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ABSTRACT

Diffusion models have achieved remarkable success in high-quality image gen-
eration, typically using convolutional neural networks (CNNs) or Vision Trans-
formers (ViTs) as backbone architectures. However, CNNs may struggle with
capturing long-range dependencies, while ViTs can be computationally intensive
due to their attention mechanisms. We propose the Diffusion Image GNN (DiG),
a novel architecture that leverages graph-based modeling within diffusion models.
By representing image patches as nodes in a graph and connecting them based on
spatial relationships, DiG efficiently captures both local and global dependencies
and naturally handles multi-scale features. Empirical results demonstrate that DiG
achieves competitive Frechet Inception Distance (FID) scores compared to state-
of-the-art methods. To our knowledge, this is the first application of graph neural
networks as a backbone within diffusion models for image generation, opening
new avenues for research in generative modeling.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Nichol &
Dhariwal, 2021; Croitoru et al., 2023) have emerged as a powerful class of generative models,
achieving state-of-the-art performance in high-quality image generation (Dhariwal & Nichol, 2021;
Rombach et al., 2022). They have been successfully applied to a diverse range of tasks, including
image generation (Choi et al., 2021; Saharia et al., 2022b; Rombach et al., 2022), text-to-image
synthesis (Jiang et al., 2022; Ramesh et al., 2022), video generation (Ho et al., 2022a;b; Blattmann
et al., 2023; Xing et al., 2023), among others (Jing et al., 2022a; Wolleb et al., 2022).

Alongside advancements in the mathematical framework of diffusion models (Song et al., 2020;
2021b; Watson et al., 2022; Bao et al., 2022; Dockhorn et al., 2021; Kingma et al., 2021; Song et al.,
2021a; Vahdat et al., 2021; Lu et al., 2022), the choice of backbone architectures plays a pivotal
role in determining their overall performance. Historically, Convolutional Neural Networks (CNNs)
(LeCun et al., 1998; He et al., 2016), such as U-Net (Ronneberger et al., 2015), have served as the
de facto standard architecture in modern computer vision systems. However, recent developments
have seen the introduction of Vision Transformers (ViT) (Dosovitskiy et al., 2021), which utilize
attention mechanisms for visual tasks. Building on this architecture, new models (Hatamizadeh
et al., 2023; Peebles & Xie, 2023; Bao et al., 2023) have emerged that adapt the transformer-based
design (Vaswani, 2017) for diffusion models, demonstrating competitive performance in generative
tasks. Following these advances, State Space Models (SSM) (Gu et al., 2021) have shown strong
capabilities in handling long-sequences, contributing to a new class of diffusion models that capture
fine-grained representations of images (Yan et al., 2024). These backbone architectures process
input data in fundamentally different ways. CNNs operate at the pixel level, applying convolutional
kernels across a grid of pixels to capture local features. In contrast, Transformers and SSMs process
images by treating patches as sequential tokens, where each patch represents a portion of the image.
By computing attention across this sequence of patches, Transformers fully connect them, allowing
the model to capture global dependencies across the image.

An alternative approach involves representing images as compositions of their parts within a flex-
ible grid structure. Graph-based models (Kipf & Welling, 2016; Wu et al., 2020) are particularly
well-suited for this representation, as they naturally facilitate the modeling of complex objects by
capturing the relationships between different parts. Unlike Transformers, which connect all patches
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through attention mechanisms – creating a fully connected graph – graph-based models can naturally
handle grid-like data and connect different scales of the image. By treating image components as
nodes and establishing edges between them, graphs allow for efficient computation of relationships
and can capture complex patterns inherent in images.

In this work, we propose a novel backbone architecture called the Diffusion Image GNN (DiG),
which leverages graph-based modeling within image diffusion models. DiG processes images by
treating a patch as a node, and it constructs a structured graph by leveraging the spatial grid to capture
spatial locality of node features, and connecting multi-scale patch nodes to efficiently propagate
global information. Our contributions are summarized as follows:

• We introduce DiG, a novel graph-based network backbone for diffusion models that pro-
cesses images as graphs, capturing both local and global dependencies. We further propose
two strategies to handle multi-scale features, which connects different levels of granularity
within the graph nodes representing image patches.

• We provide empirical evidence showing that DiG achieves competitive performance in FID
scores compared to popular Transformer-based approaches, highlighting the effectiveness
of graph-based representations in diffusion models.

To the best of our knowledge, this is the first work to apply graph neural networks (GNNs) as a
backbone for image diffusion models with competitive performance, and we hope our work will
inspire the community to further explore GNN-based backbones.

