result with new semantics.

Existing MTL studies mainly focus on feature-based and parameter-
based methods. The former assumes that different tasks share a
common feature representation. In deep learning, it learns a com-
mon feature representation for multiple tasks by sharing feature
layers in a similar architecture [16, 48]. While parameters-based
methods leverage parameter sharing [14, 41] across tasks, which
mainly include hard sharing [5] and soft sharing [55]. The main
challenges of MTL are the negative optimization and the seesaw
phenomenon. Although MTL has been explored in incremental
learning on classification [26], object detection [31] and image seg-
mentation [49, 57], which still remains single-task interpretation.
However, the multi-objective continual MTL still has a long way
ahead. In this paper, we are committed to proving the feasibility of
multi-task continual panoptic perception.

3 Method
As seen in Fig. 2, the proposed network consists of a Collaborative
Cross-modal Encoder (CCE) for multi-modal feature extraction, a
Task-interactive Knowledge Distillation (TKD) for model inheri-
tance and a Task-asymmetric Pseudo-labeling (TPL) approach for
retrieving old knowledge, respectively.

3.1 Preliminaries
Considering D = {(𝑥𝑖 , 𝑦𝑖 , 𝑟𝑖 )} as the training dataset, where 𝑥𝑖 ∈
R𝐶×𝐻×𝑊 and 𝑦𝑖 ∈ R𝐻×𝑊 denote the training image and mask
annotation, respectively. 𝑟𝑖 is the captioning sentence. At 𝑡 step,
D𝑡 indicates the data for incremental training,𝐶0:𝑡−1 indicates the
previously learned classes and 𝐶𝑡 indicates the classes for incre-
mental learning. When training on D𝑡 , the training data of old
classes, i.e., {D0,D1, · · · ,D𝑡−1} is inaccessible. Using 𝑀𝑡−1 and

𝑀𝑡 to represent the t-1 and t step model, respectively. The total
training process should consist of {Step-0, Step-1, · · · , Step-T} steps.

3.2 Collaborative Cross-modal Encoder
In the proposed architecture, we aim to utilize a shared encoder for
multi-task including dense prediction and image captioning. The
former can be seen as a segmentation task and the latter is a global
semantic understanding task. Thus we utilize a unified Transformer
architecture to cope with cross-modal feature extraction.

As illustrated in Fig. 2, considering an image 𝑥 ∈ R𝐶×𝐻×𝑊 , we
firstly apply a model-agnostic feature extractor to extract image
features. Concretely, the image encoder 𝐸 produces a downsampled
feature F ∈ R𝑁×𝐻 ′×𝑊 ′

. The image feature F derived from CCE
can be utilized for both mask prediction and caption generation.
Concretely, the encoded image feature from CCE is:

F = Θ(𝑅𝑒𝐿𝑈 (Θ(𝐸 (𝑥)))) + 𝐸 (𝑥) (1)

where 𝐸 (·) is the encoding process. Θ(·) is a linear mapping.
Whereafter the decoder is decoupled to a Transformer for mask

prediction, one-to-one mappings between the mask predictions
and the ground truth are generated. And a Transformer for word
prediction. For pixel-level predication, the F is firstly generated
to 𝑁 mask embeddings via a Transformer decoder with 𝑁 query
input. We regard both instance and semantic segmentation as mask
classification problems and handle them with a Transformer-based
architecture. Concretely, assuming N learnable queries𝑄 ∈ R𝐶𝑞×𝑁 ,
F is used as keys (K) and value (V). A standard Transformer decoder
is used to update 𝑄 . To make full use of shared features, the query
is projected into mask embeddings Qm ∈ R𝑁×𝐶𝑒 in the mask
generation branch, and the text embedding Qt for captioning.
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Specifically for the captioning task, a standard Transformer de-
coder consisting of multiple decoder layers is used for sentence
prediction, each having a masked self-attention mechanism, a cross-
attention mechanism, and a feed-forward neural network. The self-
attention mechanism can tackle the long-range context, which is
beneficial to both segmentation and captioning tasks.

