
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FROM PATCHES TO GRAPHS:
TOWARDS IMAGE DIFFUSION MODELS WITH GNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have achieved remarkable success in high-quality image gen-
eration, typically using convolutional neural networks (CNNs) or Vision Trans-
formers (ViTs) as backbone architectures. However, CNNs may struggle with
capturing long-range dependencies, while ViTs can be computationally intensive
due to their attention mechanisms. We propose the Diffusion Image GNN (DiG),
a novel architecture that leverages graph-based modeling within diffusion models.
By representing image patches as nodes in a graph and connecting them based on
spatial relationships, DiG efficiently captures both local and global dependencies
and naturally handles multi-scale features. Empirical results demonstrate that DiG
achieves competitive Frechet Inception Distance (FID) scores compared to state-
of-the-art methods. To our knowledge, this is the first application of graph neural
networks as a backbone within diffusion models for image generation, opening
new avenues for research in generative modeling.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Nichol &
Dhariwal, 2021; Croitoru et al., 2023) have emerged as a powerful class of generative models,
achieving state-of-the-art performance in high-quality image generation (Dhariwal & Nichol, 2021;
Rombach et al., 2022). They have been successfully applied to a diverse range of tasks, including
image generation (Choi et al., 2021; Saharia et al., 2022b; Rombach et al., 2022), text-to-image
synthesis (Jiang et al., 2022; Ramesh et al., 2022), video generation (Ho et al., 2022a;b; Blattmann
et al., 2023; Xing et al., 2023), among others (Jing et al., 2022a; Wolleb et al., 2022).

Alongside advancements in the mathematical framework of diffusion models (Song et al., 2020;
2021b; Watson et al., 2022; Bao et al., 2022; Dockhorn et al., 2021; Kingma et al., 2021; Song et al.,
2021a; Vahdat et al., 2021; Lu et al., 2022), the choice of backbone architectures plays a pivotal
role in determining their overall performance. Historically, Convolutional Neural Networks (CNNs)
(LeCun et al., 1998; He et al., 2016), such as U-Net (Ronneberger et al., 2015), have served as the
de facto standard architecture in modern computer vision systems. However, recent developments
have seen the introduction of Vision Transformers (ViT) (Dosovitskiy et al., 2021), which utilize
attention mechanisms for visual tasks. Building on this architecture, new models (Hatamizadeh
et al., 2023; Peebles & Xie, 2023; Bao et al., 2023) have emerged that adapt the transformer-based
design (Vaswani, 2017) for diffusion models, demonstrating competitive performance in generative
tasks. Following these advances, State Space Models (SSM) (Gu et al., 2021) have shown strong
capabilities in handling long-sequences, contributing to a new class of diffusion models that capture
fine-grained representations of images (Yan et al., 2024). These backbone architectures process
input data in fundamentally different ways. CNNs operate at the pixel level, applying convolutional
kernels across a grid of pixels to capture local features. In contrast, Transformers and SSMs process
images by treating patches as sequential tokens, where each patch represents a portion of the image.
By computing attention across this sequence of patches, Transformers fully connect them, allowing
the model to capture global dependencies across the image.

An alternative approach involves representing images as compositions of their parts within a flex-
ible grid structure. Graph-based models (Kipf & Welling, 2016; Wu et al., 2020) are particularly
well-suited for this representation, as they naturally facilitate the modeling of complex objects by
capturing the relationships between different parts. Unlike Transformers, which connect all patches

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

through attention mechanisms – creating a fully connected graph – graph-based models can naturally
handle grid-like data and connect different scales of the image. By treating image components as
nodes and establishing edges between them, graphs allow for efficient computation of relationships
and can capture complex patterns inherent in images.

In this work, we propose a novel backbone architecture called the Diffusion Image GNN (DiG),
which leverages graph-based modeling within image diffusion models. DiG processes images by
treating a patch as a node, and it constructs a structured graph by leveraging the spatial grid to capture
spatial locality of node features, and connecting multi-scale patch nodes to efficiently propagate
global information. Our contributions are summarized as follows:

• We introduce DiG, a novel graph-based network backbone for diffusion models that pro-
cesses images as graphs, capturing both local and global dependencies. We further propose
two strategies to handle multi-scale features, which connects different levels of granularity
within the graph nodes representing image patches.

• We provide empirical evidence showing that DiG achieves competitive performance in FID
scores compared to popular Transformer-based approaches, highlighting the effectiveness
of graph-based representations in diffusion models.

To the best of our knowledge, this is the first work to apply graph neural networks (GNNs) as a
backbone for image diffusion models with competitive performance, and we hope our work will
inspire the community to further explore GNN-based backbones.

2 BACKGROUND & RELATED WORK

2.1 DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2021b) are a class of
generative models that synthesize new data by progressively adding noise to existing data and then
reversing this process to recover samples from the original data distribution. This approach involves
two key stages: a forward noising process and a reverse denoising process.

In the forward process, an original data point x0 is gradually corrupted by adding noise at each
time step, resulting in a sequence of increasingly noisy data points x1,x2, . . . ,xT . This process is
modeled as a Markov chain, where each state depends only on the immediate previous state. The
forward process is defined by the joint distribution q(x1:T | x0) =

∏T
t=1 q(xt | xt−1), where

q(xt | xt−1) represents the transition probability at each time step t. At each step, Gaussian noise
is added according to q(xt | xt−1) = N

(
xt;
√
αt xt−1, βtI

)
, with αt and βt being parameters that

control the noise schedule and satisfying αt + βt = 1.

