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A Code Repository and Licensing

The code written for this research work is available at https://github.com/Stefa1994/GeDi-HNN and freely
distributed under the Apache 2.0 license.®

The Texas, Wisconsin, Cornell, WikiCS, and Telegram datasets were obtained from the PyTorch Geometric
Signed Directed (He et al., 2022b) library (distributed under the MIT license). The Cora, Citeseer, and
PubMed datasets are available at https://lings.org/datasets/. The email-Eu and email-Enron datasets
are available at https://www.cs.cornell.edu/~arb/data/.

The code for the baselines used in the experimental analysis is available at https://github.com/Graph-C0OM/
ED-HNN and https://github.com/yxzwang/PhenomNN under the MIT license.”

B Properties of Our Proposed Laplacian Ly

This section contains the proofs of the theorems, corollaries, propositions, and lemma reported in the main
paper.
Theorem 1. If H is an undirected hypergraph, Ly=A and Qn = Qy.

Proof. Since H = (V, E) is an undirected hypergraph, Bis binary and only takes values 0 and 1 (rather than
being ternary and taking values 0,1, —i, which is the case in general). In particular, for each edge e € E we

have Bye = 1 if either u € H (e) or u € T'(e) and Bue = 0 otherwise. Consequently, the directed incidence
matrix B is identical to the non-directed incidence matrix B, i.e., B = B. Thus, by construction, Ly = A

and Qn = Qn. O

Corollary 1. If H is an undirected 2-uniform hypergraph, Ly = %LN and @N = %QN

Proof. Since ‘H is an undirected 2-uniform hypergraph, it follows that:

{Ewé* =D, + A

Based on this, we can rewrite Qn as follows:
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This proves the second part of the result. Since @N = %QN and, due to equation 5, %LN =1- %QN, it
follows that 3Ly =1 — Qn = L. |
Theorem 2. If H is a directed 2-uniform hypergraph with no antiparallel edges, we have Ly = %L‘J’V with
A=A+ AT,

Shttps://www.apache.org/licenses/LICENSE-2.0
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Proof. Since H is a directed 2-uniform hypergraph without antiparallel edges, it follows that:

{Ewé* =D, +H°
D! =1I

Since H has no digons, the assumption A, = A+ AT implies Dy = D,,. Thus, we can rewrite Ly as follows:
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Corollary 2. If H is a directed 2-uniform unweighted hypergraph with no antiparallel edges, we have
Ly = %Lg\(}) withq:;lL and Ay = A+ AT,

Proof. Since H is a directed 2-uniform unweighted hypergraph, A € {0,1}"*". Thus, as shown by Fiorini
et al. (2023), with ¢ = [—i we have Lo = L@ Since Theorem 2 states that Ly = %L‘J’V, it follows that
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Theorem 3. Ly and QN are diagonalizable with real eigenvalues.
Proof. This follows from the fact that the two matrices are, by construction, Hermitian. O
Theorem 4. QN 1s positive semidefinite.
Proof.
*Ona i=a* (D;%EWDE‘lE*D;%) x
(+*D3* BWiDZ?) (DZ*WH B D; )
(ptwis pite) (D twiB Dita)
(Dt wi B Dy ) |3 > 0
O

Theorem 5. Let x = a+ i € C", with a,b € R™. The 2-Dirichlet energy function HIHZE =a2*Lyz of x
N

induced by Ly is the following quadratic form:
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where 1 is the indicator function.

Proof.
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Let us analyze the three possible cases for the summand.
Case l.a: u € H(e) Av € H(e) < B(u,e) = 1, B(v,e) = 1. We have B(u,e)B(v,e)* = B(v,e)B(u,e)* = 1.