3.3 Task-interactive Knowledge Distillation
To inherit the capacity from the old model in the absence of old
data, we propose a task-interactive knowledge distillation method
under the circumstances of only the previous model𝑀𝑡−1 and the
incremental data D𝑡 can be accessed. For fine-grained CL tasks, it
faces misclassification challenges while the old classes and future
classes are mixed in bg class during CL steps. There are proofs
showing the latent domain gap between the cross-modal data could
lead to a learning ambiguity during knowledge distillation [42]. We
propose a cross-task contrastive distillation method based on task-
interactive guidance. Firstly, using Q𝑡−1

m and Q𝑡m indicate the mask
embeddings, while Q𝑡−1

t and Q𝑡t for text embeddings. Concretely,
the TKD module consists of Intermediate Contrastive Distillation
(ICD) and Cross-guided Instance Distillation (CID).
Intermediate Contrastive Distillation. Since the segmentation
task and the captioning task are both derived from the same features
F produced by CCE, the ICD is conducted on both tasks. To alleviate
the classifier confusion caused by semantic drift, we propose a
contrastive distillation across Qm and Qt. Inspired by [65], we
argue that using embedding from the old model is more confident
to reduce prediction error since catastrophic forgetting. Concretely,
the optimization objective contains global output logits and class-
wise contrastive learning between old and new classes. Thus the
constraint for ICD is:

L𝐼𝐶𝐷 = 𝑑 (Q𝑡−1
m ,Q𝑡m) + 𝑑 (Q𝑡−1

t ,Q𝑡t ) + 𝐷𝐶𝐿 (𝑓 𝑡−1
𝑎 , 𝑓 𝑡𝑝 , 𝑓

𝑡
𝑛 ) (2)

𝐷𝐶𝐿 =
1

|𝐶0:𝑡 |

𝐶0:𝑡∑︁
𝑖, 𝑗,𝑖≠𝑗

𝐶0:𝑡−1∑︁
𝑘

1[𝑖 = 𝑘] [𝑑 (𝑓 𝑡−1
𝑘

, 𝑓 𝑡𝑖 ) − 𝑑 (𝑓 𝑡−1
𝑘

, 𝑓 𝑡𝑗 )] (3)

where 𝑑 (·) is a similarity measure to constraint the representation
consistency between𝑀𝑡−1 and𝑀𝑡 . 𝑓 𝑡−1

𝑎 , 𝑓 𝑡𝑝 and 𝑓 𝑡𝑛 represent the
anchor, positive and negative embeddings, respectively. 𝑓 𝑡−1

𝑘
indi-

cates the embedding belonging to k-th class from𝑀𝑡−1. 𝑓 𝑡
𝑖
and 𝑓 𝑡

𝑗

indicate the corresponding embeddings from𝑀𝑡 .
Cross-guided Instance Distillation. In the RSIs, the large amount
of instances and complex distribution increase the probability of
semantic fusion. Thus the instance segmentation requires fine-
grained distillation. Directly distilling the feature map without
considering foreground regions would result in training with a large
amount of background information, leading to insufficient learning
of important foreground regions and poor distillation performance.
Thus we propose a distillation method emphasizing the interaction
classification and localization, respectively. Since Chen et al. [12]
propose a cross-modal instance distillation, we adapt it to multi-
task CL scenarios. The quality score 𝑞𝑟 serves as an indicator to
guide the student on which teacher’s predictions should be paid
more weight.

𝑞𝑟 = (𝑐𝑟 )𝛾 × 𝐼𝑜𝑈 (𝑚𝑡−1
𝑟 , �̂�𝑡𝑟 ) (1−𝛾 ) (4)
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Figure 3: Task-asymmetric pseudo-labeling. The asymmetric
task reliance indicates the pseudo labels are cross-verified by
more reliable predictions from multi-modal branches.

where 𝛾 indicates the weight of classification and segmentation.
𝑐𝑟 indicates the predictive classification results of instance 𝑟 .𝑚𝑡−1

and �̂�𝑡 are the segmentation results of𝑀𝑡−1 and𝑀𝑡 , respectively.
It is noted that �̂�𝑡𝑟 is the student output from the teacher decoder
to restrain the model inheritance [51]. For fine-grained tasks, the
recognition branch should be assigned a higher weight to alleviate
misclassification due to large intra-class variance. Thus a constraint
between 𝑀𝑡−1 and 𝑀𝑡 is proposed to optimize the instance seg-
mentation task via a guided instance distillation loss.