In the reverse process, the goal is to invert the forward diffusion by iteratively denoising xT back
to x0. This reverse process is also modeled as a Markov chain with learned Gaussian transitions
pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) , where µθ(xt, t) and Σθ(xt, t) are the mean
and covariance predicted by a neural network parameterized by θ. Rather than directly learn-
ing µθ(xt, t) (Bao et al., 2022), diffusion models often reformulate the problem as a noise pre-
diction task. By leveraging the property that any xt can be expressed as a function of x0 and
added noise ϵt as xt =

√
ᾱt x0 +

√
1− ᾱt ϵt, where ᾱt =

∏t
s=1 αs and ϵt ∼ N (0, I) , the

model can be trained to predict ϵt directly. The training objective then becomes minimizing the
mean squared error between the predicted noise ϵθ(xt, t) and the true noise ϵt , formulated as
Lsimple(θ) = Et,x0,ϵt

[
∥ϵt − ϵθ(xt, t)∥22

]
. This loss function is feasible with a fixed covariance

(Nichol & Dhariwal, 2021) and is evaluated by sampling a random time step t, generating xt using
the known x0 and ϵt, and training the network to predict ϵt.

Diffusion models can be extended to conditional generation tasks (Dhariwal & Nichol, 2021), where
the objective is to generate data conditioned on additional information c , such as class labels. In
this scenario, the noise prediction network incorporates the conditioning information, modifying the
training objective to Lcond(θ) = Et,x0,c,ϵt

[
∥ϵt − ϵθ(xt, t, c)∥22

]
.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 ARCHITECTURES FOR IMAGE DIFFUSION MODELS

Convolutional Neural Networks (CNNs) (LeCun et al., 1998; He et al., 2016) have long been the
cornerstone of computer vision, applied to a wide array of visual tasks (Krizhevsky et al., 2012;
Ren et al., 2016; Long et al., 2015). Specifically, for image generation, U-Net (Ronneberger et al.,
2015) has been extensively used in diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021;
Nichol & Dhariwal, 2021; Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022a). U-Net
features a symmetric encoder-decoder architecture designed for pixel-wise prediction. It utilizes
skip connections (He et al., 2016) to transfer feature maps from the encoder to the corresponding
decoder layers, preserving spatial information that might be lost during down-sampling.

Recently, Transformers based on Attention (Vaswani, 2017) have begun to supplant domain-specific
architectures due to their scalability and ability to model long-range dependencies (Kaplan et al.,
2020; Henighan et al., 2020). This shift has led to the introduction of Vision Transformers (ViT)
(Dosovitskiy et al., 2021) as a common architecture for visual tasks (Chen et al., 2021; Lee et al.,
2021; Strudel et al., 2021). In this regard, diffusion models built purely with Transformers have
shown remarkable performance in image generation. For instance, U-ViT (Bao et al., 2023) adopts
a similar architecture to U-Net but replaces CNN layers with Attention layers. DiT (Peebles & Xie,
2023) follows a comparable approach but incorporates techniques from ResNets (He et al., 2016;
Goyal et al., 2019) by zero-initializing a selected set of parameters and introducing dimension-
wise scaling factors. DiffiT (Hatamizadeh et al., 2023) introduces a time-dependent self-attention
mechanism to jointly learn spatial and temporal dependencies. Other works enhance U-Net by
integrating self-attention in the low-resolution blocks and building a hybrid architecture, combining
CNNs and Transformers (Ho et al., 2020; Nichol & Dhariwal, 2021; Hoogeboom et al., 2023).

DiffuSSM (Yan et al., 2024) attempts to replace attention mechanisms with a more scalable state
space model backbone (Gu et al., 2021), generating high-quality images while being FLOP-efficient.
This approach opens avenues for applications that require modeling long-range dependencies with-
out the computational overhead associated with attention mechanisms.

2.3 PATCHIFICATION FOR IMAGE PROCESSING

Patchification is the key pre-processing step in image diffusion transformers (Bao et al., 2023; Pee-
bles & Xie, 2023; Hatamizadeh et al., 2023) and DiffuSSM (Yan et al., 2024), which transforms an
image input to a set of tokens. Here, a raw input stands for a noisy image xt ∈ Rh×w×c′ at time step
t, where h and w denote the height and width with c′ channels. Then patchification involves parti-
tioning the image into non-overlapping patches of size s × s, resulting in n = h×w

s2 patches. Each
patch is linearly embedded to form a new representation of d embedding dimension. The granularity
of the patch size s significantly impacts quality and computational efficiency due to the quadratic
complexity of attention mechanisms (Bao et al., 2023). The attention mechanism computes rela-
tionships between all pairs of tokens, effectively modeling the input as a fully connected graph.
While this captures global dependencies, it leads to substantial computational overhead. Towards
mitigating this, FlexAttention (Li et al., 2024) conducts patchification at both lower and higher res-
olutions, effectively reduces the number of active tokens. Such a method has yet to be tested on
image diffusion models to the best of our knowledge, leaving rooms for future research.