2 BACKGROUND & RELATED WORK

2.1 DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2021b) are a class of
generative models that synthesize new data by progressively adding noise to existing data and then
reversing this process to recover samples from the original data distribution. This approach involves
two key stages: a forward noising process and a reverse denoising process.

In the forward process, an original data point x0 is gradually corrupted by adding noise at each
time step, resulting in a sequence of increasingly noisy data points x1,x2, . . . ,xT . This process is
modeled as a Markov chain, where each state depends only on the immediate previous state. The
forward process is defined by the joint distribution q(x1:T | x0) =

∏T
t=1 q(xt | xt−1), where

q(xt | xt−1) represents the transition probability at each time step t. At each step, Gaussian noise
is added according to q(xt | xt−1) = N

(
xt;
√
αt xt−1, βtI

)
, with αt and βt being parameters that

control the noise schedule and satisfying αt + βt = 1.

In the reverse process, the goal is to invert the forward diffusion by iteratively denoising xT back
to x0. This reverse process is also modeled as a Markov chain with learned Gaussian transitions
pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) , where µθ(xt, t) and Σθ(xt, t) are the mean
and covariance predicted by a neural network parameterized by θ. Rather than directly learn-
ing µθ(xt, t) (Bao et al., 2022), diffusion models often reformulate the problem as a noise pre-
diction task. By leveraging the property that any xt can be expressed as a function of x0 and
added noise ϵt as xt =

√
ᾱt x0 +

√
1− ᾱt ϵt, where ᾱt =

∏t
s=1 αs and ϵt ∼ N (0, I) , the

model can be trained to predict ϵt directly. The training objective then becomes minimizing the
mean squared error between the predicted noise ϵθ(xt, t) and the true noise ϵt , formulated as
Lsimple(θ) = Et,x0,ϵt

[
∥ϵt − ϵθ(xt, t)∥22

]
. This loss function is feasible with a fixed covariance

(Nichol & Dhariwal, 2021) and is evaluated by sampling a random time step t, generating xt using
the known x0 and ϵt, and training the network to predict ϵt.

Diffusion models can be extended to conditional generation tasks (Dhariwal & Nichol, 2021), where
the objective is to generate data conditioned on additional information c , such as class labels. In
this scenario, the noise prediction network incorporates the conditioning information, modifying the
training objective to Lcond(θ) = Et,x0,c,ϵt

[
∥ϵt − ϵθ(xt, t, c)∥22

]
.
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2.2 ARCHITECTURES FOR IMAGE DIFFUSION MODELS

Convolutional Neural Networks (CNNs) (LeCun et al., 1998; He et al., 2016) have long been the
cornerstone of computer vision, applied to a wide array of visual tasks (Krizhevsky et al., 2012;
Ren et al., 2016; Long et al., 2015). Specifically, for image generation, U-Net (Ronneberger et al.,
2015) has been extensively used in diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021;
Nichol & Dhariwal, 2021; Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022a). U-Net
features a symmetric encoder-decoder architecture designed for pixel-wise prediction. It utilizes
skip connections (He et al., 2016) to transfer feature maps from the encoder to the corresponding
decoder layers, preserving spatial information that might be lost during down-sampling.

Recently, Transformers based on Attention (Vaswani, 2017) have begun to supplant domain-specific
architectures due to their scalability and ability to model long-range dependencies (Kaplan et al.,
2020; Henighan et al., 2020). This shift has led to the introduction of Vision Transformers (ViT)
(Dosovitskiy et al., 2021) as a common architecture for visual tasks (Chen et al., 2021; Lee et al.,
2021; Strudel et al., 2021). In this regard, diffusion models built purely with Transformers have
shown remarkable performance in image generation. For instance, U-ViT (Bao et al., 2023) adopts
a similar architecture to U-Net but replaces CNN layers with Attention layers. DiT (Peebles & Xie,
2023) follows a comparable approach but incorporates techniques from ResNets (He et al., 2016;
Goyal et al., 2019) by zero-initializing a selected set of parameters and introducing dimension-
wise scaling factors. DiffiT (Hatamizadeh et al., 2023) introduces a time-dependent self-attention
mechanism to jointly learn spatial and temporal dependencies. Other works enhance U-Net by
integrating self-attention in the low-resolution blocks and building a hybrid architecture, combining
CNNs and Transformers (Ho et al., 2020; Nichol & Dhariwal, 2021; Hoogeboom et al., 2023).

DiffuSSM (Yan et al., 2024) attempts to replace attention mechanisms with a more scalable state
space model backbone (Gu et al., 2021), generating high-quality images while being FLOP-efficient.
This approach opens avenues for applications that require modeling long-range dependencies with-
out the computational overhead associated with attention mechanisms.

