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ABSTRACT

Graph self-training is a semi-supervised learning method that iteratively selects
a set of unlabeled data to retrain the underlying graph neural network (GNN)
model and improve its prediction performance. While selecting highly confi-
dent nodes has proven effective for self-training, this pseudo-labeling strategy
ignores the combinatorial dependencies between nodes and suffers from a lo-
cal view of the distribution. To overcome these issues, we propose BANGS, a
novel framework that unifies the labeling strategy with conditional mutual in-
formation as the objective of node selection. Our approach—grounded in game
theory—selects nodes in a combinatorial fashion and provides theoretical guar-
antees for robustness under noisy objective. More specifically, unlike traditional
methods that rank and select nodes independently, BANGS considers nodes as
a collective set in the self-training process. Our method demonstrates superior
performance and robustness across various datasets, base models, and hyperpa-
rameter settings, outperforming existing techniques. The codebase is available on
https://github.com/fangxin-wang/BANGS.

1 INTRODUCTION AND RELATED WORK

Self-training is a widely adopted strategy in semi-supervised graph learning (Lee et al., 2013) to
transform a weak initial model into a stronger one (Frei et al., 2022). This approach enhances the
base model’s performance with reduced labeling effort and ensures the model’s robustness against
noisy or drifting data (Carmon et al., 2019; Wei et al., 2020). The iterative method is a common tech-
nique in self-training, where an initial teacher model—trained on labeled data—generates pseudo-
labels for the unlabeled data. A student model is then trained to minimize empirical risk using both
the labeled and pseudo-labeled data. Subsequently, the student model takes the role of the teacher,
updating the pseudo-labels for the unlabeled data. This iterative process is repeated multiple times
to progressively improve the final student model.

Existing research in graph self-training mainly focuses on solving three different aspects of the prob-
lem. First, confirmation bias, which refers to the phenomenon where the model overfits to incorrect
pseudo-labels, is considered the main reason for the underperformance of naive self-training (Arazo
et al., 2020). To tackle this issue in graph setting, current works generally rely on the confidence,
i.e., probabilities of the most likely class, to select nodes for pseudo-labels. Common strategies
include selecting the top k nodes (Sun et al., 2020; Botao et al., 2023), or nodes with confidence
surpassing a given threshold (Wang et al., 2021; Liu et al., 2022a). Second, confidence calibration
refers to aligning the confidence of model predictions with the actual likelihood of those predictions
being correct. Due to the neighborhood aggregation mechanism of Graph Neural Networks (GNNs),
GNNs are often under-confident (Wang et al., 2021), which may lead to nodes with correctly pre-
dicted labels being excluded from the selection set. Therefore, GNN self-training is an important
downstream task of GNN calibration, and the self-training performance is utilized as an evaluation
metric of calibration (Liu et al., 2022b; Hsu et al., 2022; Li et al., 2023). Third, information redun-
dancy, a concept from active learning, has an important role in graph self-training. Nodes selected
solely based on high confidence often carry similar information, which can lead to slow convergence
and biased learning in the student model, even when the labels are correctly predicted. To address
this, Liu et al. (2022a) select and pseudo-label high-confidence nodes but reduce the weight of low-
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information nodes in the training loss to mitigate the redundancy in a post-hoc process. Similarly, as
a pre-processing step, Li et al. (2023) employs mutual information maximization (Velickovic et al.,
2019) to select more representative unlabeled nodes from their local neighborhoods.

All the works described above suffer from a few key limitations.
(1) Non-unified methods: Graph self-training is a sequential decision problem with multiple compo-
nents, e.g., the selection and label criterion, the design of the teacher and the student model training
framework. Due to the complexity of self-training problem, current works tend to treat these issues
by proposing individual frameworks with different focuses.
(2) Independent and iterative selection: The self-training strategies require to use a set of points
for pseudolabels. Most current graph self-training strategies only select nodes by ranking them in-
dependently based on some value such as confidence. The node selection process is a combinatorial
problem, where the dependency between the candidate nodes is important in graphs.
(3) Local view of distribution: In each iteration, the student models learn from only labeled and
pseudo-labeled data. Generalization over the entire distribution is hampered by the noisy or incor-
rect pseudo-label and possible distribution shifts.

Our contributions. Towards this end, we address these limitations by designing a framework that
unifies several key insights for self-training. Our contribution can be summarized as follows.

• Novel formulation. To systematically address the graph self-training problem, we propose a
novel objective for node selection based on the conditional mutual information. We demon-
strate that this objective can be approximated using predictions on unlabeled samples, and
leverage the feature influence from already labeled nodes to estimate the predictions of the
student model for unlabeled samples.

• Novel framework with theoretical support. We introduce a game-theoretic framework,
BANGS, which incorporates our designed objective as a utility function and select nodes in
a combinatorial manner. We also show the limitations and non-optimality of independent
selection, meanwhile providing theoretical support that BANGS can optimally select node
sets even under a noisy utility function.

• Experiments. Experimental results validate the effectiveness of BANGS across various
datasets and base models. By theoretically linking random walk and feature propagation,
we enhance the scalability of our approach. Additionally, we demonstrate the effectiveness
of BANGS under noisy labels and varying portion of training data.

2 PROBLEM DEFINITION

Consider a graph G containing a size-N node set V where vi denotes the i-th node in G. X and A
denote the feature and adjacency matrix respectively in G, where xi represents the feature vector of
the i-th node. Ai,j , the i-th row and j-th column element in A, represents whether i-th node and
j-th node is connected by an edge. We consider three different sets of nodes based on the labels:
labeled nodes Vl, pseudo-labeled nodes Vp, and unlabeled nodes Vu. We denote the ground truth
and pseudo-labels of node vi as yi and ŷi respectively. The node labels are from a set of C classes,
i.e., yi, ŷi ∈ {1, 2, ..., C}. Table 4 provides an overview of the frequently used notations in this
paper along with their corresponding explanations.

