
APPENDIX

A. Proof of Stated Results

We first prove the main result for calculating Graph Fourier
MMD:
Theorem 2 Let P and Q be bounded probability distributions
defined on V . If P and Q have equal component mass,
then GFMMD(P,Q) = kL�

1
2 (P � Q)k2. And otherwise,

GFMMD(P,Q) = +1.

Proof. Suppose first that P and Q do not have the equal
mass property. Then there exists a connected component S

for which, X

v2S

P (v) <
X

v2S

Q(v)

In particular, we can write
P

v2S P (v) =
P

v2S Q(v)� c for
some c > 0. Now, let f↵ be a signal such that f↵(v) = ↵ if v 2
S and f↵(v) = 0 otherwise. Then certainly, fT

↵ Lf↵ = 0, since
it is known that indicator functions for connected components
arer in the null space of L. And so f

T
↵ Lf↵  1, yet,
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v2S
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And thus, since GFMMD is defined as supf :fTLf1, we
have GFMMMD(P,Q) � ↵c. Taking ↵ ! 1, we have
GFMMMD(P,Q) = +1.

Now suppose that P and Q do have the equal mass prop-
erty. If we let IS1 ...ISm be indicator functions for connected
components S1...Sm, the equal mass property insists that
P

T ISi = Q
T ISi for all i. And thus, (P �Q)T ISi = 0. Since

it is known that these indicator functions form a basis for
the kernel of L, it follows that P � Q 2 ker(L)?. Now, any
function f such that fTLf can be broken up into f = f1+f2,
where f1 2 ker(L) and f2 2 ker(L). Finally, observe that we
can view P and Q as probability vectors indexed over V . And
so,

EP (f)� EQ(f) = P
T
f �Q

t
f = (P �Q)T (f1 + f2)

= (P �Q)T f1 + (P �Q)T f2 = (P �Q)T f2

Furthermore, fTLf = f
T
2 Lf2. Combined, these observations

tell us that we may assume, without loss of generality, that
f 2 ker(L)?. And thus,

GFMMDP,Q) = sup
f :fTLf1,f2ker(L)?

(P �Q)T f

Now, for any such f , we can define y = L1/2
f . And

thus, f
TLf = f

TL1/2L1/2
f = kyk22. Furthermore, since

f 2 ker(L)?, f = L�1/2
y as well. Meaning, by a change

of variables,

GFMMD(P,Q) = sup
y:kyk2

21
(P �Q)TL�1/2

y

Which clearly, by Cauchy Schwartz, is simply equal to k(P �
Q)TL�1/2k22 = kL�1/2(P �Q)k2, as desired.

Lemma 4. (i) GFMMD(·, ·) defines a valid distance on
the probability distributions acting on V . Furthermore, (ii)
GFMMDG(P,Q) is a Maximum Mean Discrepancy with ex-
plicit feature map L�

1
2 .

Proof. For (i), note that L�1/2(P � Q) is linear. By the
usual nonnegativity of lengths, GFMMD(P,Q) = kL�

1
2P �

L�
1
2Qk � 0, so GFMMD(·, ·) is nonnegative. Furthermore,

note that GFMMD(P,Q) = 0 if and only if L�
1
2P = L�

1
2Q.

But since P and Q sum to 1, L�
1
2 as injectively on the

set of functions orthogonal to its kernel, so P = Q. Thus,
GFMMD(P,Q) � 0, with equality if and only if P = Q. Fi-
nally, the triangle inequality holds, since for arbitrary probabil-
ity densities P,Q,R, GFMMD(P,Q) = kL�

1
2P �L�

1
2Qk 

kL�
1
2P �L�

1
2Rk+ kL�

1
2Q�L�

1
2Rk = GFMMD(P,R) +

GFMMD(Q,R) follows from the usual triangle inequality in
`2. Thus, GFMMD is a valid distance acting on probability
distributions. For (ii), by definition, an MMD � between P

and Q takes the form �(P,Q) = sup
kfkH1 EP (f)�EQ(f),

where H is some Hilbert Space and {f : kfkH  1}
corresponds to the unit ball. If we define a Hilbert space on `2
with hx, yiH = xL�

y, it follows that kfkH  1 corresponds
to f

TLf  T . Thus, GFMMD(·, ·) possesses the form of a
valid MMD. Therefore, this distance is also an IPM.

We can also show that there is a nice correspondence for
PCA on the space of dirac-distributions {�i}i on the vertices,
upon applying the feature map offered by GFMMD. In fact,
the best k-dimensional representation (by multidimensional
scaling) of the vertices will coincide almost exactly with Hall’s
Spectral Graph Drawing[10], which uses the first k nontrivial
eigenvectors to represent vertices using coordinates in Rk. This
is made formal by Theorem 5.