2.3 PATCHIFICATION FOR IMAGE PROCESSING

Patchification is the key pre-processing step in image diffusion transformers (Bao et al., 2023; Pee-
bles & Xie, 2023; Hatamizadeh et al., 2023) and DiffuSSM (Yan et al., 2024), which transforms an
image input to a set of tokens. Here, a raw input stands for a noisy image xt ∈ Rh×w×c′ at time step
t, where h and w denote the height and width with c′ channels. Then patchification involves parti-
tioning the image into non-overlapping patches of size s × s, resulting in n = h×w

s2 patches. Each
patch is linearly embedded to form a new representation of d embedding dimension. The granularity
of the patch size s significantly impacts quality and computational efficiency due to the quadratic
complexity of attention mechanisms (Bao et al., 2023). The attention mechanism computes rela-
tionships between all pairs of tokens, effectively modeling the input as a fully connected graph.
While this captures global dependencies, it leads to substantial computational overhead. Towards
mitigating this, FlexAttention (Li et al., 2024) conducts patchification at both lower and higher res-
olutions, effectively reduces the number of active tokens. Such a method has yet to be tested on
image diffusion models to the best of our knowledge, leaving rooms for future research.

2.4 GRAPH-BASED MODELS FOR IMAGES

The applications of Graph Convolutional Networks (GCNs) (Henaff et al., 2015; Kipf & Welling,
2016; Defferrard et al., 2016) in computer vision (Jing et al., 2022b) mainly include point cloud
classification (Landrieu & Simonovsky, 2018), scene graph generation (Xu et al., 2017), and action
recognition (Wang et al., 2019). These applications leverage naturally constructed graphs to model
relationships inherent in the data. For more general applications, the Vision GNN (ViG) (Han et al.,
2022) processes image data directly by representing images as graphs, where nodes correspond
to image patches, and edges are constructed by connecting nodes with similar visual tokens using
k-nearest neighbors.

However, in the context of diffusion models for image generation, there has not yet been a backbone
architecture that leverages graph-based modeling. Note that ViG is not directly applicable in diffu-
sion model setting for two main reasons. First, noise injection in the forward process can change the
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Figure 1: The process of multiscale graph-based denoising: (a) Noised Image: The original image
is corrupted by noise ϵt; (b) Multiscale Graph Extractor: The image is represented as a multiscale
graph where each node corresponds to a patch of the image, and two special nodes — time t and
context c — are fully connected to the entire grid.; (c) Image GNN: DiG blocks are applied to the
multiscale graph, capturing features at different scales; (d) Reconstruction and Noise Prediction:
The processed graph is used to reconstruct the original image and predict the noise added.

results of the nearest-neighbor, leading to a graph connectivity pattern that can change significantly
at different time step t. Second, at the beginning of the reverse process, which starts from draw-
ing random noise pixels, the extracted patch tokens are essentially i.i.d., meaning the constructed
graph does not reflect meaningful visual structure. These challenges motivates our exploration of
improved graph representation learning for image generation tasks within diffusion models.

3 DIFFUSION IMAGE GNN (DIG)

We propose a novel network backbone architecture for diffusion models, Diffusion Image GNN
(DiG), that combines the strengths of graph-based models with diffusion processes, without relying
on Transformers. It operates on a multi-scale grid of patches, enabling the model to capture both
local and global dependencies. By incorporating patches of different sizes, the model can focus
on localized context by primarily attending to neighboring patches. At the same time, it integrates
broader spatial information from larger regions, enabling the capture of more complex patterns
across the image. This hierarchical patching strategy enhances performance by balancing detailed
local features with global spatial understanding, making it particularly effective for image generation
tasks in diffusion models.

DiG is summarized in Figure 1. The process begins with a noised image xt corrupted by noise ϵt
(Fig. 1a). The noised image xt is then represented as a grid of interconnected patches, with time t
and context c treated as special nodes fully connected to the grid (Fig. 1b). Scales of an image are
constructed using varying patch sizes, represented as an ordered set P = {s1 < s2 < · · · < sN},
where the image size remains fixed, but the graph size changes depending on the selected patch size
si. We introduce two new architectures of DiG, both operating on a grid of connected patches: (1)
DiGparallel, which applies a distinct GNN to each scale of the image to capture unique granularities,
and (2) DiGmix, which integrates all scales into a unified multiscale graph processed by a single GNN
with hierarchical connections between different patch sizes. Both types of DiG facilitate efficient
feature learning across multiple resolutions, by using GNN layers for processing graph-based image
patches, LayerNorm (Ba et al., 2016; Fey & Lenssen, 2019) for normalization, MLPs for feature
transformation, and skip connections to retain original feature information and improve gradient
flow (Fig. 1c). The network is optimized to predict the noise ϵt added to the image (Fig. 1d) using
objective Lsimple(θ) or Lcond(θ), where θ collects all trainable parameters in DiG.