Self-training. In the iterative self-training procedure, the idea is to start with training a teacher
model f0 (at 0-th step) with G = {A,X,yl}, where yl denote the ground truth labels of Vl ⊂ V.
Initially, at 0-th step, the set of nodes with pseudo labels is empty, i.e., Vp0 = ∅. The teacher
model f0 generates pseudo-labels for all nodes in Vu0 . At each iteration r ∈ {1, ..., R}, a subset of
the unlabeled set Vur−1 in the previous step, Vp′r is selected based on a specific criteria. Thus, the
pseudo-labeled set at r-the step becomes Vpr = Vpr−1∪Vp

′

r , and unlabeled set Vur = Vur−1\Vp
′

r . The
pseudo-labels for these newly added samples are decided by the teacher model fr−1. Subsequently,
at the r-the step, the augmented Vpr along with the originally labeled nodes Vl are used to train
a new student model fr, which uses additional pseudo-labels to improve its performance. In our
setting, the student model fr in the r-th step is utilized as the teacher model in the (r + 1)-th step,
allowing the framework to iteratively refine pseudo-labels based on the student model’s improved
understanding. We use step, round, and iteration interchangeably.
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In previous self-training procedures, the goal for the student model fr at round r is to minimize the
loss function Lr(Vl ∪ Vpr−1). This loss captures the classification error of fr in predicting only the
currently available labels, including yl for Vl, and ŷpr−1 for Vpr−1. Note that yl is the ground-truth
labels, while ŷp

′

s ⊂ ŷpr−1 is predicted and determined by the corresponding teacher model fs for all
s ≤ r−1. Minimizing this loss function is considered as an approximation of the original goal which
is to compute the prediction loss over the entire data distribution V , i.e., Lr(V ), V ∼ V . However,
the existing self-training frameworks use Lr(Vl ∪Vpr−1) as an intermediate approximate loss which
often deviates from Lr(V ) due to two major reasons: (i) the noisy pseudo-labels ypr−1 ̸= ŷpr−1,
and (ii) the non-random label selection strategy where the distribution of labeled nodes Vl ∪ Vpr−1
gradually shifts from the underlying distribution V . To mitigate these, we design a framework where
the student model learns from the pseudo-labels that are not only correct but also help in reducing
the uncertainty of the model over the entire data distribution.

Entropy as a measure of uncertainty. Shannon Entropy H(·) is commonly used to measure the
uncertainty in a set of labeled nodes S and denoted as: H(S) = −

∑C
c=1 pc log pc, where pc is the

probability of class c on S. Besides node set, we also use Entropy to measure the uncertainty of a
single node vi: H(vi) = −

∑C
c=1 pc log pc, where pc is the probability for the label of vi being class

c. When pc of unlabeled nodes is estimated from the model predictions rather than being accessed
from the ground-truth, H(vi) is refereed to as the individual prediction entropy of node vi.

Our problem. We aim to quantify the following: After selecting pseudo-label node set in the r-th
iteration, how much information do we gain about the unlabeled data? Formally, let I(x1;x2) =
H(x1) − H(x1|x2) denote the expected mutual information (information gain) between variables
x1 and x2. In the r-th round, we choose only k nodes to allocate pseudo-labels. Our aim is to select
a node set Vp′r of size k, such that the future pseudo-labels (ŷp

′

r ) maximize information between
yur−1, the ground-truth labels of unlabeled nodes and the prediction ŷur−1 by the student model
fr. Mathematically, considering yur−1 and ŷur−1, the ground-truth and prediction distribution of the
unlabeled data respectively, our goal is as follows:

max
Vp′

r ⊂Vu
r−1

O(ŷp
′

r ) = I(yur−1; ŷ
u
r−1|ŷp

′

r , ŷ
p
r−1,G)], s.t. |Vpr

′| = k. (1)

Lemma 2.1. Maximizing the mutual information between unlabeled data distribution and its pre-
diction distribution is roughly equivalent to simultaneously maximizing entropy over the unlabeled
dataset and minimizing the sum of individual prediction entropy over all unlabeled nodes.

This lemma allows us to estimate unknown distribution with samples from data. Therefore, our new
objective—which depends on entropy—becomes the following:

max
Vp′

r ⊂Vu
r−1

O(ŷp
′

r ) ≈ 1

|Vur−1|
∑

vi∈Vu
r−1

H(ŷi|ŷp
′

r , ŷ
p
r−1,G)−H(ŷur−1|ŷp

′

r , ŷ
p
r−1,G),

s.t. |Vpr
′| = k, ŷur−1 =

1

|Vur−1|
∑

vi∈Vu
r−1

ŷi.

(2)

The proof is in Appendix B.1. In other words, to let predicted labels have more information about
ground-truth, the first term demands confident prediction on each sample, while the second term
encourage diversity of prediction label distribution of unlabeled data. Solving this objective is non-
trivial and has specific challenges as follows.
C1. The ground-truth distribution of labels yur−1 is unknown for estimating the problem objective in
Equation 1. We estimate it with the unlabeled samples by Equation 2.
C2. At the r-th round, we only have the predictions on the unlabeled data from the teacher model,
fr−1. In Equation 2, ŷur−1 represents the predictions made by the student model fr, which may be
inconsistent when compared to the teacher model’s predictions, fr−1, since the teacher model has
not been trained on the newly added labels, ŷp

′

r . Thus, a key challenge is to estimate the student
model’s predictions based on the current teacher model efficiently and accurately (Section 3.1).
C3. How do we account for the dependency between ŷp

′

r , nodes that are being selected during each
round? This dependency comes from the combinatorial nature of the objective and the graph—how
much information the selected nodes collectively provide about the unlabeled ones (Section 3.2).
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3 OUR METHOD: BANGS
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Figure 1: The workflow of BANGS. We utilize the teacher model’s predictions to propagate fea-
tures from both labeled nodes and candidate set S, estimating the logits of unlabeled nodes and the
Banzhaf value of set S (Equation 3). For simplicity, only the first step of feature propagation is
shown. Using Banzhaf values we rank the individual contributions of unlabeled nodes and add the
top k into the pseudo-label set. The student model is subsequently retrained using this updated set.

In this section, we introduce our framework BANGS (BAnzhaf value-based Node-selection for
Graph Self training), which consists of three major components unifying several concepts for
self-training. First, we propose to measure the mutual information between labels and predictions
through feature propagation from currently available labels and pseudo-labels to all the unlabeled
nodes. Second, we apply Banzhaf values (Owen, 1975) from the co-operative game theory literature
to compute the pseudo-label contribution for our self-training objective, taking into account the
combinatorial dependencies of the nodes (Medya et al., 2020). Third, we provide scalability design
and complexity analysis of BANGS. The pseudo-code and implementation details are in Appendix
C and E.

3.1 FEATURE ESTIMATION WITH PROPAGATION

A major challenge in selecting node at round r is having access to only the teacher model fr−1 but
not the student model fr. An alternative is to estimate the true utility (information gain) of selecting
the node set Vpr

′ to train fr using the predictions from fr−1. First, we introduce a feature propagation
mechanism to estimate the unknown student model predictions accurately and efficiently.