Theorem 5. If X = {�i}i2V is a family of Kronecker-delta
functions centered at each vertex of G, then the k-dimensional
embedding which best preserves the distances between signals
in X is equivalent up to rescaling to Hall’s Spectral Graph
Drawing of the Graph G in k-dimensions.

Proof. Note that X , the data matrix of Kronecker Deltas,
is equal to I, the n-dimensional identity. So

p
TL�

1
2X =p

TL�
1
2 , hence the best k-dimensional embedding of

p
TL�

1
2

(respecting the L
2 norm between columns) will be equivalent

to Principal Component Analysis (P.C.A.). Since L�
1
21 = 0,

L�
1
2 ’s columns are mean-centered, so its covariance matrix ofp

TL�
1
2 is T

nL
�

1
2
T

L�
1
2 = T

nL
�.

Since its columns and rows are already mean centered. And
thus P.C.A. will select the eigenvectors of L� corresponding to
the kth largest eigenvalues. Note that these are precisely given
by  1, 2.. k with associated eigenvalues in L� given by
�
�1
1 . . .�

�1
k . Letting ⇤k = diag(��1/2

1 . . .�
�1/2
k ) and  k =�

 1 . . . k

�
, P.C.A. would embed

p
TL�

1
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=
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 T = ⇤k 
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So our embedding of distributions would be given by ⇤k T
k .

On the other hand, Hall’s Spectral Graph Drawing would
embed the graph G simply as  T

k , since it chooses the first
k nontrivial eigenvectors of L. Thus, coordinates in each em-
bedding are the same up to the rescaling by eigenvalues.

1) Effective Resistances & Couplings: Theorem 3 If
X ⇠ P and Y ⇠ Q, not necessarily independent, then
GFMMD(P,Q)2  EX,Y [Re(X,Y )]

Proof. The bias variance decomposition in dimension n

states that for a random vector Z and point a 2 Rn,
EkZ � ak2 = kEZ � ak2 + V ar(Z). Let '(a) de-
note column a of L�1/2, so that '(X),'(Y ) are ran-
dom vectors. We have, GFMMD(P,Q)2 = kL�1/2

P �
L�1/2

Qk2 = kEX ['(X)]�EY ['(Y )]k2 = kEY [EX ['(X)]]�
EY [EX ['(Y )]]k2. By Fubini’s Theorem for expectations,
this is equal to, kEX,Y ['(X)] � EX,Y ['(Y )]k2 =
kEX,Y ['(X) � '(Y )]k2. By the Bias-Variance Decomposi-
tion, kEX,Y ['(X) � '(Y )]k2 = EX,Y k'(X) � '(Y )k2 �
VarX,Y ['(X) � '(Y )]  EX,Y Re(X,Y ). We recognize that
k'(X)� '(Y )k2 = Re(X,Y ).

Corollary 5.1. Suppose P & Q agree on a set of size
A, and suppose the union of their supports is S . Then,
GFMMD(P,Q) 

p
(1� p)M 

p
(1� p)/2�2, where

p =
P

a2A
P (a), M = sup{Re(X,Y ) : X,Y 2 S \ A},

and �2 is the Fiedler value for the graph.

Proof. Let Z be a Bernoulli random variable with suc-
cess probability p. First, choose X0 ⇠ P, Y0 ⇠ Q. Con-
struct X = X0I{Z = 0} + ZI{Z = 1} and Y =
Y0I{Z = 0} + ZI{Z = 1}. Thus, GFMMD(P,Q)2 
EX,Y Re(X,Y )  EX,Y [Re(X,Y )|Z = 1]P(Z = 1) +
(1 � p)EX,Y [Re(X,Y )|Z = 0]P(Z = 0)  (1 �
p)EX,Y [sup{Re(X,Y ) : X,Y 2 S \ A] = (1 � p)M .
Furthermore, we can provide an upper bound for M . The
Courant-Fisher theorem tells us that for nonzero x, xTLx 
1
�2
kxk2, as 1/�2 is the maximal eigenvector of L�1. Thus,

letting a 6= b be arbitrary vertices, we have that Re(a,b) =
(�a � �b)TL�(�a � �b)  2/�2. In particular, maximizing
over all a, b 2 S \ A, M  2/�2.