Within a DiG block, each GNN layer is designed to handle feature aggregation and updates using
the aggregation function ϕ and the update function γ, both parameterized by learnable weights Wagg

and Wupdate, respectively. For a given graph G = (A,H(k−1)), where A represents the adjacency
matrix and H(k−1) the node features, each GNN processes feature propagation and transformation
across the graph over K hops.

H(k) = GNN(k−1)(A,H(k−1)) = γ(k)
(
ϕ(k)

(
A,H(k−1),Wagg

)
,Wupdate

)
, k = 1, ...,K. (1)
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Figure 2: Overview of the (left) graph construction, where an image is interpreted as a grid-
structured graph, and (right) the DiGparallel block, used to capture different image resolutions and
update node features progressively.

To incorporate positional information into the node features, we add a 1-dimensional learnable posi-
tional embedding e, following the design of transformers (Vaswani, 2017; Dosovitskiy et al., 2021).
Each initial node feature is updated as H(0) ← H(0)+e. This ensures that the positional information
of each node is considered during processing.

We now introduce the two types of DiG blocks (shown as cyan blocks in Fig. 1c): DiGparallel and
DiGmix. Both methods share a common pre-processing stage that transforms the input image into
a graph representation, involving the construction of an initial adjacency matrix A and subsequent
augmentation by adding time and context nodes.

First, node features are extracted from the noised image patches xt through a process of patchifica-
tion. The image is divided into patches, where each patch is treated as a node in a grid-structured
graph. For both DiGparallel and DiGmix, the adjacency matrix Asi ∈ Rni×ni is constructed at each
corresponding patch scale si, where ni =

h×w
s2i

. This matrix Asi encodes the connections between
patches in a grid structure for each resolution si.

Next, we introduce two special nodes: one for time t and one for context c. The time node is
encoded using a sinusoidal timestep embedding, while the context node (if provided) is projected
using a linear embedding. These special nodes are fully connected to the grid of patch nodes whose
adjacency matrix is A. This augmentation results in an augmented adjacency matrix Ã ∈ Rñ×ñ,
detailed below and in Appendix A for the full block matrix description. The augmented graph now
has ñ nodes. The corresponding node features are represented as H ∈ Rñ×d, where d is the feature
dimension. This setup ensures that both the parallel and mix methods can process the entire graph
structure, including patch nodes, time, and context nodes, in subsequent steps.

3.1 DIGPARALLEL : INDEPENDENT GRAPH PROCESSING ACROSS IMAGE SCALES

DiGparallel uses a series of GNNs to independently process the image at different scales, capturing
unique features at each scale. The node representations at layer l are computed as (see Figure 2):

H[l+1]
s1 = DiG[l]

parallel(Ãs1 ,H
[l]
s1 , {Csk}sk>s1). (2)

The augmented adjacency matrix Ãs1 is formed by adding the time and context nodes to the grid
represented by the original adjacency matrix As1 , and these two nodes are fully connected to the
grid. Therefore Ãs1 ∈ Rñ1×ñ1 , where ñ1 = n1 + 2 when training conditional generative models,
else ñ1 = n1 + 1. This matrix encodes the relationships between the patch nodes and the special
nodes (see Figure 2 left). See Appendix A.1 for the block matrix structure.

To create a coarser graph representation, a pooling mask matrix Csi ∈ Rñi×ñ1 is constructed to
transition from the finest patch size s1 to a larger patch size si. This pooling operation downsamples
the number of nodes, resulting in a coarser graph that captures larger-scale features of the image (see
Figure 2 right). The pooling operator POOL(Ãs1 , H̃s1 ,Csi), where H̃s1 = Norm(H

[l]
s1), returns

5
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Figure 3: The DiGmix block takes as input a graph G representing grid patches at various scales
from P (left). The block processes the graph to produce node features at multiple resolution scales
within P (right).

the coarser node features H̃si ∈ Rñi×d and adjacency matrix Ãsi ∈ Rñi×ñi , representing the image
at a larger scale for si > s1:

(H̃si , Ãsi) = POOL(Ãs1 , H̃s1 ,Csi) : H̃si = CsiH̃s1 , Ãsi = CsiÃs1C
⊤
si . (3)