2.4 GRAPH-BASED MODELS FOR IMAGES

The applications of Graph Convolutional Networks (GCNs) (Henaff et al., 2015; Kipf & Welling,
2016; Defferrard et al., 2016) in computer vision (Jing et al., 2022b) mainly include point cloud
classification (Landrieu & Simonovsky, 2018), scene graph generation (Xu et al., 2017), and action
recognition (Wang et al., 2019). These applications leverage naturally constructed graphs to model
relationships inherent in the data. For more general applications, the Vision GNN (ViG) (Han et al.,
2022) processes image data directly by representing images as graphs, where nodes correspond
to image patches, and edges are constructed by connecting nodes with similar visual tokens using
k-nearest neighbors.

However, in the context of diffusion models for image generation, there has not yet been a backbone
architecture that leverages graph-based modeling. Note that ViG is not directly applicable in diffu-
sion model setting for two main reasons. First, noise injection in the forward process can change the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Im
age G

N
N

 Block

Im
age G

N
N

 Block

Im
age G

N
N

 Block

C

N
orm

Linear + Reshape

(a) Noised Image
(b) Multiscale

Graph Extractor
(c) Diffusion Image GNN

(d) Reconstruct image
& predict noise

c

t

Figure 1: The process of multiscale graph-based denoising: (a) Noised Image: The original image
is corrupted by noise ϵt; (b) Multiscale Graph Extractor: The image is represented as a multiscale
graph where each node corresponds to a patch of the image, and two special nodes — time t and
context c — are fully connected to the entire grid.; (c) Image GNN: DiG blocks are applied to the
multiscale graph, capturing features at different scales; (d) Reconstruction and Noise Prediction:
The processed graph is used to reconstruct the original image and predict the noise added.

results of the nearest-neighbor, leading to a graph connectivity pattern that can change significantly
at different time step t. Second, at the beginning of the reverse process, which starts from draw-
ing random noise pixels, the extracted patch tokens are essentially i.i.d., meaning the constructed
graph does not reflect meaningful visual structure. These challenges motivates our exploration of
improved graph representation learning for image generation tasks within diffusion models.

3 DIFFUSION IMAGE GNN (DIG)

We propose a novel network backbone architecture for diffusion models, Diffusion Image GNN
(DiG), that combines the strengths of graph-based models with diffusion processes, without relying
on Transformers. It operates on a multi-scale grid of patches, enabling the model to capture both
local and global dependencies. By incorporating patches of different sizes, the model can focus
on localized context by primarily attending to neighboring patches. At the same time, it integrates
broader spatial information from larger regions, enabling the capture of more complex patterns
across the image. This hierarchical patching strategy enhances performance by balancing detailed
local features with global spatial understanding, making it particularly effective for image generation
tasks in diffusion models.

DiG is summarized in Figure 1. The process begins with a noised image xt corrupted by noise ϵt
(Fig. 1a). The noised image xt is then represented as a grid of interconnected patches, with time t
and context c treated as special nodes fully connected to the grid (Fig. 1b). Scales of an image are
constructed using varying patch sizes, represented as an ordered set P = {s1 < s2 < · · · < sN},
where the image size remains fixed, but the graph size changes depending on the selected patch size
si. We introduce two new architectures of DiG, both operating on a grid of connected patches: (1)
DiGparallel, which applies a distinct GNN to each scale of the image to capture unique granularities,
and (2) DiGmix, which integrates all scales into a unified multiscale graph processed by a single GNN
with hierarchical connections between different patch sizes. Both types of DiG facilitate efficient
feature learning across multiple resolutions, by using GNN layers for processing graph-based image
patches, LayerNorm (Ba et al., 2016; Fey & Lenssen, 2019) for normalization, MLPs for feature
transformation, and skip connections to retain original feature information and improve gradient
flow (Fig. 1c). The network is optimized to predict the noise ϵt added to the image (Fig. 1d) using
objective Lsimple(θ) or Lcond(θ), where θ collects all trainable parameters in DiG.

Within a DiG block, each GNN layer is designed to handle feature aggregation and updates using
the aggregation function ϕ and the update function γ, both parameterized by learnable weights Wagg

and Wupdate, respectively. For a given graph G = (A,H(k−1)), where A represents the adjacency
matrix and H(k−1) the node features, each GNN processes feature propagation and transformation
across the graph over K hops.

H(k) = GNN(k−1)(A,H(k−1)) = γ(k)
(
ϕ(k)

(
A,H(k−1),Wagg

)
,Wupdate

)
, k = 1, ...,K. (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

G
N

N
 Layer

N
orm

N
orm

M
LP

Patch Pooling

Graph processing

t

c

Figure 2: Overview of the (left) graph construction, where an image is interpreted as a grid-
structured graph, and (right) the DiGparallel block, used to capture different image resolutions and
update node features progressively.

To incorporate positional information into the node features, we add a 1-dimensional learnable posi-
tional embedding e, following the design of transformers (Vaswani, 2017; Dosovitskiy et al., 2021).
Each initial node feature is updated as H(0) ← H(0)+e. This ensures that the positional information
of each node is considered during processing.

We now introduce the two types of DiG blocks (shown as cyan blocks in Fig. 1c): DiGparallel and
DiGmix. Both methods share a common pre-processing stage that transforms the input image into
a graph representation, involving the construction of an initial adjacency matrix A and subsequent
augmentation by adding time and context nodes.

First, node features are extracted from the noised image patches xt through a process of patchifica-
tion. The image is divided into patches, where each patch is treated as a node in a grid-structured
graph. For both DiGparallel and DiGmix, the adjacency matrix Asi ∈ Rni×ni is constructed at each
corresponding patch scale si, where ni =

h×w
s2i

. This matrix Asi encodes the connections between
patches in a grid structure for each resolution si.