The CID objective is defined as:

L𝐶𝐼𝐷 =
∑︁
𝑖

[−𝑞𝑟 (𝑑 (𝑦𝑡−1
𝑟 , 𝑦𝑡𝑟 ))] (5)

where 𝑦𝑟 indicates the predicted classification result of instance 𝑟 .
Thus the TKD objective is the combination of ICD and CID:

L𝑇𝐾𝐷 = L𝐼𝐶𝐷 + L𝐶𝐼𝐷 (6)

3.4 Task-asymmetric Pseudo-labeling
Since only the incremental classes are labeled, we propose an
exemplar-free pseudo-labeling method with asymmetric task re-
liance, i.e., more emphasis on confident predictions. As seen in Fig. 3,
we observe the captioning task focuses more on the global context.
While the segmentation tasks tend to cause pixel misclassification
within a single intact target area. Using Y𝑡−1

𝑐𝑎𝑝 indicates captioning
output from the 𝑀𝑡−1. Thus the segmentation annotation 𝑦𝑡

𝑖
at 𝑡

step for pixel 𝑖 is defined as:

𝑦𝑡𝑖 =


𝑦𝑡−1
𝑖 , if (ỹt−1

i ∈ C0:t-1) ∧ [(pi ≥ Γ) ∨ [(ỹt−1
i ∈ Yt-1

cap)]
𝑦𝑡𝑖 , if (xi ∈ Ct)

𝑐𝑏 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7)

where 𝑦𝑡−1
𝑖

is the pseudo label for pixel 𝑖 generated from𝑀𝑡−1, 𝑝𝑖
is the predictive probability of pixel 𝑖 at 𝑡 step. 𝑥𝑖 is the 𝑖-th pixel
in image 𝑥 . 𝑦𝑡

𝑖
is the incremental annotation for pixel 𝑖 at 𝑡 step. 𝑐𝑏

indicates the unknown background class. The asymmetry manifests
itself by threshold or more rely on captioning predictions. Since
the learned and future classes are mixed in 𝑐𝑏 at each CL step, the
relative scoring of softmax could lead to significant semantic chaos
and catastrophic forgetting during CL training steps. Instead, we
take independent Sigmoid with binary cross-entropy loss to cope
with the variable class number during CL steps and alleviate the
interference from variable background semantics.
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For the captioning task, every sentence starts with “START" and
ends with “END" keywords. The label at 𝑡 step is concatenated with
the pseudo label before "END". Thus the captioning label for 𝑡 step
is:

𝑦𝑡𝑐𝑎𝑝 = 𝑦𝑡−1
𝑐𝑎𝑝 ⊕ 𝑦𝑡𝑐𝑎𝑝 (8)

where 𝑦𝑡−1
𝑐𝑎𝑝 indicates the predicted captioning from𝑀𝑡−1 and 𝑦𝑡𝑐𝑎𝑝

is the readily available label at 𝑡 step. ⊕ indicates the concatenation
operation.

3.5 Overall Objective via MTL
The proposed model supports end-to-end training with weighted
losses acrossmulti-objective joint training. Concretely, the objective
considers four parts: classification loss L𝑐𝑙𝑠 , segmentation loss
L𝑠𝑒𝑔 , caption generation loss L𝑐𝑎𝑝 and knowledge distillation loss
L𝑇𝐾𝐷 . Considering joint training among diverse tasks, we propose
a weighted loss for MTL issue. Concretely, L𝑐𝑙𝑠 is formed by a
cross-entropy loss. And L𝑠𝑒𝑔 is binary mask loss:

L𝑠𝑒𝑔 =
𝑁∑︁
𝑖=1

[1[𝑐𝑔𝑡
𝑖

≠ ∅]L𝑚 (𝑦,𝑦)] (9)

where L𝑚 is formed by focal loss [30] and dice loss [36]:

L𝑚 = 𝜂1L𝑓 𝑜𝑐𝑎𝑙 (𝑦,𝑦) + 𝜂2L𝑑𝑖𝑐𝑒 (𝑦,𝑦) (10)

where 𝜂1 and 𝜂2 are the weighting component. 𝑐𝑔𝑡
𝑖

is the label for
class 𝑐 . And the captioning loss is formed by a cross-entropy loss:

L𝑐𝑎𝑝 = −
𝐿∑︁
𝑡=1

𝑙𝑜𝑔𝑝𝑐𝑎𝑝 (𝑦𝑐𝑎𝑝 ) (11)

where 𝑝𝑐𝑎𝑝 is the word prediction probability from the caption
module and 𝑦𝑐𝑎𝑝 represents the annotation. Thus the integrated
objective is defined as:

L = L𝑐𝑙𝑠 + L𝑠𝑒𝑔 + 𝜆L𝑐𝑎𝑝 + L𝑇𝐾𝐷 (12)

where 𝜆 is the weight of captioning tasks. Specifically, the distilla-
tion loss is only applied at CL steps.