Using the pooling masks {Csi}si>s1 , multiple graphs Gsi = (H̃si , Ãsi) are constructed where
each graph corresponds to the image at a different scale, with Gs1 representing the patch image at
the lowest scale. Each graph is processed by a GNN layer for up to K hops to update the node
features (also see Eq. 1):

H̃(k)
si = GNN(k−1)

si (H̃(k−1)
si , Ãsi), k = 1, ...,K, H̃(0)

si = H̃si . (4)

Node features from different scales are combined using
⊕

, representing a concatenation operation:

Ĥ = MLP
([

H̃(K)
s1 ,H↑

s2 , . . . ,H
↑
sN

])
(5)

where H↑
si = C⊤

siH̃
(K)
si , H↑

si ∈ Rñ1×d for si > s1 is used to upsample the node features from
scale si to the finest scale s1. The resulting concatenated feature matrix Ĥ ∈ Rñ1×d is then obtained
by using an MLP to update the node features, integrating information from multiple resolutions into
a unified feature representation. After combining the features, a normalization step using Layer-
Norm and an additional MLP are applied, with skip connections added between layers to retain the
original feature information , yielding H

[l+1]
s1 :

H[l+1]
s1 = H[l]

s1 + MLP(Norm(Ĥ)). (6)

This results in a unified multiscale graph representation, enabling the stacking of multiple DiGparallel
blocks to progressively update the node representation at each layer l.

3.2 DIGMIX : INTEGRATED GRAPH PROCESSING ACROSS MULTIPLE RESOLUTIONS

DiGmix, visualized in Figure 3, uses a single GNN module to efficiently learn from a graph that is
built using multiple resolutions of the image. At each layer l, the node features are updated as:

H[l+1] = DiG[l]
mix(H

[l], Ã). (7)

The unified graph G = (H, Ã), with Ã ∈ Rñ×ñ and H ∈ Rñ×d, has ñ =
∑

i ni + 2 nodes:
patch nodes across all scales s1, s2, . . . , sN extracted from xt, as well as the two special nodes
(time and context) used for conditional image generation (Figure 3 left). The augmented adja-
cency matrix Ã ∈ Rñ×ñ is constructed using multiscale adjacency matrices across resolutions,
where each scale si has its own adjacency matrix Asi of grid connectivity structure. Ã captures
both intra-resolution connections within each scale and inter-resolution connections between nodes
across different scales. Specifically, nodes at finer scales are connected to the corresponding regions
at coarser scales, forming a hierarchical structure. Again the two special nodes are fully connected
to other patch nodes. The full block matrix representation of Ã is provided in Appendix A.2.
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The DiGmix block, as shown in Figure 3 (right) and outlined in Eq. 8, begins by normalizing the
node features H(0). These features are then iteratively updated through the GNN layers, utilizing the
augmented adjacency matrix Ã, for up to K hops. After the final iteration, the output features H(K)

are combined with the original H(0) via a skip connection. The resulting features are normalized
once more and passed through an MLP to yield the final output H[l+1].

H(k) = GNN(k−1)(H(k−1), Ã), k = 1, . . . ,K, H(0) = Norm(H[l]),

H[l+1] = Ĥ+ MLP(Norm(Ĥ)), Ĥ = H(0) +H(K).
(8)

3.3 TIME AND CONTEXT NODES FOR PATCH-NODE GRAPHS
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Figure 4: Feature diversity across DiG layers for
DiGparallel blocks. The plot shows how feature di-
versity evolves after the model converges. A sim-
ilar trend is observed for the DiGmix blocks.

A notable decline in feature quality was ob-
served during initial experimentation with DiG
blocks when a fixed number of hops was ap-
plied. This degradation likely resulted from the
over-smoothing effect (Oono & Suzuki, 2020;
Cai & Wang, 2020; Alon & Yahav, 2020)—a
common issue in GNNs. This phenomenon di-
minishes the model’s capacity to distinguish be-
tween distinct features, thereby impairing the
quality of image generation.

To evaluate the impact of over-smoothing on
feature diversity, we measured feature diversity
across layers using the metric ∥H − 1h⋆T ∥,
where h⋆ = argminh⋆ ∥H − 1h⋆T ∥ (Dong
et al., 2021; Han et al., 2022). As shown in
Figure 4, our results indicated a pronounced re-
duction in feature diversity across DiG blocks,
particularly when time vt ∈ R1×d or context
vc ∈ R1×d were added Hadd = H + vt +
vc; Hadd ∈ Rn×d or concatenated Hconcat = [H,vt,vc] ; Hconcat ∈ Rn×(3d) with the node
features H without further refinement. This approach often worsened the problem, leading to a
further decline in image quality.