Next, we introduce two special nodes: one for time t and one for context c. The time node is
encoded using a sinusoidal timestep embedding, while the context node (if provided) is projected
using a linear embedding. These special nodes are fully connected to the grid of patch nodes whose
adjacency matrix is A. This augmentation results in an augmented adjacency matrix Ã ∈ Rñ×ñ,
detailed below and in Appendix A for the full block matrix description. The augmented graph now
has ñ nodes. The corresponding node features are represented as H ∈ Rñ×d, where d is the feature
dimension. This setup ensures that both the parallel and mix methods can process the entire graph
structure, including patch nodes, time, and context nodes, in subsequent steps.

3.1 DIGPARALLEL : INDEPENDENT GRAPH PROCESSING ACROSS IMAGE SCALES

DiGparallel uses a series of GNNs to independently process the image at different scales, capturing
unique features at each scale. The node representations at layer l are computed as (see Figure 2):

H[l+1]
s1 = DiG[l]

parallel(Ãs1 ,H
[l]
s1 , {Csk}sk>s1). (2)

The augmented adjacency matrix Ãs1 is formed by adding the time and context nodes to the grid
represented by the original adjacency matrix As1 , and these two nodes are fully connected to the
grid. Therefore Ãs1 ∈ Rñ1×ñ1 , where ñ1 = n1 + 2 when training conditional generative models,
else ñ1 = n1 + 1. This matrix encodes the relationships between the patch nodes and the special
nodes (see Figure 2 left). See Appendix A.1 for the block matrix structure.

To create a coarser graph representation, a pooling mask matrix Csi ∈ Rñi×ñ1 is constructed to
transition from the finest patch size s1 to a larger patch size si. This pooling operation downsamples
the number of nodes, resulting in a coarser graph that captures larger-scale features of the image (see
Figure 2 right). The pooling operator POOL(Ãs1 , H̃s1 ,Csi), where H̃s1 = Norm(H

[l]
s1), returns

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

G
N

N
 Block

N
orm

N
orm

M
LP+ +

Graph processing

tc

Figure 3: The DiGmix block takes as input a graph G representing grid patches at various scales
from P (left). The block processes the graph to produce node features at multiple resolution scales
within P (right).

the coarser node features H̃si ∈ Rñi×d and adjacency matrix Ãsi ∈ Rñi×ñi , representing the image
at a larger scale for si > s1:

(H̃si , Ãsi) = POOL(Ãs1 , H̃s1 ,Csi) : H̃si = CsiH̃s1 , Ãsi = CsiÃs1C
⊤
si . (3)

Using the pooling masks {Csi}si>s1 , multiple graphs Gsi = (H̃si , Ãsi) are constructed where
each graph corresponds to the image at a different scale, with Gs1 representing the patch image at
the lowest scale. Each graph is processed by a GNN layer for up to K hops to update the node
features (also see Eq. 1):

H̃(k)
si = GNN(k−1)

si (H̃(k−1)
si , Ãsi), k = 1, ...,K, H̃(0)

si = H̃si . (4)

Node features from different scales are combined using
⊕

, representing a concatenation operation:

Ĥ = MLP
([

H̃(K)
s1 ,H↑

s2 , . . . ,H
↑
sN

])
(5)

where H↑
si = C⊤

siH̃
(K)
si , H↑

si ∈ Rñ1×d for si > s1 is used to upsample the node features from
scale si to the finest scale s1. The resulting concatenated feature matrix Ĥ ∈ Rñ1×d is then obtained
by using an MLP to update the node features, integrating information from multiple resolutions into
a unified feature representation. After combining the features, a normalization step using Layer-
Norm and an additional MLP are applied, with skip connections added between layers to retain the
original feature information , yielding H

[l+1]
s1 :

H[l+1]
s1 = H[l]

s1 + MLP(Norm(Ĥ)). (6)

This results in a unified multiscale graph representation, enabling the stacking of multiple DiGparallel
blocks to progressively update the node representation at each layer l.

3.2 DIGMIX : INTEGRATED GRAPH PROCESSING ACROSS MULTIPLE RESOLUTIONS

DiGmix, visualized in Figure 3, uses a single GNN module to efficiently learn from a graph that is
built using multiple resolutions of the image. At each layer l, the node features are updated as:

H[l+1] = DiG[l]
mix(H

[l], Ã). (7)

The unified graph G = (H, Ã), with Ã ∈ Rñ×ñ and H ∈ Rñ×d, has ñ =
∑

i ni + 2 nodes:
patch nodes across all scales s1, s2, . . . , sN extracted from xt, as well as the two special nodes
(time and context) used for conditional image generation (Figure 3 left). The augmented adja-
cency matrix Ã ∈ Rñ×ñ is constructed using multiscale adjacency matrices across resolutions,
where each scale si has its own adjacency matrix Asi of grid connectivity structure. Ã captures
both intra-resolution connections within each scale and inter-resolution connections between nodes
across different scales. Specifically, nodes at finer scales are connected to the corresponding regions
at coarser scales, forming a hierarchical structure. Again the two special nodes are fully connected
to other patch nodes. The full block matrix representation of Ã is provided in Appendix A.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The DiGmix block, as shown in Figure 3 (right) and outlined in Eq. 8, begins by normalizing the
node features H(0). These features are then iteratively updated through the GNN layers, utilizing the
augmented adjacency matrix Ã, for up to K hops. After the final iteration, the output features H(K)

are combined with the original H(0) via a skip connection. The resulting features are normalized
once more and passed through an MLP to yield the final output H[l+1].