In a L-layer GNN, labeled node vi can propagate its label information to l-hop neighbors, l ≤ L.
Therefore, pseudo-labeling node vi will influence the distribution and entropy of its neighbor nodes.
In message-passing GNNs (Kipf & Welling, 2016; Velickovic et al., 2017), the influence of node
vi on its neighbor vj depends on the graph structure. We measure the influence by computing how
much the change in the input feature of node vi, x

(0)
i , affects the learned hidden feature of node vj ,

i.e., x(l)
j after l-step propagation (Xu et al., 2018b).

Definition 3.1 (Feature influence distribution). The influence score of node vi on node vj after l-
step propagation, Îf (i→ j, l), is defined as the sum of the absolute values of the expected Jacobian

matrix [|E[ ∂x
(l)
j

∂x
(0)
i

]|]. The feature influence distribution of node vj is defined by normalizing over all

nodes that affect node vj as follows: If (i→ j, l) =
Îf (i→j,l)∑

vz∈V Îf (z→j,l)
.
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Under certain assumptions, the feature influence magnitude depends only on the graph structure and
independent of the GNN model architecture, and it can be estimated via random walks.
Assumption 1. The L-layer GNNs have linear and graph structure dependent aggregation mecha-
nism, and ReLU activation. All paths in the computation graph of the model are activated with the
same probability of success.
Theorem 3.1 (Feature influence computation via random walk). With Assumption 1, If (i → j, L),
the influence distribution of any node vi ∈ V is nearly equivalent, in expectation to, the L-step
random walk distribution on G starting at node vj .

The proof is in Appendix B.4. Theorem 3.1 implies that the more likely vj walks to vi after L
steps, the stronger raw features x

(0)
i will influence the final representation x

(l)
j in a L-layer GNN.

During the forward propagation, node features are distributed across L steps by the L-layer GNN,
while the GNN is also trained via backpropagation. In this process, the gradient flows through the
propagation mechanism, effectively accounting for an infinite number of neighborhood aggregation
layers during the weight update. When L → ∞, the random walk distribution is equivalent to
personalized PageRank (PPR) (Gasteiger et al., 2018; 2022). Next, using PPR, we estimate the
student model output by summing up the feature influence of all labeled Vl, pseudo-labeled nodes
Vpr−1, and the new selection set Vpr

′ at round r.

Definition 3.2 (Output feature estimation with propagation). With Vpr
′ selected, the student model

fr logit estimation Ĥ(Vpr
′) = α(I−(1−α)Ã)−1X̂ , where α ∈ (0, 1] is a teleportation probability,

and Ã ∈ RN×N is the normalized adjacency matrix with added self-loop. Further, X̂ ∈ RN×C is
a matrix that stores prediction logits of the teacher model fr−1: for vj ∈ Vl ∪ Vpr−1 ∪ Vpr

′, the j-th
row X̂j,: stores logits of fr−1 for vj ; otherwise, X̂j,: = 0.

We only propagate labeled and pseudo-labeled node logits to simulate back-propagation, as the loss
function involves only the already labeled nodes in our framework. A theoretical case study on
1-layer GNN is provided in Appendix B.5. Based on this definition, we derive the final output
feature estimation for the unlabeled nodes by student model fr, which is subsequently processed
through the softmax function (Equation 16) followed by the entropy function to produce the final
entropy. Then, we can easily estimate the conditional mutual information between ŷur−1 and yur−1
through Equation 2. This estimation captures the contribution of pseudo-labels to all unlabeled
data, providing a global perspective and fast approximation without requiring model retraining.
Relying on the relation between the PPR and the random walk, the output feature estimation can be
implemented efficiently. A detailed complexity analysis is provided in Section 3.3.

3.2 MODELING INTERDEPENDENCIES THROUGH BANZHAF VALUES

To select a potentially good labeling set of nodes for self-training, it is crucial to compute the im-
portance of the set based on the individual contribution of the nodes towards the final classification
objective. However, the confidence of a node computed by the model might be dependent on the
confidence of other nodes (Liu et al., 2022b). Intuitively, as a generalization, adding a pseudo-
labeled node to the labeling set would affect the contribution of its neighborhood nodes. We show
that the independent node selection procedure does not provide the optimal solution for Equation 1
both theoretically (Appendix B.2) and empirically (Section 4.3).

To capture the combinatorial dependency of the contributions of the nodes, we adopt a game theory-
based measure, namely Banzhaf value (Wang & Jia, 2023; Chhablani et al., 2024). It assesses the
contribution of each player (node) to the success of a coalition (node set), by measuring how pivotal
their presence is for achieving a specific outcome, i.e., accuracy improvement in the next round. As
we only select a set of size k, we define a variant of Banzhaf values where we consider the coalitions
of size up to k:
Definition 3.3 (k-Bounded Banzhaf value). The k-Bounded Banzhaf value for node i ∈ Vur−1 with
utility function U(S) is defined as:

ϕ(i;U,Vur−1) := n−1
s

∑
S⊆Vu

r−1\vi,|S|=m−1
[U(S ∪ vi)− U(S)], (3)

where ns =
∑k
m=1

(|Vu
r−1|−1
m−1

)
denotes the number of all possible coalitions up to size k.
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Here S is a subset of nodes of Vur−1 excluding node vi, S∪vi denotes the union set of S and node vi.
U(S) denotes the utility function of S, which maps the set S to an importance score of the subset S.
Breaking down into individual nodes, the value of ϕ(i;U,Vur−1) measures the marginal contribution
of node vi and can be used to ranks all the candidate nodes.

Designing utility function. Next, we design a relevant utility function to measure the total contribu-
tion of pseudo-labels in S. A common choice for the utility function U(S) is the prediction accuracy
on a random hold-out subset of labeled nodes, which is an approximation of the contribution of
subset S to the overall accuracy on V (Wang & Jia, 2023). However, this utility function is often
neither effective nor efficient. First, the self-training task allows for only a few labels for validation;
and second, accessing accuracy requires either retraining the model or approximating the influence
function, which is time-consuming due to the exponential number of possible combinatorial sets.

To reflect the contribution of a subset to the overall performance in the next round of the self-training
procedure, we follow the definition from the previous section. Specifically,

Û(S) = O(Softmax(Ĥ(S)))− LCE(Softmax(Ĥ(Vl)),yl) (4)

where in the first term, O is illustrated in Equation 2 and prediction logits of unlabeled nodes are
estimated through Def 3.2. The second term captures the cross-entropy loss (see LCE in Table
4) between estimated probability and true label for all labeled data, preventing the confirmation
bias. The ground-truth utility function U(S) is defined in the same form, except using ground-truth
student model logits X̃ and not Ĥ . Û(S) measures the total information propagated to unlabeled
nodes by already labeled nodes Vl ∪ Vpr−1 and pseudo-labels of sampled set S.