To address this challenge, an alternative strategy was adopted, where the time and context
were treated as special nodes fully connected to all other nodes in the graph Hfully-connected =

[H;vt;vc] ; Hfully-connected ∈ R(n+2)×d , rather than simply being added or concatenated. This
fully connected configuration significantly enhanced feature diversity. The time node embedding
and context embedding functioned similarly to virtual nodes in GNNs (Gilmer et al., 2017), de-
signed to facilitate long-range information propagation. Acting as hubs, these special nodes enabled
efficient communication across distant parts of the graph, mitigating the oversmoothing effect. By
maintaining connectivity with all nodes, these special nodes ensured the preservation of critical
information flow throughout the graph, ultimately sustaining feature diversity and improving the
quality of image generation.

4 EXPERIMENTAL RESULTS

We investigate two architectural variants for DiG: DiGparallel, which processes each resolution inde-
pendently as separate graphs, and DiGmix, which operates on a multiresolution graph where nodes
across scales are connected. One of the differences between these architectures lies in how they han-
dle multiscale information. In DiGparallel, each resolution is treated in isolation, with a separate GNN
applied at each scale, followed by a feature concatenation step to integrate information from all res-
olutions. On the other hand, DiGmix allows information to flow between scales through hierarchical
connections, directly linking fine- and coarse-grained representations.

For the remainder of the evaluation, we include both DiGparallel and DiGmix architectures in our ex-
periments. We begin by assessing DiG’s performance at multiple image resolutions, highlighting

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: FID-10K comparison of unconditional image generation on CIFAR10. The table highlights
the performance across various patch sizes, along with the corresponding number of parameters and
FLOPs (in TFlops and GFlops) for each model.

Model Patch Size #Params (M) Flops FID ↓
DiGparallel {2} 39.13 1.2T 9.92
DiGparallel {2, 4} 58.05 1.72T 6.88
DiGparallel {2, 4, 8} 65.14 1.85T 6.92

DiGmix {2} 37.48 1.53T 12.72
DiGmix {2, 4} 37.59 1.61T 11.23
DiGmix {2, 4, 8} 37.99 1.63T 10.44

U-ViT 2 44.26 1.45T 6.07
U-ViT 4 44.19 0.37T 16.58
U-ViT 8 44.32 96.41G 41.72

DiT 2 57.78 1.24T 8.23
DiT 4 57.72 0.31T 18.23
DiT 8 57.84 80.35G 37.23

its capacity to capture information at different scales. This is followed by a comprehensive evalua-
tion of DiG on both unconditional and class-conditional image generation tasks. A summary of the
main experimental setup is provided below, with further details, including network architectures and
sampling hyperparameters, available in Appendix C.

4.1 EXPERIMENTAL SETUP

Both conditional and unconditional image generation tasks were evaluated on the CIFAR10 dataset
Krizhevsky et al. (2009), which consists of 50K images at a resolution of 32x32 pixels across 10
distinct classes. Additionally, the SVHN dataset (Netzer et al., 2011), containing 73K images of
resolution 32x32, was used for unconditional image generation. Experiments were also conducted
on the ImageNet dataset (Deng et al., 2009), with images at a 64x64 resolution, utilizing 1, 287, 167
images across 1,000 labels.

The AdamW optimizer (Loshchilov et al., 2017) was utilized with a weight decay of 0.3 and a
learning rate of 2e-4 and 3e-4. All models were trained for an equal number of iterations while
maintaining a relatively consistent number of parameters across experiments. For image sampling,
the Euler-Maruyama SDE (Song et al., 2021b) or DPM-Solver (Lu et al., 2022) was used, with
the same number of steps applied to ensure fair comparison. Both DiG architectures are compared
against U-ViT1 (Bao et al., 2023) and DiT2,3 (Peebles & Xie, 2023).

4.2 IMPACT OF MULTI-SCALE RESOLUTIONS

We begin by assessing the impact of incorporating multi-scale image resolutions in graph-based
diffusion models. It is well-established that diffusion transformers tend to experience a decline in
image quality as patch sizes increase (Bao et al., 2023). Table 1 compares DiGparallel and DiGmix
across various patch sizes. See Appendix B for a comparison of different GNN layers on CIFAR10
and Appendix D for additional results.

Unlike diffusion transformers, which typically exhibit worse FID scores with larger patches, DiG
architectures maintain competitive FID scores across different patch sizes, albeit with higher param-
eter and FLOP costs. Notably, DiGparallel achieves a strong FID-10K score at patch sizes {2, 4} with
6.88, comparable to U-ViT at 6.07. Representing larger patches allows the model to capture global
information, crucial for modeling broader spatial dependencies in image generation.