Case 1.b: u € T(e) Av € T(e) & B(u,e) = —i, B(v,e) = —i. We have B(u,e)B(v,e)* = B(v,e)B(u,e)* =
(=D(=1)" = (=) =1
In both cases, we have:

dw) A0 Jdla \/ A \/ (\/d(m N «/d(v)) (,/d(u) N ,F@)) '

Letting x,, = a, + ib, and z, = a, + ib,, we have:

(&_“_v)er(b_u_ by >2
Vdu  Vd, Ve  Vd,)
Case 2.a: u € H(e) Nv € T(e) & B(u,e) = 1,B(v,e) = —i. We have B(u,e)B(v,e)* = (1)(—i)* =i and

B(v,e)B(u,e)" = (-i)(1)* =

Thus: . .
TETy  TETy

d(u) ") _i\/d(u)\/vd(v) +i«/d(v)wu/d(u)

Let x,, = a, +ib, and z, = a, + ib,, then we have:

<au b, )2+<av by )2

Vdu  Vdy Vd, Vd,)

Case 2.b: u € T(e) Av € H(e) & B(u,e) = —i,B(v,e) = 1. We have B(u,e)B(v,e)* = (-i)(1)* = —i and
B(v,e)B(u,e)* = (1)(—i)* =i. We have:

5Ty, l‘ﬂjv

dw) v—r FW
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Let x,, = a, +ib, and z, = a, + ib,, then we have:

2 2
ay by (e by
Vdy  Vdy Vd,  Vd,)
The final equation reported in the statement of the theorem is obtained by combining the four cases we just
analyzed. O

Corollary 3. Ly is positive semidefinite.

Proof. Since Ly is Hermitian, it can be diagonalized as UAU* for some U € C™*" and A € R™*", where
A is diagonal and real. We have 2*Lyx = 2*UAU*z = y*Ay with y = U*z. Since A is diagonal, we have
YAy = v Auy2. Thanks to Theorem 5, the quadratic form 2*Lyx associated with Ly is a sum of
squares and, hence, nonnegative. Combined with v*Lyw = Y ey Auy2, we deduce A\, >0 foralluc V. O

Corollary 4. )\max(EN) <1 and Amax(@N) <1.

Proof. )\max(EN) < 1 holds if and only if Ly —1I=0. Since Ly =1 — QN holds by definition, we need to
prove —Q ~ = 0, which holds true due to Theorem 4.

Similarly, Amax(@n) < 1 holds if and only if Qx — I < 0. Since Qn = I — Ly holds by definition, we need to
prove —Ln = 0, which holds true due to Corollary 3. O

Proposition 1. The convolution operator obtained from equation 1 by letting L = Ly with parameters 0, 61
coincides with the one obtained by letting L = Qn with parameters 0y = 6y + 01, 0] = —0;.

Proof. Consider the two operators 6y + 0, Lx and 01 + 0, QN. Since Ly = I — QN, the first operator reads:
6ol +6,(I —Qn). This is rewritten as (6 +01)1 — 0,0n. By operating the choice 0 = 0y + 61 and 6, = —61,
the second operator is obtained. O

C Complexity of GeDi-HNN

The detailed calculations for the (inference) complexity of GeDi-HNN are as follows.

1. The Generalized Directed Laplacian Ly is constructed following equation 7 in time O(n?m), where
the factor m is due to the need for computing the product between two rows of B to calculate each
entry of Ly. After Ly has been computed, the convolution matrix ¥ € C"*" is constructed in time
O(n?). Note that such a construction is carried out entirely in pre-processing and is not required at
inference time.

2. Each of the ¢ convolutional layers of GeDi-HNN requires O(n?c+nc? +nc) = O(n?c+nc?) elementary
operations across 3 steps. Let X'~! be the input matrix to layer { = 1,...,¢. The operations that
are carried out are the following ones.

(a) Ly is multiplied by the node-feature matrix X~! € C"*¢, obtaining P"* € C"*¢ in time O(n2c)
(we assume matrix multiplications takes cubic time);

(b) The matrices Plo = IX'~! = X!~1 and P"' are multiplied by the weight matrices ©g, ©; € R¢*¢
(respectively), obtaining the intermediate matrices Plot, Plit € C"*¢ in time O(nc?) .

(c) The matrices Pt and P are additioned in time O(nc) to obtain P'2.

(d) The activation function ¢ is applied component-wise to P2 in time O(nc), resulting in the
output matrix X! € C™*¢ of the I-th convolutional layer.

3. The unwind operator transforms X* (the output of the last convolutional layer £) into the matrix
U® € R™ 2¢ in linear time O(nc).
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4. Call U*~! the input matrix to each linear layer of index s = 1,...,5. The application of the s-th
linear layer to Us~! € C"*¢ requires multiplying U*~! by a weight matrix M, € C¢*¢ (where ¢/
is the number of channels from which and into which the feature vector of each node is projected).
This is done in time O(nc'?).

