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1 Methodology supplement

Notation. We follow the notations in the main paper. Additionally, we use Eij to denote a matrix
which has 1 at the (i, j)-th entry and 0 elsewhere.

1.1 An identifiable variable of CLG

We first show the copula correlation parameter Σ in Definition 1 in the main paper is not identifiable.

Theorem 1.1. For a 2-dimensional categorical vector (x1, x2) ∼ CLG(Σ,µ), CLG(Σ(kl),µ) has
the same distribution as CLG(Σ,µ) where Σ

(kl)
[1],[2] = Σ[1],[2] + c1

∑K
m=1 Ekm + c2

∑K
m=1 Eml for

any constants c1, c2 and any integers k, l = 1, . . . ,K. In other words, adding any constant to a row
or column in Σ[1],[2] does not change the distribution of CLG(Σ,µ).

Proof. For (x1, x2) ∼ CLG(Σ,µ), denote the probability that x1 = i and x2 = j by Pij(Σ[1],[2],µ)

for i, j = 1, . . . ,K. To show CLG(Σ,µ) and CLG(Σ(kl),µ) have the same distribution, it suffices
to show that Pij(Σ[1],[2],µ) = Pij(Σ

(kl)
[1],[2],µ) for any i, j = 1, . . . ,K.

Now define ∆i ∈ RK−1×K such that: (1) the i-th column of ∆i has all entries equal to −1; (2) the
remaining K − 1 columns of ∆i excluding the i-th column is IK−1, the identity matrix. Then, we
find that

i = argmax(z[1] + µ[1]) ⇐⇒ ∆i(z[1] + µ[1]) ≤ 0.

Further, define ∆i,j = diag(∆i,∆j), then

x1 = i, x2 = j ⇐⇒ ∆i,jz+∆i,jµ ≤ 0.

Note ∆i,jz is Gaussian distributed with mean zero and covariance matrix[
∆i∆

⊤
i ∆iΣ[1],[2]∆

⊤
j

∆jΣ[2],[1]∆
⊤
i ∆j∆

⊤
j

]
,

thus Pij(Σ[1],[2],µ) depends on Σ[1],[2],µ only through ∆iΣ[1],[2]∆
⊤
j and ∆i,jµ. Now denote R =

Σ[1],[2] and R(kl) = R+ c1
∑K

m=1 Ekm + c2
∑K

m=1 Eml to simplify the notation. Note the (s, t)-th
entry of ∆iR∆⊤

j is rij+rst−rit−rsj and the (s, t)-th entry of R(kl) is rst+c11(k = s)+c21(l = t),
then it is straightforward that ∆iR∆⊤

j = ∆iR
(kl)∆⊤

j for arbitrary c1, c2 and any k, l = 1, . . . ,K,
which finishes our proof.

To eliminate the unidentifiability showed in Theorem 1.1, we provide a variant of CLG with additional
constraints in the copula correlation matrix Σ. Concretely, for each categorical variable xj , we select
one dimension in z[j] to be the base dimension, which does not correlate with any other entry in
z. Without loss of generality, we can select the first dimension of z[j] for all j. In other words,
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Σ[j]1,−[j]1 = 0 for any categorical index j, where −[j]1 means all indices but [j]1. If Σ satisfies this
constraint, then Σkl with Σ

(kl)
[1],[2] = Σ[1],[2] + c1

∑K
m=1 Ekm + c2

∑K
m=1 Eml for nonzero c1, c2 will

not satisfy this constraint. With this constraint, there are only (K − 1)2 free parameters in Σ[j1],[j2]

for any two categorical variables xj1 and xj2 . However, this variant is not permutation-invariant to
the labeling of categorical categories.

There are two motivations for this variant. First, as mentioned in Sec 2.1.2 of the main paper, to
describe the joint distribution of two categorical variables (each has K categories), (K − 1)2 free
parameters are sufficient once given the marginal categorical distribution. Second, for a categorical
variable x generated as the argmax of a K-dim latent Gaussian z, only the difference among the
entries of z matters for the distribution of x. In fact, we can even fix the first dimension of z to be
constant 0 and Theorem 1 of the main paper still holds.