4 Experiments
4.1 Datasets and Protocols
Datasets: FineGrip [64] is a multi-task remote-sensing dataset that
includes 2649 images, with 12054 fine-grained instance segmenta-
tion masks belonging to 20 foreground classes, 7599 background
semantic masks covering 5 classes, and 13245 fine-grained sentence
description annotations. The sample number in the training set is
much smaller than that in the validation set, which provides chal-
lenging but practical scenes for CL under limited data conditions.
Note that all stuff classes are trained at the initial step since they
are covered in most samples. We evaluate our model on 20-5 (2
steps), 15-5 (3 steps) and 15-2 (6 steps), respectively.
Protocols: There are mainly two different CL settings: disjoint
and overlapped. In both settings, only the current classes 𝐶𝑡 are
labeled and others are set as background. In the former, images at
𝑡 step only contain 𝐶0:𝑡−1 ∪ 𝐶𝑡 ∪ 𝐶𝑏𝑔 . While the latter contains
𝐶0:𝑡−1 ∪𝐶𝑡 ∪𝐶𝑡+1:𝑇 ∪𝐶𝑏𝑔 , which is more realistic and challenging.
In this study, we focus on overlapped setting. We also report two
baselines for reference, i.e., fine-tuning on 𝐶𝑡 , and training on all

classes offline. The former is the lower bound and the latter can be
regarded as the upper bound of this task.

4.2 Implementation Details
We use MaskFormer [13] with ResNet-50 [18] as the base encoder to
extract image features. For all experiments, the initial learning rate
is 0.01 and decayed by a poly policy. The implementation is based on
PyTorch 1.10 with CUDA 12.3 and all experiments are conducted on
a workstation with four NVIDIA RTX 4090 GPUs. For all CL steps,
the training epoch is set to 90. The hyper-parameters are set as
𝜆 = 2.0 according to the analysis in Sec. 4.4.1, 𝜂1 = 20.0 and 𝜂2 = 1.0.
We compute the panoptic quality (PQ), segmentation quality (SQ)
and recognition quality (RQ) tomeasure the segmentation efficiency.
While the Bilingual Evaluation Understudy (BLEU) [38] is used
to evaluate the generated text. The implementation is based on
MMDetection [11].

4.3 Quantitative Evaluation
To comprehensively evaluate the CPP performance on old and new
classes, we compute the segmentation performance and captioning
performance at the initial step and the final step, respectively. The
proposed model is tested on two aspects following [56]: multi-
step with few-class (MSFC) and few-step with multi-class (FSMC).
Particularly, FSMC emphasizes the ability to learn new knowledge
(plasticity) since many new classes are adapted in a single step.
In contrast, MSFC underlines the ability of anti-forgetting on old
knowledge (stability) because many CL steps are conducted. The
proposed model is evaluated from multi-modal CL performance
and cross-task CL correlation, which are the key problems beyond
the pioneer single-task CL approaches.

4.3.1 Multi-modal CL performance. As seen in Table 1, we first
evaluate the PQ for old, new and all classes after all CL steps, re-
spectively. Compared to naive fine-tuning approaches, freezing
encoder after the initial step can help alleviate catastrophic forget-
ting. The proposed CPP method achieves superior anti-forgetting
on old classes and plasticity on new classes simultaneously. The
captioning performance is evaluated from two aspects: The perfor-
mance at the initial step and after all CL steps. The former is the
initial learned result with limited partial classes. While the latter
indicates the matching accuracy of the predicted words after all CL
steps. On the one hand, the captioning capacity improves since the
new semantics are learned to meet with an intact understanding of
the image. On the other hand, the BLEU scores declined after CL
steps due to catastrophic forgetting.

The results in Table 1 also prove that the joint multi-task op-
timization in CL tasks should boost sub-task capacity. Compared
to the segmentation method [13] in the proposed CL setting, the
proposed CPP achieves 3.33%, 3.68% and 2.76% PQ improvements
on all classes on 20-5, 15-5 and 15-2 tasks, respectively. While com-
pared to fine-tuning method with freezing enoder, CPP achieves
overall improvements across multi-modal tasks. Concretely, for 15-
2 task, the long-step learning brings severe catastrophic forgetting.
As a comparison, CPP maintains relative higher performance on
both segmentation task and captioning task, which demonstrates
the effectiveness of the proposed multi-modal continual learning
architecture.



MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia. Bo Yuan, Danpei Zhao, Zhuoran Liu, Wentao Li, and Tian Li

Table 1: Quantitative performance on FineGrip dataset. We evaluate the segmentation task with PQ (%). 𝐶𝑜 , 𝐶𝑛 and 𝐶𝑎 are
the performance for old classes, new classes and all classes after all CL steps, respectively. The captioning performance is
evaluated by BLEU scores (beamsize=5), which are reported before (B𝑏 ) and after (B𝑎) all CL steps. † indicates we re-implement
the method to CL tasks. FE indicates freezing encoder manner.

Task 20-5 (2 steps) 15-5 (3 steps) 15-2 (6 steps)
𝐶𝑜 𝐶𝑛 𝐶𝑎 B𝑏 B𝑎 𝐶𝑜 𝐶𝑛 𝐶𝑎 B𝑏 B𝑎 𝐶𝑜 𝐶𝑛 𝐶𝑎 B𝑏 B𝑎

fine-tuning 0.82 4.56 1.57 10.37 4.52 0.47 1.29 0.80 12.13 2.28 0.04 0.67 0.29 12.13 2.11
fine-tuning-FE 7.21 15.34 6.84 10.37 12.63 2.83 4.16 3.36 12.13 5.35 0.68 0.59 0.64 12.13 4.18

MaskFormer† [13] 23.29 30.98 24.83 - - 25.73 22.19 24.31 - - 14.25 7.82 11.68 - -

CPP 27.06 32.59 28.16 35.93 34.12 29.71 25.41 27.99 33.01 27.00 17.20 10.30 14.44 33.01 21.52

offline 52.32 45.08 50.87 41.66 41.66 54.12 46.00 50.87 41.66 41.66 54.12 46.00 50.87 41.66 41.66
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four TU-160s.
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total of 6 aircraft, consisting of four TU-160 
bombers and two TU-95 bombers.
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Figure 4: Qualitative visualization of the CPP before and after CL steps. The predictions are updated after CL steps on segmenta-
tion and captioning synchronously.

Table 2: Correlation study between multi-modal branches in
15-5 task.

Task PQ BLEU score
𝐶𝑜 𝐶𝑛 𝐶𝑎 before after

Seg. only 25.73 22.19 24.31 - -
Cap. only - - - 31.22 22.52
CPP 29.71 25.41 27.99 33.01 27.00

Fig. 4 depicts the CPP results on 15-5 and 10-5 tasks, respectively.
It is noted from two aspects. On the one hand, the unknown se-
mantics can be ignored at the previous steps, as seen in the first
row in Fig. 4 before CL training. On the other hand, semantic chaos
occurs when semantic instances are misclassified. As illustrated in
the second row in Fig. 4, the foreground instances are located but
misclassified to false class labels. While after the CL training steps
by CPP, the semantic chaos is alleviated by distinguishing old and
new classes. Meanwhile the captioning results are also replenished
by taking into account both new and old semantics.
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Table 3: Ablation study of segmentation performance of the proposed method in PQ (%).

Method 20-5 (2 steps) 15-5 (3 steps) 15-2 (6 steps)
𝐶𝑜 𝐶𝑛 𝐶𝑎 𝐶𝑜 𝐶𝑛 𝐶𝑎 𝐶𝑜 𝐶𝑛 𝐶𝑎

fine-tuning-FE 7.21 15.34 6.84 2.83 4.16 3.36 0.68 0.59 0.64
+ICD 24.32 31.08 25.67 27.86 22.53 25.73 15.01 9.54 12.82
+CID 22.19 26.53 23.06 24.61 19.42 22.53 14.89 6.92 11.68
+ICD&CID 26.79 32.06 27.84 28.15 25.44 27.07 16.33 9.17 13.47
+TPL 27.06 32.59 28.16 29.71 25.41 27.99 17.20 10.30 14.44

4.3.2 Cross-task CL correlation. In the proposed architecture, we
utilize multi-modal CL branches to achieve CPP. We argue that
mutual guidance from different branches in knowledge distillation
and pseudo-labeling can improve each sub-task performance. To
reveal the mutual impact between multi-modal branches, we per-
form separate training on the segmentation task and captioning
task, respectively. As shown in Table 2, the joint training achieves
2.73% and 1.34% PQ improvement on the old and all classes after CL
steps. It also achieves 4.48% BLEU score higher than the captioning
branch alone after CL training steps. The results prove the mutual
boosting of joint training across multi-modal tasks in CL problems.