5. In the last linear layer of index S, the input matrix US~! € R™*¢ is projected into the output matrix
O € R in time O(nc'd).

6. The application of the Softmax activation function takes linear time O(nd).

We deduce an overall complexity of O(¢(n?c + nc?) + nc + (S — 1)(nc’?) + ne’d + nd) which, letting ¢ =
max{c, ¢, d}, coincides with O(¢(n?c) + (£ + S)(nc?)).

D Further Details on the Datasets

We test GeDi-HNN on ten real-world dataset. Cora, Citeseer, and PubMed (Zhang et al., 2022); email-Eu,
and email-Enron (Benson et al., 2018); Texas, Wisconsin, and Cornell (Pei et al., 2020); WikiCS (Mernyei
and Cangea, 2020); and Telegram (Bovet and Grindrod, 2020).

Cora, Citeseer, and PubMed are citation networks with node labels based on paper topics. In these citation
networks, the nodes represent papers, their relationships denote citations of one paper by another, and the
node features are the bag-of-words representation of papers.

Email-Enron and email-Eu are two email datasets—one from communications exchanged between Enron
employees (Klimt and Yang, 2004) and the other from a European research institution (Paranjape et al., 2017).
The nodes are email addresses and their relationships are of sender-receiver type. Since no node labeling is
present in these two datasets, we define the node labels (node classes) using the Spinglass algorithm (Reichardt
and Bornholdt, 2006).

Texas, Wisconsin, and Cornell are WebKB data sets extracted from the CMU World Wide Knowledge
Base (Web->KB) project.® WebKB is a webpage data set collected from computer science departments of
various universities by Carnegie Mellon University. In these networks, the nodes represent web pages, and
the relationship are hyperlinks between them. The node features are the bag-of-words representation of the
web pages. The web pages are manually classified into the five categories: student, project, course, staff, and
faculty.

WikiCS is a directed network whose nodes correspond to Computer Science articles, and the relationships are
on hyperlinks. This network has 10 classes representing different branches of the field.

Telegram models an influence network built on top of interactions among distinct users who propagate
ideologies of a political nature.

The statistic of these ten real-world datasets and of the synthetic datasets we generate are summarized in
Tables 3 and 4.

E Experiment Details

Hardware. The experiments were conducted on 2 different machines:

1. An Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz with 380 GB RAM, equipped with an NVIDIA
Ampere A100 40GB.

2. A 12th Gen Intel(R) Core(TM) i9-12900KF CPU @ 3.20GHz CPU with 64 GB RAM, equipped with
an NVIDIA RTX 4090 GPU.

Shttp://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
P proj
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Table 3: Statistics of the real-world datasets

Data set # node # hyperedges # classes average |e]
Cora 2708 1579 7 3.03
Citeseer 3312 1079 6 3.20
Pubmed 19717 7963 3 4.35
email-Eu 986 873 10 38.01
email-Enron 143 128 7 20.03
Telegram 245 185 4 48.04
Texas 183 40 5 4.45
Wisconsin 251 65 5 4.77
Cornell 183 41 5 3.88
WikiCS 11701 6827 10 42.08

Table 4: Statistics of the synthetic datasets
Data set # node # hyperedges # classes average |e|

I, =10 500 250 5 9.05
I, =30 500 450 5 10.79
I, =50 500 650 5 11.63

Model Settings. We trained every learning model considered in this paper for up to 500 epochs. We
adopted a learning rate of 5 - 1072 and employed the optimization algorithm Adam with weight decays equal
to 510~ (in order to avoid overfitting). For all the models that adopt the classification layer, we set it to 2.