Robust ranking under noisy utility function. Ideally a method should preserve the optimal ranking
order of nodes even with noisy utility function Û(·). Here, the noise arises due to the difference
between our estimation Ĥ(S) and the ground-truth student model logits X̃ . Let ϕ and ϕ̂ denote
the Banzhaf values from the ground truth utility U(·) and the approximated (or noisy) utility Û(·),
respectively. In the following, we prove that our computation of Banzhaf values preserve the ranking
of nodes under noisy utility function Û(·).
According to Def. 3.3, the difference between the Banzhaf value of node vi and vj is given by
Di,j(U) = k(ϕ(i) − ϕ(j)). U and Û will produce reverse order of Banzhaf value for node vi and
vj if and only if Di,j(U)Di,j(Û) ≤ 0. We can view U ∈ Rns as a vector that maps all coalitions
to corresponding utility values. Further, using the definition of ϕ in Def. 3.3, we can rewrite the
following:

Di,j(U) =
k

ns

k−1∑
m=1

(
|Vur−1| − 2

m− 1

)
∆

(m)
i,j (U), (5)

where ∆
(m)
i,j (U) :=

(|Vu
r−1|−2
m−1

)−1∑
S⊆Vu

r−1\{vi,vj},|S|=m−1[U(S ∪ vi)− U(S ∪ vj)] represents the
average distinguishability between any unlabeled node vi and vj on size m selection sets using the
original utility function U .

In the next theorem, we show that when the value of utility between adding vi and vj is sufficiently
large, and the estimation error in our utility function is moderate, the ranking of vi and vj remains
robust even under noisy utility estimation Û . The proof is in Appendix B.6.
Theorem 3.2. When the distinguishability of ground-truth utility between vi and vj on coali-
tions less than size k is large enough, minm≤k−1 ∆

(m)
i,j (U) ≥ τ , and the perturbation in util-

ity functions is small such that
∥∥∥Û − U

∥∥∥
2

≤ τ
√∑k−1

m=1

(|Vu
r−1|−2

m−1

)
, then Di,j(U)Di,j(Û) =

(ϕ̂(i)− ϕ̂(j))(ϕ(i)− ϕ(j)) ≥ 0.

Ranking nodes for self-training selection. Recall that our goal is to select a set of k nodes
that maximizes the objective in Equation 2, approximated by our utility function Û . Next we
guarantee that our selection of top-k nodes even with Û is within an error bound. Let us de-
note Top(ϕ, k) as the top k node set ranked with ϕ. Based on our objective, we only require
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Di,j(U)Di,j(Û) ≥ 0 for top-k node vi and non-top-k node vj . According to Theorem 3.2, be-

sides
∥∥∥Û − U

∥∥∥
2
≤ τ

√∑k−1
m=1

(|Vu
r−1|−2

m−1

)
, we only need minm≤k∆

(m)
i,j (U) ≥ τ for node pairs in

{(vi, vj)|vi ∈ Top(ϕ, k), vj /∈ Top(ϕ, k)} to ensure Top(ϕ, k) = Top(ϕ̂, k). This is a less stricter
condition, which only requires the utility function to distinguish between selected nodes and non-
selected nodes, instead of any two nodes.

In conclusion, our Banzhaf value is tailored for the node self-training setting: 1) it adjusts the
threshold for the size of coalitions based on the number of pseudo-labels to add, and 2) it relaxes the
condition for ranking preservation without requiring comparison between all pairs of nodes.

3.3 COMPLEXITY ANALYSIS

We use Maximum Sample Reuse (MSR) Monte Carlo estimation (Wang & Jia, 2023) to calculate
Equation 3 to speed up node selection. In expectation, ϕ(i;U, V ) = n−1

s (ES [U(S∪vi)]−ES [U(S)]),
where S ∼ S ⊆ Vur−1\vi, |S| = m − 1. Draw B samples of node sets independently from
distribution, denoted as S = {S1, ...,Sb}. In terms of node vi, the samples could be catego-
rized into two classes: the samples including vi, S∈i = {S ∈ S : vi ∈ S}; and the sam-
ples not containing vi, S/∈i = {S ∈ S : vi /∈ S}. Then ϕ(i;U,V) can be approximated by
ϕ̂MSR(i;U,V) = 1

|S∈i|
∑
S∈S∈i

U(S)− 1
|S/∈i|

∑
S∈S/∈i

U(S).

Further, the utility function design involves PPR matrix. The computation of inverse Â−1 in Def.
3.2 is difficult in space for large graph. We instead use H-step power iteration, X̂(h) = (1 −
α)ÂX̂(h−1) + αX̂(0) for h ≤ H , which is initialized by X̂(0) = X̂ . The L-layer representation
Ĥ(Vpr

′) := X̂(H) is the final estimation.

Total Time and Space Complexity. We provide a detailed analysis in Appendix C. The final running
time mainly depends on the selection of GNN architecture (e.g., type, the number of layers) in
model retraining, along with Banzhaf sampling number and selected node set size. In practice, the
model retraining step usually will take more time than the node selection step. GivenR self-training
rounds, the total complexity isO(R|V|(H(|V|+Bk)C+Lnune|V|)) whereH ,B, L, nu ,ne denote
the PPR power iteration number, the sample number, and the number of layers, hidden units, and
training epochs in training model. We also provide running time analysis in Appendix E.

The space bottleneck mainly lies in storing and multiplying Â with intermediate state X̂(h−1). Since
the final logits are added influence from every available labels, it is suitable for batch computing.
Further, by storing with a sparse matrix, the space complexity at most O(|Eb||V b|C) at the r-th
iteration, where V b means the batch of labeled nodes, and Eb denotes edges connected to V b in Â.

4 EXPERIMENTS

In this section, we conduct experiments on 1) comparing our methods and baselines on the base
GNN model across different datasets; 2) ablation studies; 3) hyperparameter analysis on the number
of candidate and selected nodes; 4) robustness under noisy labels, different portions of training
data, and different base GNN models. The experimental results demonstrate the effectiveness of our
framework, particularly the integration of Banzhaf values and calibration.