B. Additional Figures for Experiments
1) Swiss Roll Experiment: The first of these figures

is the first two principal components of the feature map
L�1/2 applied to the distributions, which demonstrates the
ability of GFMMD to capture nonlinear directions in a
linear space in the presence of strong noise. On the left of
Figure 3 is EMD, where the oscillatory pattern illustrates its
ineffectiveness at calculating distances between distributions
on graphs, since Euclidean distance between points on the
swiss roll has periodic behavior in curvature. Diffusion EMD
and Kernel MMD are effective at taking distances between
points initially, but fail to discern between higher and higher

Fig. 2: We visualize the 1st, 10th, 100th, and 1500th most local
genes on the cell graph. Indeed, we find the expected behavior.
Density plots for localization scores, comparing housekeeping
genes and naive CD8+ T cell signature. The naive gene
signatures are given by the red curve and Housekeeping gene
signatures by the gray.
distances. Graph Fourier MMD, on the other hand, has a
far more clear linear correlation, which levels off much slower.

2) Single Cell Localization: Below, we have visualizations
of the spread of the most localized signals over the graph.
Here, PHATE is used to produce two dimensional embeddings
of cells in Euclidean space, and color intensity is used as an
indicator for gene expression.

Fig. 3: Left: first two PCs of the embeddings E from Algo-
rithm 1., colored by the coordinate of the corresponding center
along the curved direction of the swiss roll. Right: Geodesic
distance between centers vs. corresponding distance between
distributions
C. Grid Graph

a) Grid Graph: First, we consider a 16⇥ 16 grid graph
(vertices given by {(i, j)}1i,j16. We can construct a signal
P by placing a Dirac �(8,4) on the vertex (8,4) and then
diffusing it with a heat filter (using time ⌧ = 16). Q is
generated likewise, but by applying a heat filter to �(8,4+2j)

and diffusing for each j = 0, 1, 2, 3. The result are two modes:



Fig. 4: Top row: the distributions P and Q, where the signal
P stays fixed but the vertex at which Q is centered shifts
to the right. Corresponding distances between distributions
appear in the title, and the relevant centers of P and Q are
highlighted. Bottom row: corresponding witness functions f

to the difference between P and Q.

Fig. 5: The signal �1400 diffused to levels 1,61, 62, and 63

using a heat filter.

P on the left, and Q moving along the right. The distributions
are visualized in the top row, and the witness function to their
difference in the bottom row of figure 4.

And of course, the corresponding distances between P and
the Q’s (per the order presented above) are increasing in the
distances between the appropriate centers.

D. Diffusing Signals on the bunny graph

One very simple sanity check of a measure of spread is to
verify that the more we diffuse a Dirac, the lower the distance
to the uniform. Indeed, if we begin with the Bunny graph (from
pygsp’s built in library) and diffuse the Dirac �1400 (1400 was
chosen for visual appeal) for scales ⌧ = 20, 24, 28, and 212
(using a heat filter), we find that the corresponding measures of
spread are 40.5, 26.9, 21.5, and 9.76. The signals are visualized
below:

E. Bimodal Signals

We can take the earlier signals from the grid graph (each
pair of P and Q for translations of Q) and combine them
into a new signal 1

2 (P +Q). This forms a family of bimodal
signals for which the two modes spread. Accordingly, in the
example above, the distance to the uniform is given by 11.14,
8.66, 6.13, and 6.09.

F. Localization on the Minnesota Graph

1) Example: Minnesota Graph (Binarized): A final sanity
check for a measure of closeness to the uniform would be to

begin with a density which puts all its mass on one vertex.
Then, put equal mass on that vertex and its neighbors, then the
neighbors of neighbors, etc. More specifically, let Nk(i, j) =
{9k0 2 [k] : Ak0

> 0}, or Nk(i, j) = 1{there is a path of
length  k from i to j}. Then we can consider multiplying
this by a Dirac, say �0 to get a family of signals. Using k =
1, 41, 42, 43, we have a family of distributions proportional
to N1�0, N2�0, N3�0, and N4�0. Again, we can visualize the
activated vertices in yellow:

Fig. 6: The zeroth vertex’s neighbors, then neighbors of
neighbors, etc. for order 1, 4, 16, and 64 neighbors. The
corresponding distances to the uniform are given in the title.

G. Example: Minnesota Graph (Smooth Waves)
A similar example we can consider is a similar class of

signals which ”spread” across the graph, but rather than
activating neighbors, simply diffusing the signal from a given
start vertex. Here, we choose the same start vertex, and run
heat diffusion at times ⌧ = 20, 24, 28, and 212.

Fig. 7: Visualization of the diffusions of the signal �0 at times
20, 24, 28, and 212. The corresponding distances to the uniform
are given above.
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