H(k) = GNN(k−1)(H(k−1), Ã), k = 1, . . . ,K, H(0) = Norm(H[l]),

H[l+1] = Ĥ+ MLP(Norm(Ĥ)), Ĥ = H(0) +H(K).
(8)

3.3 TIME AND CONTEXT NODES FOR PATCH-NODE GRAPHS

0 2 4 6 8 10 12 14 16
layer

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

fe
at

ur
e

di
ve

rs
ity

DiGparallel fully-connected
DiGparallel addition
DiGparallel concatenation

Figure 4: Feature diversity across DiG layers for
DiGparallel blocks. The plot shows how feature di-
versity evolves after the model converges. A sim-
ilar trend is observed for the DiGmix blocks.

A notable decline in feature quality was ob-
served during initial experimentation with DiG
blocks when a fixed number of hops was ap-
plied. This degradation likely resulted from the
over-smoothing effect (Oono & Suzuki, 2020;
Cai & Wang, 2020; Alon & Yahav, 2020)—a
common issue in GNNs. This phenomenon di-
minishes the model’s capacity to distinguish be-
tween distinct features, thereby impairing the
quality of image generation.

To evaluate the impact of over-smoothing on
feature diversity, we measured feature diversity
across layers using the metric ∥H − 1h⋆T ∥,
where h⋆ = argminh⋆ ∥H − 1h⋆T ∥ (Dong
et al., 2021; Han et al., 2022). As shown in
Figure 4, our results indicated a pronounced re-
duction in feature diversity across DiG blocks,
particularly when time vt ∈ R1×d or context
vc ∈ R1×d were added Hadd = H + vt +
vc; Hadd ∈ Rn×d or concatenated Hconcat = [H,vt,vc] ; Hconcat ∈ Rn×(3d) with the node
features H without further refinement. This approach often worsened the problem, leading to a
further decline in image quality.

To address this challenge, an alternative strategy was adopted, where the time and context
were treated as special nodes fully connected to all other nodes in the graph Hfully-connected =

[H;vt;vc] ; Hfully-connected ∈ R(n+2)×d , rather than simply being added or concatenated. This
fully connected configuration significantly enhanced feature diversity. The time node embedding
and context embedding functioned similarly to virtual nodes in GNNs (Gilmer et al., 2017), de-
signed to facilitate long-range information propagation. Acting as hubs, these special nodes enabled
efficient communication across distant parts of the graph, mitigating the oversmoothing effect. By
maintaining connectivity with all nodes, these special nodes ensured the preservation of critical
information flow throughout the graph, ultimately sustaining feature diversity and improving the
quality of image generation.

4 EXPERIMENTAL RESULTS

We investigate two architectural variants for DiG: DiGparallel, which processes each resolution inde-
pendently as separate graphs, and DiGmix, which operates on a multiresolution graph where nodes
across scales are connected. One of the differences between these architectures lies in how they han-
dle multiscale information. In DiGparallel, each resolution is treated in isolation, with a separate GNN
applied at each scale, followed by a feature concatenation step to integrate information from all res-
olutions. On the other hand, DiGmix allows information to flow between scales through hierarchical
connections, directly linking fine- and coarse-grained representations.

For the remainder of the evaluation, we include both DiGparallel and DiGmix architectures in our ex-
periments. We begin by assessing DiG’s performance at multiple image resolutions, highlighting

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: FID-10K comparison of unconditional image generation on CIFAR10. The table highlights
the performance across various patch sizes, along with the corresponding number of parameters and
FLOPs (in TFlops and GFlops) for each model.

Model Patch Size #Params (M) Flops FID ↓
DiGparallel {2} 39.13 1.2T 9.92
DiGparallel {2, 4} 58.05 1.72T 6.88
DiGparallel {2, 4, 8} 65.14 1.85T 6.92

DiGmix {2} 37.48 1.53T 12.72
DiGmix {2, 4} 37.59 1.61T 11.23
DiGmix {2, 4, 8} 37.99 1.63T 10.44

U-ViT 2 44.26 1.45T 6.07
U-ViT 4 44.19 0.37T 16.58
U-ViT 8 44.32 96.41G 41.72

DiT 2 57.78 1.24T 8.23
DiT 4 57.72 0.31T 18.23
DiT 8 57.84 80.35G 37.23

its capacity to capture information at different scales. This is followed by a comprehensive evalua-
tion of DiG on both unconditional and class-conditional image generation tasks. A summary of the
main experimental setup is provided below, with further details, including network architectures and
sampling hyperparameters, available in Appendix C.

4.1 EXPERIMENTAL SETUP

Both conditional and unconditional image generation tasks were evaluated on the CIFAR10 dataset
Krizhevsky et al. (2009), which consists of 50K images at a resolution of 32x32 pixels across 10
distinct classes. Additionally, the SVHN dataset (Netzer et al., 2011), containing 73K images of
resolution 32x32, was used for unconditional image generation. Experiments were also conducted
on the ImageNet dataset (Deng et al., 2009), with images at a 64x64 resolution, utilizing 1, 287, 167
images across 1,000 labels.