4.1 SETTINGS

We test baseline methods and our method on five graph datasets: for Cora, Citeseer, and
PubMed (Yang et al., 2016), we follow their official split; as for LastFM (Rozemberczki & Sarkar,
2020), Flickr (Zeng et al., 2019), we split them in a similar portion that training, validation, and test
data take 5%, 15%, and 80%, respectively. The base model is set to Graph Convolutional Network
(GCN) (Kipf & Welling, 2016) by default, while we also include results for other GNN models. The
performance is evaluated on the best prediction accuracy of official test data; otherwise, we use all
of the 80% unlabeled test data for evaluation. For each experiment, we select 10 different seeds and
display their mean and standard deviation values. The best and second-best results are emphasized
in bold and with underlines, respectively. More implementation details are in Appendix D.
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Table 1: Node classification accuracy (%) with graph self-training strategies on different datasets.
Mean, standard deviation, and single-side t-test on our method and second-best methods are demon-
strated. Significance levels of 0.10 and 0.05 are indicated by "*" and "**".

Dataset Baselines BANGS
Raw M3S CaGCN DR-GST Random CPL

Cora 80.82±0.14 81.40±0.29 83.06±0.11 83.04±0.38 83.16±0.10 83.72±0.52 84.23±0.62*
Citeseer 70.18±0.27 72.00±0.21 72.84±0.07 72.50±0.26 73.38±0.13 73.63±0.19 73.96±0.29**
PubMed 78.40±0.11 79.21±0.17 81.16±0.10 78.10±0.39 79.48±0.32 81.00±0.24 81.60±0.34**
LastFM 78.07±0.31 79.49±0.43 79.60±1.02 79.31±0.55 79.42±0.07 80.69±1.11 83.27±0.48**
Flickr 49.53±0.11 49.73±0.20 49.81±0.28 49.67±0.10 50.10±0.18 50.02±0.22 50.23±0.25

Baselines. We compare our methods with the following baselines.
1) Raw GNN is the base model without self-training; 2) M3S (Sun et al., 2020) uses deep-clustering
to label nodes and selects top k confident nodes; 3) CaGCN (Wang et al., 2021) calibrates confidence
and selects nodes surpassing a pre-defined threshold; 4) DR-GST (Liu et al., 2022a) selects nodes
surpassing a given threshold and reweights pseudo-labels in the loss of training student models
with information gain; 5) Random selection shares the same hyperparamters with CPL Botao et al.
(2023) and the nodes are selected randomly; 6) CPL (Botao et al., 2023) computes the multi-view
confidence with dropout techniques and selects the top k confident nodes. We employ cross entropy
loss Cover et al. (1991) on the already pseudo-labeled and labeled data as the loss function in model
re-training for all methods. For a fair comparison, we select the suggested hyperparameters for all
baseline methods, especially in the node selection criterion. For instance, we use the suggested
confidence threshold by CaGCN, e.g., 0.8 for Cora and 0.9 for Citeseer. We set the max iteration
number as 40, and use validation data to early stop. For node selection, we sample 500 times for
calculating Banzhaf values. The two varying hyperparameters are the number of candidate nodes K
and selected nodes k in each iteration. The value of k is set as 100 for small-scale graphs, i.e., Cora,
Citeseer and PubMed, and 400 for other larger graphs; K = k + 100.
Calibration. Confidence calibration refers to aligning the confidence with the prediction accuracy,
such that high confidence nodes have correct labels at a high probability. Before node selection, we
apply confidence calibration to reduce noise in pseudo-labels and alleviate confirmation bias (Wang
et al., 2021; Radhakrishnan et al., 2024). Further, calibration can reduce noise in utility function
estimation, which is based on output logits propagation. Here, we use ETS (Zhang et al., 2020) for
calibration, except CaGCN for PubMed. We also provide a case study on calibration in App. E.

4.2 PERFORMANCE EVALUATION

We select a 2-layer GCN as the base model and compared the node classification accuracy using
various strategies. Notably, previous methods do not clearly define a stopping criterion, instead us-
ing the number of iterations as a hyperparameter. Therefore, we provide two fair comparisons. (1)
Table 1 presents the best test accuracy achieved within the same 40 iterations for all methods. (2) In
Table 6 of Appendix E.1, we also report the final test accuracy in the last round based on the number
of suggested iterations for baselines. For our method, we present the test accuracy obtained by early
stopping using validation data. Additionally, we performed a t-test to determine whether the mean
accuracy of our methods is significantly greater than that of the second-best method. Significance
levels of 0.10 and 0.05 are marked with "*" and "**", respectively. Our methods consistently outper-
form other confidence-based methods across most of the datasets. This supports that our framework,
BANGS—especially combining Banzhaf value and information gain—is effective in practice.

4.3 ABLATION STUDIES

In this set of experiments, we explore how different parts of node selection design help enhance per-
formance in Table 2. Note that for a fair comparison, all experiments are under the same self-training
framework and parameter. We compare with 1) Random selection, and 2) Conf(Uncal), selecting
the top k most confident ones using uncalibrated confidence. To show that our performance gain
does not depend only on confidence calibration, we compare with both 3) Conf(CaGCN) (Wang
et al., 2021) and 4) Conf(GATS) (Hsu et al., 2022), which also select top confident k nodes but
calibrate confidence with CaGCN and GAT, respectively. Compared with CaGCN, GATS advances
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Table 2: Ablation study of prediction accuracy (%) on different datasets.

Dataset Random Conf(Uncal) Conf(CaGCN) Conf(GATS) BANGS(Uncal) BANGS(No Banzhaf) BANGS
Cora 83.16±0.10 83.70±0.56 83.72±0.49 83.76±0.18 83.73±0.43 83.03±0.66 84.23±0.62
Citeseer 73.38±0.13 73.74±0.19 74.02±0.52 74.18±0.38 73.64±0.33 72.75±0.50 73.96±0.29
PubMed 79.48±0.32 80.00±0.36 80.13±1.16 80.25±0.37 80.13±0.34 78.42±0.61 81.60±0.34
LastFM 79.42±0.07 80.69±1.11 83.23±0.25 80.31±0.78 80.77±1.10 82.62±0.44 83.27±0.48
Flickr 50.10±0.18 50.02±0.22 50.00±0.25 49.90±0.32 50.01 ± 0.26 49.98±0.17 50.23±0.25

graph calibration method through identifying and addressing multiple miscalibration-related factors.
Though GATS is not designed for graph self-traning task, we adapt it to the same framework similar
to Conf(CaGCN); We also explore whether each component is contributing to the final combination
by removing each component respectively: 4) BANGS(Uncal): our strategy without calibration; 5)
BANGS(No Banzhaf): directly selecting the top k informative nodes from top k + 100 confident
ones; and 6) BANGS, the proposed strategy.