1https://github.com/baofff/U-ViT/tree/main
2https://github.com/facebookresearch/DiT
3A fixed covariance was used in our experiments, while DiT learns both mean and covariance. The decoder

block was modified for a fair comparison, which resulted in some performance degradation.
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Table 2: Models across different datasets. FID-50K scores, FLOPs, and parameter counts are pre-
sented for each model. Complete model specifications and further details can be found in Ap-
pendix C.

Model #Params Flops FID ↓ Model #Params Flops FID ↓
Unconditional CIFAR-10 Conditional CIFAR-10

U-ViT/2 44.26M 1.45T 6.05 U-ViT/2 44.26M 1.46T 2.95
DiT/2 57.78M 1.24T 5.76 DiT/2 57.78M 1.24T 4.69
DiGparallel/{2, 4} 58.05M 1.72T 6.16 DiGparallel/{2, 4} 58.06M 1.73T 4.56
DiGmix/{2, 4} 37.59M 1.61T 9.47 DiGmix/{2, 4} 40.6M 1.62T 6.47

Model #Params Flops FID ↓ Model #Params Flops FID ↓
SVHN ImageNet 64x64

U-ViT/2 28.68M 0.94T 2.47 U-ViT/4 130.94M 4.29T 9.17
DiT/2 37.04M 0.79T 3.93 DiT/4 173.06M 3.72T 17.36
DiGparallel/{2, 4} 37.57M 1.11T 2.96 DiGparallel/{4, 8} 125.88M 3.75T 17.00
DiGmix/{2, 4, 8} 24.74M 1.05T 3.22 DiGmix/{4, 8} 111.05M 4.53T 22.00

Empirical results demonstrated that DiGparallel consistently outperformed DiGmix in terms of FID
score for image quality. This suggests that processing each resolution separately before combining
them enables more detailed and distinct feature extraction at each scale. However, this performance
improvement comes at the expense of increased computational cost.

In DiGparallel, after processing each resolution, the features from all scales are concatenated across
multiple layers Ĥ (Eq. 5). This concatenation step requires the model to manage and process a high-
dimensional feature space, particularly when multiple resolutions are used, as the dimensionality of
the concatenated features scales with d × |P|. The concatenated features are subsequently passed
through an MLP for transformation, further increasing computational overhead. The complexity
grows linearly with the number of resolutions, making DiGparallel computationally more expensive,
especially as the number of layers L increases. To address this computational burden, we experi-
mented with summing the features from different resolutions rather than concatenating them. While
this alternative approach would reduce the dimensionality and computational load, it led to a notice-
able degradation in image quality (also see Section 3.3).

4.3 IMAGE GENERATION RESULTS

Table 2 presents the results for image generation, where DiGparallel demonstrates competitive per-
formance across multiple datasets, particularly in balancing image quality and capturing multiscale
features. More details on the model architecture and training settings are provided in Appendix C.

Although diffusion transformer-based models like U-ViT and DiT generally perform well in terms
of FID-50K, DiGparallel maintains robust performance, especially at patch sizes {2,4}, while offering
additional flexibility through its multiscale graph-based architecture. This highlights the effective-
ness of the DiG approach in handling different scales while retaining strong generative capabilities.

This demonstrates the potential of a graph-based architecture to efficiently capture multiscale fea-
tures while maintaining competitive performance in image generation tasks. DiGmix is parameter
efficient and offers a more computationally lightweight alternative to DiGparallel, albeit with a slight
performance trade-off. Examples of generated images for each dataset are shown in Figure 5.

5 CONCLUSIONS

In conclusion, this paper presents a novel exploration of graph-based architectures for image gen-
eration within diffusion models, challenging the dominance of transformer-based approaches. We
propose DiG, a model that introduces two variants: DiGparallel, which processes each resolution inde-
pendently, and DiGmix, which captures multiscale information by connecting nodes across different
scales. Our experiments demonstrate that GNNs can effectively replace transformers for image gen-
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(a) Unconditional CIFAR10 (32x32) (b) Conditional CIFAR10 (32x32)

(c) SVHN (32x32) (d) Imagenet (64x64)

Figure 5: Sample images generated across multiple datasets.

eration, providing a competitive alternative while maintaining high-quality outputs across multiple
datasets. The promising results of our DiG models suggest that graph-based methods offer signif-
icant potential for future work in visual generative modeling. We hope this study will inspire the
research community to further explore GNN-based architectures for image generation and scaling
experiments to larger models.
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A ADJACENCY MATRIX REPRESENTATION

A.1 BLOCK MATRIX FOR DIGPARALLEL

In DiGparallel, the augmented adjacency matrix Ãs1 includes the grid-structured patch adjacency
matrix As1 , along with time and context nodes fully connected to all patches.