The AdamW optimizer (Loshchilov et al., 2017) was utilized with a weight decay of 0.3 and a
learning rate of 2e-4 and 3e-4. All models were trained for an equal number of iterations while
maintaining a relatively consistent number of parameters across experiments. For image sampling,
the Euler-Maruyama SDE (Song et al., 2021b) or DPM-Solver (Lu et al., 2022) was used, with
the same number of steps applied to ensure fair comparison. Both DiG architectures are compared
against U-ViT1 (Bao et al., 2023) and DiT2,3 (Peebles & Xie, 2023).

4.2 IMPACT OF MULTI-SCALE RESOLUTIONS

We begin by assessing the impact of incorporating multi-scale image resolutions in graph-based
diffusion models. It is well-established that diffusion transformers tend to experience a decline in
image quality as patch sizes increase (Bao et al., 2023). Table 1 compares DiGparallel and DiGmix
across various patch sizes. See Appendix B for a comparison of different GNN layers on CIFAR10
and Appendix D for additional results.

Unlike diffusion transformers, which typically exhibit worse FID scores with larger patches, DiG
architectures maintain competitive FID scores across different patch sizes, albeit with higher param-
eter and FLOP costs. Notably, DiGparallel achieves a strong FID-10K score at patch sizes {2, 4} with
6.88, comparable to U-ViT at 6.07. Representing larger patches allows the model to capture global
information, crucial for modeling broader spatial dependencies in image generation.

1https://github.com/baofff/U-ViT/tree/main
2https://github.com/facebookresearch/DiT
3A fixed covariance was used in our experiments, while DiT learns both mean and covariance. The decoder

block was modified for a fair comparison, which resulted in some performance degradation.

8

https://github.com/baofff/U-ViT/tree/main
https://github.com/facebookresearch/DiT

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Models across different datasets. FID-50K scores, FLOPs, and parameter counts are pre-
sented for each model. Complete model specifications and further details can be found in Ap-
pendix C.

Model #Params Flops FID ↓ Model #Params Flops FID ↓
Unconditional CIFAR-10 Conditional CIFAR-10

U-ViT/2 44.26M 1.45T 6.05 U-ViT/2 44.26M 1.46T 2.95
DiT/2 57.78M 1.24T 5.76 DiT/2 57.78M 1.24T 4.69
DiGparallel/{2, 4} 58.05M 1.72T 6.16 DiGparallel/{2, 4} 58.06M 1.73T 4.56
DiGmix/{2, 4} 37.59M 1.61T 9.47 DiGmix/{2, 4} 40.6M 1.62T 6.47

Model #Params Flops FID ↓ Model #Params Flops FID ↓
SVHN ImageNet 64x64

U-ViT/2 28.68M 0.94T 2.47 U-ViT/4 130.94M 4.29T 9.17
DiT/2 37.04M 0.79T 3.93 DiT/4 173.06M 3.72T 17.36
DiGparallel/{2, 4} 37.57M 1.11T 2.96 DiGparallel/{4, 8} 125.88M 3.75T 17.00
DiGmix/{2, 4, 8} 24.74M 1.05T 3.22 DiGmix/{4, 8} 111.05M 4.53T 22.00

Empirical results demonstrated that DiGparallel consistently outperformed DiGmix in terms of FID
score for image quality. This suggests that processing each resolution separately before combining
them enables more detailed and distinct feature extraction at each scale. However, this performance
improvement comes at the expense of increased computational cost.

In DiGparallel, after processing each resolution, the features from all scales are concatenated across
multiple layers Ĥ (Eq. 5). This concatenation step requires the model to manage and process a high-
dimensional feature space, particularly when multiple resolutions are used, as the dimensionality of
the concatenated features scales with d × |P|. The concatenated features are subsequently passed
through an MLP for transformation, further increasing computational overhead. The complexity
grows linearly with the number of resolutions, making DiGparallel computationally more expensive,
especially as the number of layers L increases. To address this computational burden, we experi-
mented with summing the features from different resolutions rather than concatenating them. While
this alternative approach would reduce the dimensionality and computational load, it led to a notice-
able degradation in image quality (also see Section 3.3).

4.3 IMAGE GENERATION RESULTS

Table 2 presents the results for image generation, where DiGparallel demonstrates competitive per-
formance across multiple datasets, particularly in balancing image quality and capturing multiscale
features. More details on the model architecture and training settings are provided in Appendix C.

Although diffusion transformer-based models like U-ViT and DiT generally perform well in terms
of FID-50K, DiGparallel maintains robust performance, especially at patch sizes {2,4}, while offering
additional flexibility through its multiscale graph-based architecture. This highlights the effective-
ness of the DiG approach in handling different scales while retaining strong generative capabilities.

This demonstrates the potential of a graph-based architecture to efficiently capture multiscale fea-
tures while maintaining competitive performance in image generation tasks. DiGmix is parameter
efficient and offers a more computationally lightweight alternative to DiGparallel, albeit with a slight
performance trade-off. Examples of generated images for each dataset are shown in Figure 5.