Banzhaf value is an indispensable part of our methods: without it, the overlap in information propa-
gated by previously selected nodes would be ignored. This is supported by our theoretical evidence
(please see Appendix B.2 and B.6) and the significant decrease in performance in our experiments.
On the other hand, calibration is effective in lifting the accuracy of both confidence-based methods
and our methods, preventing noisy pseudo-labels from misguiding the training process. Except in
Citeseer, our method benefits from calibration in getting correct and informative pseudo-labels.

4.4 HYPERPARAMETER ANALYSIS

Figure 2a show analysis of two hyperparameters collectively. In the first set of experiments, we set
k, the number of nodes selected in iteration as 0, 5, 20, 50, 100, 200, 300, 400, 500, respectively,
where 0 equals to raw GCN. The candidate nodes for k smaller than 100 is set as 2k, otherwise
k + 100. The best number of added labels is around 50, with a balance between exploit and explo-
ration – fewer nodes discourages student model from effectively and efficiently learns pseudo-label
information, while more nodes tend to bring noisy and biased information to misguide model before
it generalizes well. Though our method is more sensitive to the number of selected nodes in each
iteration, the performance always outperform raw GCN. In the second set, we fixed k as 100, and
K as 100, 125, 150, 175, 200, 250, 300, 400, 500. The more candidate nodes allows more possibly
informative nodes to be included, while also have the risk of including noisy labels. This concern
seems unnecessary in our experiments on Cora – on one hand, nodes generally have high confidence
and therefore high accuracy after calibration; on the other hand, though including some more in-
correct pseudo-labels, our selected correct nodes can effectively propagate maximized information
benefiting both current and future iterations.

4.5 ROBUSTNESS

Noisy Data. We randomly select σ portion of the training and validation nodes, and flip each label
to another uniformly sampled different labels. The test accuracy of raw GCN, CPL (confidence
only), and our methods on Cora are shown in Figure 2b. Though the initial performance is close,
our methods significantly remain more robust on more noisy data. Interestingly, with a small portion
(5%) of noise, our model would generalize better than on clean labels.

Different Portions of Data. In this set of experiments, we randomly select β% portion of training
data and 15% validation data and show the test accuracy of raw GCN, CPL, and our methods.
Different from official split that selects equal number of labels across all classes, uniform sampling
leads to imbalanced labels and decreased performance. In this case, information redundancy is more
of a problem – confidence based methods tend to select majority class to pseudo-label. As shown in
Figure 2c, our methods consistently outperform other methods, especially with fewer training labels.

Different Base Models. Note that we have assumed the base model to be a L-layer GNN with a
graph structure dependent linear aggregation mechanism and ReLU activation. Besides GCN, this
assumption is often not strictly satisfied, but we demonstrate that our strategy can still preserve its
validity, as shown in Table 3. Specifically, The aggregation mechanism of GraphSAGE (Hamilton
et al., 2017) sums neighboring node features followed by normalization based on the degree of the
nodes. GAT (Velickovic et al., 2017) places different weights on neighbors during aggregation ac-
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(a) Impact of #selected and #candi-
date nodes

(b) Impact of noisy labels (c) Impact of training labels

Figure 2: Plots of hyperparameter and robustness analysis on Cora dataset. Our method retains the
validity and superiority over baselines under different settings and hyperparameters.

Table 3: Test accuracy (%) on Cora dataset with different base models. Our method outperforms the
baselines across different GNN models in most settings.

Base
Model

Baselines BANGS
Raw M3S CaGCN DR-GST Random CPL

GCN 80.82±0.14 81.40±0.29 83.06±0.11 83.04±0.38 83.16±0.10 83.72±0.52 84.23±0.62
GraphSAGE 81.50±0.03 82.86±0.72 83.04±0.36 83.50±0.21 83.01±0.38 83.43±0.15 83.94±0.32
GAT 81.13±0.32 82.80±1.88 81.70±0.28 83.33±1.14 83.10±0.22 83.65±0.35 83.86±0.50
GIN 77.47±0.57 81.35±0.21 80.75±0.44 78.56±0.55 78.72±0.37 80.01±0.51 80.77±0.68

cording to self-attention. Despite non-linearity of aggregation in GraphSAGE and GAT, our method
preserves its best performance compared to baselines. With the base model as GIN (Xu et al., 2018a)
with max aggregation, our method demonstrates the second-best performance.

5 CONCLUSIONS

In this paper, we have addressed the limitations in graph self-training by introducing a comprehen-
sive framework that systematically tackles the node selection problem using a novel formulation
with mutual information. We have proposed BANGS which is a game theory-based method with the
utility function based on feature propagation. While BANGS exploits the combinatorial structure
among the nodes, we have demonstrated the suboptimality of independent selection both theoreti-
cally and empirically. Additionally, we have shown that BANGS is able to preserve correct ranking
even with noisy utility function. Extensive experiments validate the effectiveness and robustness of
BANGS across different datasets, base models, and hyperparameter settings. These findings under-
score the potential of our approach to advance graph-based learning models.

Limitations and Future Work. The setting of current self-training methods including ours has sim-
plified assumptions. For example, the pseudo-labels selected in previous rounds are not considered
to updated, and the teacher model in the next round are the same as the student model in the previous
round. An interesting future direction would be designing methods under more general or different
settings, e.g., on heterophilic and large-scale graphs. Another future direction is to improve the
efficiency of the utility function. One potential solution is through the use of influence functions,
which, in current research, have been primarily explored on specific networks, e.g., GCNs (Chen
et al., 2019; Kang et al., 2022). We believe extending this approach to more complex GNNs could
lead us to a more efficient framework.
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A NOTATION TABLE

Table 4: Frequently used notations and their explanations

Notation Explanation
G Graph, G = {A,X,yl}
A Adjacency matrix of graph G
X Feature matrix of nodes
r Iteration round number
Vl Set of labeled nodes
Vpr Set of all pseudo-labeled nodes
Vur Set of unlabeled nodes in r-th round
Vp′r Set of newly added pseudo-labeled nodes in r-th round

yl,ypr ,y
u
r Ground-truth Labels of labeled, pseudo-labeled and unlabeled nodes in r-th round

fr Student model at r-th round, also equivalent to the teacher model at (r + 1)-th round
l Influence propagation step number

Îf (i→ j, l) The feature influence of node vi on node vj after l-steps
H(vi) Entropy (uncertainty) of (in) a node vi
O(Vp′r ) The goal of self-training with Vp′r selected in the r-th round

S Sampled node set
U(·) The noiseless utility function
Û(·) The estimated utility function

ϕ(i;U,V) Banzhaf value of node vi in candidate set V
k The number of selected nodes in each round
K The number of candidate nodes in each round

LCE(ŷ,y) The cross-entropy loss between ŷ and y, calculated by − 1
|y|
∑|y|
i=1

∑C
c=1 yi,c log(ŷi,c)

B PROOFS

B.1 MUTUAL INFORMATION ESTIMATION

This section proves Lemma 2.1. Denote the distribution of unlabeled data as y and its prediction
as u. Following Bridle et al. (1991); Berthelot et al. (2019); Zhao et al. (2023), the objective of
semi-supervised learning is formalized as

I(y;u) =

∫∫
p(y, u) log

p(y, u)

p(y)p(u)
dydu

=

∫
p(y)dy

∫
p(u|y) log p(u|y)∫

p(y)p(u|y)dy
du.