4.4 Ablation Study
4.4.1 Module Contribution. To reveal the contribution of each
module in the proposed method, we respectively disclose the corre-
sponding modules as seen in Table 3. The proposed TKD combines
segmentation flow and captioning flow to perform KD across dif-
ferent tasks. To disclose the effectiveness of TKD, the ICD and CID
are separately and jointly verified, respectively. Compared to the
fine-tuning method, ICD achieves significant improvement, proving
the anti-forgetting effectiveness of leveraging intermediate features
constraints between𝑀𝑡−1 and𝑀𝑡 . While CID emphasizes the con-
sistency of output distribution at CL steps to align the ability from
the old model. On the other hand, the synergy of ICD and CID
proves the homogeneity in the proposed CPP for multi-modal CL
task. For example, the PQ on 𝐶𝑎 achieves 2.17% higher than ICD
only and 4.78% higher than CID only on 20-5 task. While compared
to the fixed-threshold-based pseudo-labeling method, the proposed
TPL utilizes cross-task reliance to improve the confidence of the
generated pseudo labels and achieves higher performance on all
three CL scenarios. Note that when not adopting TPL, we apply
a confidence-based pseudo-labeling with a fixed threshold with
Γ = 0.7.

As defined in Eqn. 12, CPP utilizes a multi-task learning approach
within a unified architecture. The weights assigned to multi-modal
tasks significantly affect the efficiency of CL. As shown in Table 4,
the performance of CPP achieves the highest PQ since the caption-
ing task is weighted as 𝜆 = 2.0, demonstrating the cross-modal
boosting in CPP tasks.

4.4.2 Impact of base model. The proposed architecture is model-
agnostic, which supports various backbones and models. For the
proposed CPP task, we propose a hypothesis that a strong base
model can improve the CL efficiency. As seen in Fig. 5, various

Table 4: Impact of hyper-parameters on 15-5 task.

𝜆 0.3 0.5 1.0 2.0 2.5 3.0

PQ 26.12 27.57 27.58 27.99 27.41 27.60

R-50 R-101 Swin-T
backbone

0

10

20

30

40

50

60

70

80

m
et

ric
(%

)

PQ
SQ
RQ

Figure 5: Comparison of PQ, SQ and RQ on all learned classes
after all CL steps with different backbones on 15-5 task.
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Figure 6: The PQ, SQ and RQ evolution against the number
of learned classes on 15-5 task.

backbones including ResNet-50, ResNet-101 and Swin-T [32] are ex-
plored. Quantitatively, the model with ResNet-101 achieves higher
PQ, SQ and RQ than that with ResNet-50, which proves a stronger
backbone can achieve higher anti-forgetting performance and com-
patibility on new classes. It also shows that Transformer-based
models achieve better recognition performance since the RQ score
is significantly higher than two CNN-based models. However, CNN-
based models achieve higher segmentation performance as the SQ
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Table 5: Comparison of various pseudo-labeling methods on
15-5 task.

Method PQ
𝐶𝑜 𝐶𝑛 𝐶𝑎

fixed (Γ = 0.5) 26.46 24.65 26.34
fixed (Γ = 0.7) 28.15 25.44 27.07

TPL 29.71 25.41 27.99

scores are higher. We prefer it since the local features are more
attentively utilized especially for small objects and areas.

4.4.3 Compatibility on plasticity and stability. With the incremen-
tal arriving data, the performance of old classes declined since
lacking old annotations. To validate the anti-forgetting of the pro-
posed CPP model, we evaluate the PQ, SQ and RQ evolution against
the number of learning classes on 15-5 task. As seen in Fig. 6, the
PQ and RQ performance of the old classes degenerates sharply due
to catastrophic forgetting and semantic drift, which indicates the
model degradation in pixel classification. While SQ maintains a
high score since the background classes occupy the most pixels
and being learned at the initial step. It indicates the anti-forgetting
ability of recognition task in CPP task.