5 CONCLUSIONS

In conclusion, this paper presents a novel exploration of graph-based architectures for image gen-
eration within diffusion models, challenging the dominance of transformer-based approaches. We
propose DiG, a model that introduces two variants: DiGparallel, which processes each resolution inde-
pendently, and DiGmix, which captures multiscale information by connecting nodes across different
scales. Our experiments demonstrate that GNNs can effectively replace transformers for image gen-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Unconditional CIFAR10 (32x32) (b) Conditional CIFAR10 (32x32)

(c) SVHN (32x32) (d) Imagenet (64x64)

Figure 5: Sample images generated across multiple datasets.

eration, providing a competitive alternative while maintaining high-quality outputs across multiple
datasets. The promising results of our DiG models suggest that graph-based methods offer signif-
icant potential for future work in visual generative modeling. We hope this study will inspire the
research community to further explore GNN-based architectures for image generation and scaling
experiments to larger models.

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. ArXiv e-prints, pp.
arXiv–1607, 2016.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the optimal
reverse variance in diffusion probabilistic models. arXiv preprint arXiv:2201.06503, 2022.

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 22669–22679, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
9640–9649, 2021.

J Choi, S Kim, Y Jeong, Y Gwon, and S Yoon. Conditioning method for denoising diffusion
probabilistic models. DOI: https://doi. org/10.1109/iccv48922, 2021.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models
in vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):
10850–10869, 2023.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with critically-
damped langevin diffusion. arXiv preprint arXiv:2112.07068, 2021.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth. In International Conference on Machine
Learning, pp. 2793–2803. PMLR, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL https://arxiv.org/abs/2010.11929.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2019.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Kai Han, Yunhe Wang, Jianyuan Guo, Yehui Tang, and Enhua Wu. Vision gnn: An image is worth
graph of nodes. Advances in neural information processing systems, 35:8291–8303, 2022.

Ali Hatamizadeh, Jiaming Song, Guilin Liu, Jan Kautz, and Arash Vahdat. Diffit: Diffusion vision
transformers for image generation. 2023.

11

https://arxiv.org/abs/2010.11929

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163, 2015.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022a.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–
8646, 2022b.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for
high resolution images. In International Conference on Machine Learning, pp. 13213–13232.
PMLR, 2023.

Yuming Jiang, Shuai Yang, Haonan Qiu, Wayne Wu, Chen Change Loy, and Ziwei Liu.
Text2human: Text-driven controllable human image generation. ACM Transactions on Graphics
(TOG), 41(4):1–11, 2022.

Bowen Jing, Gabriele Corso, Renato Berlinghieri, and Tommi Jaakkola. Subspace diffusion gener-
ative models. In European Conference on Computer Vision, pp. 274–289. Springer, 2022a.

Yongcheng Jing, Yining Mao, Yiding Yang, Yibing Zhan, Mingli Song, Xinchao Wang, and
Dacheng Tao. Learning graph neural networks for image style transfer. In European Confer-
ence on Computer Vision, pp. 111–128. Springer, 2022b.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Ad-
vances in neural information processing systems, 34:21696–21707, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Loic Landrieu and Martin Simonovsky. Large-scale point cloud semantic segmentation with super-
point graphs. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 4558–4567, 2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

12

https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kwonjoon Lee, Huiwen Chang, Lu Jiang, Han Zhang, Zhuowen Tu, and Ce Liu. Vitgan: Training
gans with vision transformers. arXiv preprint arXiv:2107.04589, 2021.

Junyan Li, Delin Chen, Tianle Cai, Peihao Chen, Yining Hong, Zhenfang Chen, Yikang Shen, and
Chuang Gan. Flexattention for efficient high-resolution vision-language models. arXiv preprint
arXiv:2407.20228, 2024.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431–3440, 2015.

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 5, 2017.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. ICLR2020, 2020.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. IEEE transactions on pattern analysis and machine
intelligence, 39(6):1137–1149, 2016.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022a.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. IEEE transactions on pattern anal-
ysis and machine intelligence, 45(4):4713–4726, 2022b.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in neural information processing systems, 34:1415–
1428, 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021b. URL https://openreview.net/
forum?id=PxTIG12RRHS.

Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer for
semantic segmentation. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 7262–7272, 2021.

A Vahdat, K Kreis, and J Kautz. Score-based generative modeling in latent space. arxiv. arXiv
preprint arXiv:2106.05931, 2021.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning combinatorial embedding networks
for deep graph matching. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 3056–3065, 2019.

Daniel Watson, William Chan, Jonathan Ho, and Mohammad Norouzi. Learning fast samplers
for diffusion models by differentiating through sample quality. In International Conference on
Learning Representations, 2022.

Julia Wolleb, Robin Sandkühler, Florentin Bieder, and Philippe C Cattin. The swiss army knife
for image-to-image translation: Multi-task diffusion models. arXiv preprint arXiv:2204.02641,
2022.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Zhen Xing, Qijun Feng, Haoran Chen, Qi Dai, Han Hu, Hang Xu, Zuxuan Wu, and Yu-Gang Jiang.
A survey on video diffusion models. arXiv preprint arXiv:2310.10647, 2023.

Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei. Scene graph generation by iterative mes-
sage passing. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 5410–5419, 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Jing Nathan Yan, Jiatao Gu, and Alexander M. Rush. Diffusion models without attention. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
8239–8249, June 2024.

14

https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADJACENCY MATRIX REPRESENTATION

A.1 BLOCK MATRIX FOR DIGPARALLEL

In DiGparallel, the augmented adjacency matrix Ãs1 includes the grid-structured patch adjacency
matrix As1 , along with time and context nodes fully connected to all patches.