(6)

Given we have N samples. Writing with integrals, we obtain

I(y;u) =Ey[
∫
p(u|y) log p(u|y)

Ey[p(u|y)]
du] (Taking expectation over y)

=Ey[
N∑
i

p(ui|y) log
p(ui|y)

Ey[p(ui|y)]
] (Taking expectation over u)

=Ey[
N∑
i

p(ui|y) log p(ui|y)]−
N∑
i

Ey[p(ui|y)] logEy[p(ui|y)] (Log rule)

=H(Ey[f(u|y)])− Ey[H(f(u|y))].

(7)

In the last line, the first term is entropy of the unlabeled dataset prediction distribution, and the
second term equals to the sum of individual prediction entropy.
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Next, we connect this lemma with our objective function design. In the r − 1 round, u is the
prediction distribution of teacher model fr−1, previous works that employ Equation 7 to optimize
parameters of teacher prediction model fr−1 in the current round. In our model, u is the student
model prediction distribution. While we fix the teacher model, and use Equation 7 to select nodes,
such that the student model fr in the next round is improved. In a nutshell, we do not aim to optimize
the current model but to let student model learn maximal mutual information about unlabeled data.

According to Equation 1, the goal can be approximated by an average over the unlabeled data set:

I(yur−1; ŷ
u
r−1|ŷp

′

r , ŷ
p
r−1,G)

≈ 1

|Vur−1|

|Vu
r−1|∑
i=1

C∑
c=1

fr(u) log fr(u)−
C∑
c=1

(
1

|Vur−1|

|Vu
r−1|∑
i=1

fr(u)) log(
1

|Vur−1|

|Vu
r−1|∑
i=1

fr(u))

≈ 1

|Vur−1|
∑

vi∈Vu
r−1

H(ŷi|ŷp
′

r , ŷ
p
r−1,G)−H(ŷur−1|ŷp

′

r , ŷ
p
r−1,G),

(8)

where ŷur−1 ≈
∑|Vu

r−1|
i=1 fr(u), is approximated by unlabeled data.

B.2 WHY INDEPENDENT SELECTION IS NOT OPTIMAL?

In this section, we prove that independent selection is not optimal from two perspectives: the non-
submodularity of the optimization problem, and the inequality of information gain.

By conditional information, our objective can be converted to

I(yur−1; ŷ
u
r−1|ŷp

′

r , ŷ
p
r−1,G)

=I(yur−1; ŷ
u
r−1, ŷ

p′

r |ŷpr−1,G)− I(yur−1; ŷ
p′

r |ŷpr−1,G).
(9)

Non-submodularity. Interestingly, this objective function does not satisfy submodularity property,
thus, a greedy algorithm does not guarantee approximation via submodularity. In graph learning,
the logits are predicted by GNN fitted on node features, labels, and graph structure. Submodularity
requires that for each S ⊂ T and every node v /∈ T , U(S ∪v)−U(S) > U(T ∪v)−U(T ). We can
provide a simple counterexample to prove that the objective function is not submodular. Consider
a graph with node v1,v2,v3,v4, and edge between (v1, v2), (v2, v3), and (v3, v4). Node v2 have two
neighbors, Node v1 and v3. For simplicity, consider binary classification, node v1, v2, v4 belong to
class 0, and v3 is class 1. Suppose an initial model can predict each node to the right class with 0.8.
Let S = ∅, T = {v1}, and v = v3. When adding v3 of class 1, the uncertainty over all other nodes
will increase. This is because most GNNs have homophily assumption, and the other nodes are from
a different class as v3. Therefore, U(S ∪ v) − U(T ) will be negative. When we have T = {v1},
adding a v3 from class 1 would still raise uncertainty over the unlabeled v2 and v4. But since GNNs
aggregate information from neighbors, the influence from v3 of different class is partially offset by
v1 of the correct class. Therefore, U(T ∪ v)− U(T ) > U(S ∪ v)− U(S).

Inequality of Information. Denote the pseudo-labels of n nodes in Vpr
′ as {ŷp

′

1 , . . . ŷ
p′

n }. According
to chain rule of mutual information, the first item

I(yur−1; ŷ
u
r−1, ŷ

p′

r |ŷpr−1,G) =I(yur−1; ŷ
u
r−1, ŷ

p′

1 , . . . ŷ
p′

n , |ŷ
p
r−1,G)

=I(ŷur−1, ŷ
p′

1 ; yur−1|ŷ
p
r−1,G) + I(ŷur−1, ŷ

p′

2 ; yur−1|ŷ
p′

1 , ŷ
p
r−1,G) + . . .

+ I(ŷur−1, ŷ
p′

n ; yur−1|ŷ
p′

1 , . . . ŷ
p′

n−1, ŷ
p
r−1,G)

(10)

While previous independent selection usually implictly optimize for a different goal:

max
V p
r

′⊂Vu
r−1

I(ŷp
′

1 ; yur−1|ŷ
p
r−1,G) + I(ŷp

′

2 ; yur−1|ŷ
p
r−1,G) + · · ·+ I(ŷp

′

n ; yur−1|ŷ
p
r−1,G), (11)
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or, considering the correlation with other labels,

max
V p
r

′⊂Vu
r−1

I(ŷur−1, ŷ
p′

1 ; yur−1|ŷ
p
r−1,G) + I(ŷur−1, ŷ

p′

2 ; yur−1|ŷ
p
r−1,G) + . . .