Ãs1 =

As1 at ac
a⊤t 0 0
a⊤c 0 0


where As1 ∈ Rn1×n1 represents the grid connections between patches. at ∈ Rn1 is the connection
of the time node with all patch nodes. ac ∈ Rn1 is the connection of the context node with all patch
nodes.

A.1.1 POOLING MASK Csi

For any coarser scale si, the pooling matrix Csi of size ñi × ñ1 can be written as:

Csi =



c11 c12 · · · c1n1
0 0

c21 c22 · · · c2n1
0 0

...
...

. . .
... 0 0

cni1 cni2 · · · cnin1
0 0

0 0 · · · 0 1 0
0 0 · · · 0 0 1


where the submatrix cij corresponds to pooling the patch nodes from the finer scale s1 into the
coarser scale si, reducing the number of nodes. The last two rows preserve the time node and the
context node.

A.2 BLOCK MATRIX FOR DIGMIX

In DiGmix, the adjacency matrix Ã includes connections within each resolution (intra-resolution)
and between resolutions (inter-resolution), along with time and context nodes.

Ã =



As1 As1,s2 . . . As1,sN at ac
A⊤

s1,s2 As2 . . . As2,sN at ac
...

...
. . .

...
...

...
A⊤

s1,sN A⊤
s2,sN . . . AsN at ac

a⊤t a⊤t . . . a⊤t 0 0
a⊤c a⊤c . . . a⊤c 0 0


where Asi ∈ Rni×ni represents intra-resolution connections for scale si. Asi,sj ∈ Rni×nj rep-
resents inter-resolution connections between scale si and sj . at ∈ R

∑
i ni is the connection of the

time node with all patch nodes. ac ∈ R
∑

i ni is the connection of the context node with all patch
nodes.

B IMPACT OF TYPE OF GNN LAYER

The impact of different GNN layer types was evaluated in this study. Specifically, GCN (Kipf &
Welling, 2016), GraphSAGE (Hamilton et al., 2017), and GIN (Xu et al., 2018) were tested, as
shown in Table 3. CIFAR10 was used in the unconditioned setting to compare the FID-10K scores
across various GNN layers. In all cases, two hops K = 2 were selected, as additional hops did not
yield performance improvements. GraphSage demonstrated better performance and was selected for
the remaining experiments.
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Table 3: FID-10K scores for different GNN layers on unconditional CIFAR10 with patch sizes
P = {2, 4}

GCN GIN GraphSAGE

DiGparallel 8.33 9.23 6.88
DiGmix 9.93 11.99 8.23

Table 4: Experimental setup for DiG, DiT, and U-ViT architectures for results presented in the main
paper.

Dataset CIFAR10 SVHN ImageNet 64×64

DiG

K-hops 2 2 1
GNN Convolution GraphSAGE GraphSAGE GraphSAGE

U-ViT

#Heads 8 8 12

DiT

#Heads 8 8 12
Learn Sigma False False False

Embedding dimension 512 448 768
Depth 12 10 16

Batch size 128 256 512
Training iterations 500K 400K 300K
Warm-up steps 2.5K 2.5K 5K

Optimizer AdamW AdamW AdamW
Learning rate 2e-4 2e-4 3e-4
Weight decay 0.03 0.03 0.03
Betas (0.99, 0.999) (0.99, 0.99) (0.99, 0.99)

Noise schedule VP VP VP

Sampler Euler-Maruyama Euler-Maruyama DPM-Solver
Sampling steps 1K 1K 50

C NETWORKS DETAILS

The DiG, DiT, and U-ViT architectures were trained as part of the experimental setup for the results
presented in the main paper. Table 4 summarizes the experimental setup for DiGparallel, DiGmix, DiT
and U-ViT across different datasets. “VP” represents the continuous-time variance preserving noise
schedule (Song et al., 2021b).

Teh Euler-Maruyama (Song et al., 2021b) sampler was used for CIFAR10 and SVHN, while DPM-
Solver (Lu et al., 2022) was employed for ImageNet 64×64.

Also see Appendix B for a comparison of different GNN layers on CIFAR10.

D ADDITIONAL COMPARISON RESULTS

Figure 6 shows the loss and FID curves for the best results of unconditional CIFAR10 shown in
Table 1.
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Figure 6: Loss and FID-10K curves for unconditional CIFAR10.
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