1.2 Computing the expectation of latent Gaussian

Here we show that computing E[zz⊤|xO,Σ] reduces to compute E[z[O]|xO,Σ] and Cov[z[O]|xO,Σ].
By writing z = (z[O], z[M]), we first decompose the computation into three parts: (1)
E[z[O]z

⊤
[O]|xO,Σ]; (2) E[z[O]z

⊤
[M]|xO,Σ]; (3) E[z[M]z

⊤
[M]|xO,Σ], and then show each of the three

parts can reduce to the mean and covariance of z[O]|xO,Σ. For (1), it is trivial. For (2) and (3), the
key technique is the law of total expectation and that

z[M]|z[O] ∼ N
(
Σ[M],[O]z[O],Σ[M],[M] − Σ[M],[O]Σ

−1
[O],[O]Σ[O],[M]

)
.

Thus

E[z[O]z
⊤
[M]|xO,Σ] = Ez[O]

[z[O]Ez[M]|z[O]
[z⊤[M]|xO,Σ]],

and

E[z[M]z
⊤
[M]|xO,Σ] = Ez[O]

[Ez[M]|z[O]
[z[M]z

⊤
[M]|xO,Σ]].

The remaining computation is straightforward.

1.3 Proof of Theorem 1

Proof. Denote P(argmax(z+ µ) = k) = pk(µ) for k = 1, ...,K and P(µ) = (p1(µ), ..., pK(µ)).
Also define ek: ek ∈ RK has 1 at coordinate k and zero elsewhere.

We prove the existence by contradiction. Suppose there is no satisfying µ. Let

µ∗ = argmin
µ

f(µ), where f(µ) =

K∑
k=1

|pk(µ)− pk|. (1)

Define I = {i|pi(µ∗) < pi, i = 1, . . . ,K} and Ic = {1, . . . ,K} − I . If there is no satisfying
µ, then both I and Ic are not empty. Pick an i ∈ I . Since pi(µ

∗ + λei) is a continuous function
w.r.t. λ and limλ→∞ pi(µ

∗ + λei) = 1, there exists a λ0 > 0 such that pi(µ∗ + λ0ei) = pi. Note
pk(µ

∗ + λei) is strictly decreasing w.r.t. λ for any k ̸= i. Thus for pk(µ∗ + λ0ei) = pk(µ
∗)− δk,
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we have δk > 0 when k ̸= i and δi = pi(µ
∗)− pi < 0. Now

K∑
k=1

|pk(µ∗ + λ0ei)− pk| = |pi(µ∗ + λ0ei)− pi|+
∑
k ̸=i

|pk(µ∗ + λ0ei)− pk|

=
∑

k∈I−{i}

|pk − pk(µ
∗) + δk|+

∑
k∈Ic

|pk − pk(µ
∗) + δk|

=
∑

k∈I−{i}

(pk − pk(µ
∗) + δk) +

∑
k∈Ic

|pk − pk(µ
∗) + δk|

≤
∑

k∈I−{i}

(pk − pk(µ
∗) + δk) +

∑
k∈Ic

|pk − pk(µ
∗)|+

∑
k∈Ic

δk

=
∑

k∈I−{i}

|pk − pk(µ
∗)|+

∑
k∈Ic

|pk − pk(µ
∗)|+

∑
k ̸=i

δk

=
∑
k ̸=i

|pk − pk(µ
∗)|+

∑
k ̸=i

δk

= f(µ∗)− (pi − pi(µ
∗)) +

∑
k ̸=i

δk

= f(µ∗) +

K∑
k=1

δk = f(µ∗)

The equality only holds when for each ∈ Ic, pk − pk(µ
∗) ≥ 0, which further leads to pk = pk(µ

∗)
by the definition of Ic. That conflicts with that I is nonempty. Thus we must have

f(µ∗ + λ0ei) < f(µ∗),

which contradicts our assumption and completes our proof for existence.

Now for uniqueness, assume there exists µ ̸= µ̃ such that P(µ) = P(µ̃). Define I<, I=, I> to be
the set of entries that µ is smaller, equal, and larger than µ̃, respectively. We want to show it must be
the case that both I< and I> are empty, which contradicts the assumption.