4.4.4 Impact of pseudo-labeling. Pseudo-labeling is an effective
way to alleviate catastrophic forgetting due to the lack of old data
and annotation. We compare the proposed TPL with the typical
single-task confidence-based method with a fixed threshold, in
which we set Γ = 0.5 as a convention and Γ = 0.7 following [17, 65].
As seen in Table 5, the proposed TPL achieves 1.56% PQ improve-
ment on 𝐶𝑜 and 0.92% superiority on 𝐶𝑎 to the fixed confidence
threshold setting (Γ = 0.7), which indicates the cross-task interac-
tive can improve the pseudo-labeling effectiveness. However, the
decline in 𝐶𝑛 shows the conflict between retaining the old knowl-
edge and bias on the new knowledge.

4.4.5 Robustness analysis. To reveal the robustness to class learn-
ing orders of the proposed method, we perform experiments on
15-5 task with five different class orders including the ascending
order and four random orders on thing classes as follows. In Fine-
Grip [64] dataset, 𝐶21−25 indicates the background stuff classes,
which serves as the partial base classes in the CPP experiments.

𝑎 : { [21 − 25, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20] }
𝑏 : { [21 − 25, 5, 7, 8, 9, 12, 14, 15, 16, 19, 20], [1, 2, 4, 11, 13], [3, 6, 10, 17, 18] }
𝑐 : { [21 − 25, 3, 4, 5, 8, 9, 13, 15, 17, 19, 20], [7, 10, 11, 16, 18], [1, 2, 6, 12, 14] }
𝑑 : { [21 − 25, 1, 2, 3, 11, 12, 14, 15, 16, 18, 20], [7, 8, 10, 17, 19], [4, 5, 6, 9, 13] }
𝑒 : { [21 − 25, 2, 3, 5, 7, 9, 10, 12, 13, 14, 19], [1, 4, 8, 16, 17], [6, 11, 15, 18, 20] }

The results shown in Table 6 indicate the PQ of 𝐶1:10&21−25 and
𝐶11:20 on five different orders. Note that 𝐶21−25 are background
stuff classes that are learned at the initial step. The average PQ and
standard variance are reported. It reveals that the class incremental
orders have an evident impact on CPP performance. For example,
the average PQ on 𝐶1:10&21:25 varies sharply. It proves the critical
challenge of catastrophic forgetting in multi-task CL. On the other
hand, the performance in all classes after all CL steps proves the
learning stability of CPP.

Table 6: Average performance on various class incremental
orders on 15-5 task in terms of PQ (%).

order 𝐶1:10&21−25 𝐶11:20 𝐶1:25

a 29.71 25.41 27.99
b 25.79 24.15 25.13
c 28.73 24.96 27.22
d 22.57 27.18 24.41
e 28.32 22.29 25.91

avg.±std. 27.02±2.58 24.80±1.60 26.13±1.32

Table 7: Computational complexity in CPP task.

Task Params. (M) FLOPs (G) FPS

Seg.-only 45.0 126 8.5
Cap.-only 31.2 87 8.0

CPP 52.1 135 4.8

4.4.6 Computational complexity. To reveal the computational com-
plexity of CPP, single-task CL approaches and multi-modal CPP
are compared. The results in Table 7 come from 20-5 task with
800×800×3 input size after all CL steps. This indicates CPP imple-
ments multi-task and multi-modal CL with extra cost than single-
task CL approaches.

4.4.7 Limitations. Considering CPP from multi-task learning per-
spective, the seesaw phenomenon can not be ignored since pixel-
level segmentation and image-level captioning tasks have different
training difficulty and convergence speeds. On the other hand, an-
other potential improvement of CPP is to establish the coupling and
mutual verification between the multi-modal information during
CL steps.

5 Conclusion and Discussion
In this paper, we propose a continual panoptic perception (CPP)
method that enables multi-task continual learning for multi-modal
interpretation in remote-sensing images. Aiming to achieve CPP
within a single intact architecture, the proposed architecture con-
tains a shared encoder for multi-modal tasks, with cross-task distil-
lation for solid knowledge inheritance. It is also proved that cross-
modal task-interactive learning achieves mutual enhancement on
sub-tasks. Experiments on the fine-grained panoptic perception
dataset validate the effectiveness of the proposed method.

However, CPP encounters pendent challenges including intricate
cross-modal feature relevance, unbalanced knowledge proportion
and semantic chaos caused by catastrophic forgetting. Our future
work will focus on improving joint optimization efficiency and
developing more robust and interpretable CPP approaches.
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