We adopted a hyperparameter optimization procedure to identify the best set of parameters for each model.
In particular, the hyperparameter values are:

e For AllDeepSets and ED-HNN, the number of basic block is chosen in {2, 4,8}, the number of MLPs
per block in {1,2}, the dimension of the hidden MLP (i.e., the number of filters) in {64, 128, 256, 512},
and the classifier hidden dimension in {64,128, 256}.

o For AllSetTransformer the number of basic block is chosen in {2, 4, 8}, the number of MLPs per block
in {1, 2}, the dimension of the hidden MLP in {64, 128,256,512}, the classifier hidden dimension in
{64,128,256}, and the number of heads in {1,4, 8}.

o For UniGCNII, HGNN, HNHN, HCHA/HGNN™, LEGCN, and HCHA with the attention mechanism,
the number of basic blocks is chosen in {2,4,8} and the hidden dimension of the MLP layer in
{64,128, 256, 512}.

e For HyperGCN, the number of basic blocks is chosen in {2, 4, 8}.
o For HyperND, the classifier hidden dimension is chosen in {64, 128,256}.

e For PhenomNN, the number of basic blocks is chosen in {2,4,8}. We select four different settings:
. Ao =0.1, Ay = 0.1 and prop step= 8,

. Ao =0, Ay = 50 and prop step= 16,

. Ao =1, Ay =1 and prop step= 16,

= W N

. Ao =0, Ay =20 and prop step= 16.

e For GeDi-HNN and GeDi-HNN w/o directionality, the number of convolutional layers is chosen
in {1,2,3}, the number of filters in {64,128,256,512}, and the classifier hidden dimension in
{64,128,256}. We tested GeDi-HNN both with the input feature matrix X € C**¢ where R(X) =
$(X) # 0 and with $(X) = 0.
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Node Features. For Cora, Citeseer, PubMed, Texas, Wisconsin, Cornell, WikiCS, and Telegram, we
retain the datasets’ original features. For email-Eu, email-Enron, and the synthetic datasets, the feature
vectors are generated using the vertex degree of each node.

F From a Directed Hypergraph to the Generalized Directed Laplacian

To illustrate the representation of a directed hypergraph in our Generalized Directed Laplacian, consider a
directed hypergraph H = (V, E) with V = {v1,v9,v3,v4,v5} and E = {e1, ea}. The incidence relationships
are defined as follows: vy, vo € H(e1), vs € T(e1), v, v5 € H(ez2), and v1,v2 € T(e2). The hyperedges have
unit weights (i.e., W = I). The hyperedge cardinalities are d., = 3 and 4., = 4.

For this hypergraph, we construct our Generalized Directed Laplacian using the following matrices: the
incidence matrix B its conjugate transpose B* , the vertex degree matrix D,, and the hyperedge degree
matrix De.

1 —i 200 0 0
1 —i . 02000

B=1|-i 0 é*_[iiégﬂ D,=10 01 0 0 De—[g 2].
0 1 00010
0 1 0000 1

Based on these matrices, we build @ ~ as follows:

0.29 0.29 i0.24 —i0.18 —i0.18
0.29 0.29 i0.24 -i0.18 —i0.18
Qn = |—-i0.24 —i0.24 0.33 0 0
i0.18 i0.18 0 0.25 0.25
i0.18 i0.18 0 0.25 0.25

and then our Generalized Directed Laplacian:

0.71 —-0.29 —i0.24 i0.18 i0.18
-0.29 071 —i0.24 i0.18 i0.18

Ly=11i0.24 i0.24  0.66 0 0
—~i0.18 —i0.18 0 0.75 —0.25
—i0.18 —i0.18 0 ~0.25 0.75

By inspecting Ly, one can observe that it encodes the elements of the hypergraph in the following way:

1. The presence of nodes belonging to the same head or tail set, i.e., v1,ve € H(e1), vq,v5 € H(eg),
and vy,v9 € T'(eq), is encoded in the real part. Specifically, (Ln)vvy, = (LN)vpw, = —0.29 and
(LN)’U4’05 = (LN)USU4 = —0.25.

2. The directed hyperedges are encoded via the imaginary part. For example, considering nodes v; and
v3, we have (Ln)uyvs = —(LN)vsv, = —10.24.

3. The absence of a relationship between a pair of nodes is encoded by 0. Specifically, (E N)vgvy, =
(LN)UMJ:; =0 and (LN)USUS = (LN)USUS =0.

4. The "self-loop information" (a measure of how strongly the feature of a node depends on its current
value within the convolution operator) is encoded by the diagonal of L.
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