First, if I< is empty but I> is not, then for each i ∈ I>, we define µi ∈ RK such that µi agrees
with µ at all entries but i and agrees with µ̃ at entry i. Since pi(µ) is strictly increasing w.r.t. µi

when fixing µ{i}c , we know pi(µi) < pi(µ). Further repeatedly switching one more entry of µi in
I> from µ to µ̃ until I> is exhausted, we have pi(µ̃i) < pi(µ), which contradicts the assumption.
Similarly we can show the contradiction if I< is not empty but I> is empty.

Now consider the case that both I< and I> are not empty. Define µ∗ such that µ∗ agrees with µ over
I< and agrees with µ̃ over I>. According to above, we know for each i ∈ I>, pi(µ) > pi(µ

∗) >
pi(µ̃), which contradicts the assumption. Thus we complete our proof.

2 Experiments supplement

2.1 Implementation details

All our implementation codes are provided in a Github repo1. All experiments use a laptop with a
3.1 GHz Intel Core i5 processor and 8 GB RAM. All algorithms are implemented using one core,
although some of them including our EGC support parallelism.

The algorithm of EGC consists of two parts: the marginal estimation and the correlation estimation.
The marginal estimation requires a subroutine to iteratively solve nonlinear systems. We find the
available iterative root finding algorithms package in R such as the rootSolve do not achieve desired
precision occasionally, while the scipy.optimize.root(method=‘hybr’) function in Python
finds accurate solution in all of our experiments. Through our experiments, EGC uses a Python
implementation to estimate the marginal and a R implementation to estimate the copula correlation.

1https://github.com/yuxuanzhao2295/Mixed-categorical-ordered-imputation-extended-Gaussian-copula
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Table 1: Algorithm runtime in seconds: mean (sd) over 10 repetitions. The synthetic dataset is under
the setting K = 6, pcat = 5.

EGC missForest MICE ImputeFAMD softImpute

Synthetic 22.0 (1.0) 58.7 (9.9) 82.3 (1.0) 56.0 (22.3) 1.4 (0.2)
Abalone 9.8 (0.1) 136.2 (37.2) 2.9 (0.1) 46.8 (5.4) 0.9 (0.1)

Heart 2.1(0.8) 2.6 (0.8) 4.3 (0.3) 11.7 (3.7) 0.1 (0.0)
CMC 5.5 (1.1) 9.2 (1.4) 17.3 (0.9) 41.2 (16.2) 0.3 (0.0)

Creditg 16.0 (0.9) 43.5 (12.3) 74.4 (1.2) 38.8 (11.3) 1.0 (0.1)
Credita 10.4 (1.1) 15.6 (3.2) 30.0 (8.6) 23.8 (12.1) 0.6 (0.1)
Colic 3.5 (0.2) 6.9 (2.0) 40.0 (15.3) 18.2 (15.8) 0.4 (0.1)

A complete R implementation is available though, and a complete Python implementation will be
available soon. All other algorithms are completely implemented in R.

MICE is a multiple imputation method. To derive a single imputation from MICE, we pool 5 imputed
datasets (majority vote for categorical and mean for ordered). We choose the rank for imputeFAMD in
the grid of {1, 3, 5, 7, 9}. We choose the regularization parameter for softImpute in an exponentially
decaying path of length 10 from 0.1× λ0 and 0.99× λ0, where λ0 is computed using the provided
function lambda0() in the package softImpute.

exp(seq(from=log(lam0*0.99),to=log(lam0*0.1),length=10))

The runtime comparison among algorithms are reported in Table 1. For imputeFAMD and
softImpute, the reported time is the total runtime under all searched hyperparameters.

2.2 MAR and MNAR mechanism

We conduct additional experiments under a MAR mechanism and a MNAR mechanism to test the
sensitivity of implemented imputation methods.

For MNAR, we use a self-masking mechanism which assigns samples different missing probability
by their own values for each variable. Concretely, suppose we want to mask α percentage entries as
missing, then for each variable, we assign a high missing probability (α+ 10%) for samples below
the first third quantile, a medium missing probability (α) for samples between the first third and the
second third quantile, and a low missing probability (α− 10%) for samples above the second third
quantile.