Ãs1 =

As1 at ac
a⊤t 0 0
a⊤c 0 0

where As1 ∈ Rn1×n1 represents the grid connections between patches. at ∈ Rn1 is the connection
of the time node with all patch nodes. ac ∈ Rn1 is the connection of the context node with all patch
nodes.

A.1.1 POOLING MASK Csi

For any coarser scale si, the pooling matrix Csi of size ñi × ñ1 can be written as:

Csi =

c11 c12 · · · c1n1
0 0

c21 c22 · · · c2n1
0 0

...
...

. . .
... 0 0

cni1 cni2 · · · cnin1
0 0

0 0 · · · 0 1 0
0 0 · · · 0 0 1

where the submatrix cij corresponds to pooling the patch nodes from the finer scale s1 into the
coarser scale si, reducing the number of nodes. The last two rows preserve the time node and the
context node.

A.2 BLOCK MATRIX FOR DIGMIX

In DiGmix, the adjacency matrix Ã includes connections within each resolution (intra-resolution)
and between resolutions (inter-resolution), along with time and context nodes.

Ã =

As1 As1,s2 . . . As1,sN at ac
A⊤

s1,s2 As2 . . . As2,sN at ac
...

...
. . .

...
...

...
A⊤

s1,sN A⊤
s2,sN . . . AsN at ac

a⊤t a⊤t . . . a⊤t 0 0
a⊤c a⊤c . . . a⊤c 0 0

where Asi ∈ Rni×ni represents intra-resolution connections for scale si. Asi,sj ∈ Rni×nj rep-
resents inter-resolution connections between scale si and sj . at ∈ R

∑
i ni is the connection of the

time node with all patch nodes. ac ∈ R
∑

i ni is the connection of the context node with all patch
nodes.

B IMPACT OF TYPE OF GNN LAYER

The impact of different GNN layer types was evaluated in this study. Specifically, GCN (Kipf &
Welling, 2016), GraphSAGE (Hamilton et al., 2017), and GIN (Xu et al., 2018) were tested, as
shown in Table 3. CIFAR10 was used in the unconditioned setting to compare the FID-10K scores
across various GNN layers. In all cases, two hops K = 2 were selected, as additional hops did not
yield performance improvements. GraphSage demonstrated better performance and was selected for
the remaining experiments.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 3: FID-10K scores for different GNN layers on unconditional CIFAR10 with patch sizes
P = {2, 4}

GCN GIN GraphSAGE

DiGparallel 8.33 9.23 6.88
DiGmix 9.93 11.99 8.23

Table 4: Experimental setup for DiG, DiT, and U-ViT architectures for results presented in the main
paper.

Dataset CIFAR10 SVHN ImageNet 64×64

DiG

K-hops 2 2 1
GNN Convolution GraphSAGE GraphSAGE GraphSAGE

U-ViT

#Heads 8 8 12

DiT

#Heads 8 8 12
Learn Sigma False False False

Embedding dimension 512 448 768
Depth 12 10 16

Batch size 128 256 512
Training iterations 500K 400K 300K
Warm-up steps 2.5K 2.5K 5K

Optimizer AdamW AdamW AdamW
Learning rate 2e-4 2e-4 3e-4
Weight decay 0.03 0.03 0.03
Betas (0.99, 0.999) (0.99, 0.99) (0.99, 0.99)

Noise schedule VP VP VP

Sampler Euler-Maruyama Euler-Maruyama DPM-Solver
Sampling steps 1K 1K 50

C NETWORKS DETAILS

The DiG, DiT, and U-ViT architectures were trained as part of the experimental setup for the results
presented in the main paper. Table 4 summarizes the experimental setup for DiGparallel, DiGmix, DiT
and U-ViT across different datasets. “VP” represents the continuous-time variance preserving noise
schedule (Song et al., 2021b).

Teh Euler-Maruyama (Song et al., 2021b) sampler was used for CIFAR10 and SVHN, while DPM-
Solver (Lu et al., 2022) was employed for ImageNet 64×64.

Also see Appendix B for a comparison of different GNN layers on CIFAR10.

D ADDITIONAL COMPARISON RESULTS

Figure 6 shows the loss and FID curves for the best results of unconditional CIFAR10 shown in
Table 1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

100000 200000 300000 400000 500000
Step

0.025

0.030

0.035

0.040

0.045

Lo
ss

DiGmix {2, 4, 8}
U-ViT-2
DiT-2
DiGparallel {2, 4}

(a) Loss Curve

100000 200000 300000 400000 500000
Step

20

40

60

80

100

120

FI
D-

10
K

DiGmix {2, 4, 8}
U-ViT-2
DiT-2
DiGparallel {2, 4}

(b) FID-10K Curve

Figure 6: Loss and FID-10K curves for unconditional CIFAR10.

17

	Introduction
	Background & Related Work
	Diffusion Models
	Architectures for image diffusion models
	Patchification for Image Processing
	Graph-based models for images

	Diffusion Image GNN (DiG)
	:: Independent Graph Processing Across Image Scales
	:: Integrated Graph Processing Across Multiple Resolutions
	Time and Context Nodes for Patch-Node Graphs

	Experimental Results
	Experimental setup
	Impact of Multi-Scale Resolutions
	Image Generation results

	Conclusions
	Adjacency matrix representation
	Block Matrix for :
	Pooling mask :

	Block Matrix for :

	Impact of Type of GNN layer
	Networks details
	Additional Comparison Results