For MAR, we first randomly select 1/3 of variables as observed. Then for each of the remaining 2/3
of variables, its samples receive three different missing probability similar to the MNAR mechanism
but based a randomly selected observed variable instead of its own values. To have α missing ratio
and compensate that only 2/3 of variables may be masked as missing, we use 3α

2 as the normal
missing probability, 3α

2 + 10% as the high missing probability, and 3α
2 − 10% as the low missing

probability.

2.3 Synthetic experiments supplement

Fig 1 of the main paper reports the results for categorical variables with six categories under MCAR
of 30% missing ratio. In Fig. 1 and Fig. 2, we report the results for different number of categories:
three and nine. In Fig. 3 and Fig. 4, we report the results for different missing ratios under MCAR. In
Fig. 5 and Fig. 6, we report the results under different missing mechanism (MAR and MNAR). In
general, these experiments show EGC performs well for both categorical and ordered variables in
mixed data as reported in Section 3.1 of the main paper.

2.4 Real data experiments supplement

All used datasets are accessed from openml.org through the R package OpenML. Table 1 provides
an overview of the used datasets. The prepared dataset does not distinguish categorical and ordinal
variables. We do distinguish them according to the variable description whenever available. Some
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Figure 1: Imputation error on synthetic mixed data under MCAR of 30% missing. There are 5
continuous variables, 5 ordinal variables and 1/3/5 categorical variables with three categories,
reported over 10 repetitions (error bars indicate standard deviation).
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Figure 2: Imputation error on synthetic mixed data under MCAR of 30% missing. There are
5 continuous variables, 5 ordinal variables and 1/3/5 categorical variables with nine categories,
reported over 10 repetitions (error bars indicate standard deviation).
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Figure 3: Imputation error on synthetic mixed data under MCAR of 20% missing. There are 5
continuous variables, 5 ordinal variables and 1/3/5 categorical variables with six categories, reported
over 10 repetitions (error bars indicate standard deviation).
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Figure 4: Imputation error on synthetic mixed data under MCAR of 40% missing. There are 5
continuous variables, 5 ordinal variables and 1/3/5 categorical variables with six categories, reported
over 10 repetitions (error bars indicate standard deviation).
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Figure 5: Imputation error on synthetic mixed data under MAR of 30% missing. There are 5
continuous variables, 5 ordinal variables and 1/3/5 categorical variables with six categories, reported
over 10 repetitions (error bars indicate standard deviation).
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Figure 6: Imputation error on synthetic mixed data under MNAR of 30% missing. There are 5
continuous variables, 5 ordinal variables and 1/3/5 categorical variables with six categories, reported
over 10 repetitions (error bars indicate standard deviation).
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Table 2: Used UCI dataset overview.
OpenML ID n pcat pord

Abalone 1557 4177 1 7
Heart 53 270 3 10
CMC 23 1473 1 8

Creditg 31 1000 8 12
Credita 29 690 4 10
Colic 25 368 4 19
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EGC_our MICE imputeFAMD missForest softImpute

Figure 7: Imputation error of categorical variables and of ordered variables, i.e., ordinal and contin-
uous, on 6 UCI datasets under MCAR of 10% missingness. Results shown as mean ± standard
deviation.

features are removed because their distribution are highly concentrated at a single value (more than
.95%). All preprocessing information are provided in the codes.

Fig 1 of the main paper reports the results under MCAR of 20% missing ratio. In Fig. 7 and Fig. 8,
we report the results for different missing ratios under MCAR. In Fig. 9 and Fig. 10, we report the
results under different missing mechanism (MAR and MNAR). In general, these experiments show
EGC performs well for both categorical and ordered variables in mixed data as reported in Section
3.2 of the main paper.
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Figure 8: Imputation error of categorical variables and of ordered variables, i.e., ordinal and con-
tinuous, on 6 UCI datasets under MCAR 30% missingness. Results shown as mean ± standard
deviation.
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Figure 9: Imputation error of categorical variables and of ordered variables, i.e., ordinal and continu-
ous, on 6 UCI datasets under MAR 20% missingness. Results shown as mean ± standard deviation.
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Figure 10: Imputation error of categorical variables and of ordered variables, i.e., ordinal and
continuous, on 6 UCI datasets under MNAR 20% missingness. Results shown as mean ± standard
deviation.
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