+ I(ŷur−1, ŷ
p′

n ; yur−1|ŷ
p
r−1,G),

(12)

Specifically, the matched items in Equation 10 and 11 or 12 usually do not equal to each other.
Take the j-th item and one node vi ∈ Vur−1 as an example. Their difference, namely interation
information in information theory, is formulated as

∆1
j = I(ŷur−1, ŷ

p′

j ; yur−1|ŷ
p′

1 , . . . ŷ
p′

j−1, ŷ
p
r−1,G)− I(ŷur−1, ŷ

p′

j ; yur−1|ŷ
p
r−1,G) (13)

Nonetheless, by the non-monotonicity of conditional mutual information, conditioning can either
increase, preserve, or decrease the mutual information between two variables (Vu, 2024). This is the
case even when random variables are pairwise independent.

Similarly, we can derive the interaction information for the second item in Equation 9 that:

∆2
j = −I(ŷp

′

j ; yur−1|ŷ
p′

1 , . . . ŷ
p′

j−1, ŷ
p
r−1,G) + I(ŷp

′

j ; yur−1|ŷ
p
r−1,G) (14)

Only when
∑n
j=1(∆

1
j + ∆2

j ) = 0, independent selection provides the optimal estimation of goal.
However, this is not guaranteed in practice without further assumption. Therefore, a combinatorial
selection method would be more effective than the independent selection procedure.

B.3 PRELIMINARY: GRAPH NEURAL NETWORKS

To start proof, we first formally formulate Graph Neural Networks (GNN). For node vi, GNNs
utilize its feature xi ∈ RD of D size as the initial embedding x

(0)
i and adjacency matrix between

vi and its neighborhood nodes Ni. Similarly, GNNs use Ai,j to create inital edge embedding e
(0)
i .

Denote the embedding in layer l (i.e., after l-th propagation) as x(l)
i , and its value at the d’th position

as x(l)
id . Commonly, GNNs can be described through:

x
(l)
i =fnode(x

(l−1)
i , AGGvj∈Ni [fmsg(x

(l−1)
i ,x

(l−1)
j , Ai,j)]),

e
(l)
i =fedge(x

(l)
i ,x

(l)
j , e

(l−1)
i ).

(15)

Here,AGG[·] is a function to aggregate the node and its neighborhood embeddings, and fnode, fedge
and fmsg are functions, which can be linear layers or models with skip connections.

Deonote the output logit value at dimension d in the last L layer as x(l)i,d. The final predicted proba-
bility of class d is often calculated through softmax function:

Pi,d = Softmax(x(L)i,d ) =
ex

(L)
i,d∑C

c=1 e
x
(L)
i,d

. (16)

In a semi-supervised setting, we have access to ground-truth labels yl of a few nodes Vl. In back
propagation, the labels influence the weight and bias of fnode and fedge through gradient descent.

B.4 CONNECTION BETWEEN FEATURE INFLUENCE AND RANDOM WALK

Proof. In a general neural network with ReLU activation, the d1-th output logit can be written as
x
(L)
d1

= 1
λ(L−1)/2

∑ϕ
q=1 zd1,qxd1,q

∏L
l=1W

(l)
d1,q

(Choromanska et al., 2015). λ is a constant related
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to the size of neural network, and L is the hidden layer number. Here, ϕ denotes the total number
of paths, zd1,q ∈ 0, 1 denotes whether computational path p is activated, xd1,q represents the input
feature used in the q-th path of logit d1, and W (l)

d1,q
is the used entry of weight matrix at layer l. By

assuming equal activation probability of ρ, we get:

x
(L)
d1

=
ρ

λ(L−1)/2

ϕ∑
q=1

xd1,q

L∏
l=1

W
(l)
d1,q

. (17)

Under Assumption 1, the l layer feature updating equation in Equation 15 can be rewritten as

x
(l)
i = ReLU(W (l−1) ·AGGvj∈Ni

[fmsg(x
(l−1)
i ,x

(l−1)
j , Ai,j)]), (18)

where W (l) is a trainable weight matrix in the l-th layer of GNN.

According to Gasteiger et al. (2022), from the view of path, the feature of starting node i is influ-
enced by ending node j by all ϕ activated paths q through the acyclic computational graph struc-
ture, derived from the GNN structure. The activation status of path q depends on ReLU function.
Therefore,x(l)

i,d the d-th logit of x(l)
i , could also be expressed as

x
(l)
j,d =

1

λ(L−1)/2

∑
vi∈V

ψ∑
p=1

ϕ∑
q=1

zi,d,p,qxi,d,p,q

L∏
l=1

a
(l)
i,pW

(l)
d,q, (19)

Here, we introduce data-based graph path q, which is decided by G. zi,d,p,q ∈ {0, 1} is a indicator
of whether the graph path q is active with the ReLU in the computational graph. Note that p is
counted to ψ separately for each combination of the output(ending) node vi, logit position d and
the computational graph path q. Similarly, define xi,d,p,q is the input feature of vi used in the q-th
computational path, for graph path p at output logit d. a(l)i,p denotes the normalized graph-dependent

aggregation weights of edges, parameter of AGG[·]. W (l)
d,q is the entry for layer l and logit d in the

weight matrix W , decided by the GNN structure.

According to Definition 3.1, the L-step influence score of node vi on vj is computed by

Îf (i→ j, L) =
∑
d1

∑
d2

|E[
∂x

(L)
j,d1

∂x
(0)
i,d2

]|. (20)

Under a L-layer GNN, we calculate the derivative of Equation 19:

∂x
(L)
j,d1

∂x
(0)
i,d2

=
1

λ(L−1)/2

ψ∑
p=1

ϕ′∑
q=1

zi,d1,p,q

L∏
l=1

a
(l)
i,pW

(l)
d1,q

, (21)

where the x
(L)
j,d1

represents the output feature of vj at d1 position, x(0)
i,d2

represents the input feature
of vi at d2 position. ϕ′ denotes the number of computational paths related to input dimension d2 and
output dimension d1. In Assumption 1, all paths in the computation graph of the model are activated
with the same probability of success ρ, i.e., E[zi,d1,p,q] = ρ, then the expectation of Equation 21
can be written as follows. The second line in this equation holds, as a(l)i,p only depends on the path

in graph G, independent of W (l)
d,q .
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E[
∂x

(L)
j,d1

∂x
(0)
i,d2

] =
1

λ(L−1)/2

ψ∑
p=1

ϕ′∑
q=1

ρ

L∏
l=1

a
(l)
i,pW

(l)
d1,q

=
ρ

λ(L−1)/2
(

ψ∑
p=1

L∏
l=1

a
(l)
i,p)(

ϕ′∑
q=1

L∏
l=1

W
(l)
d1,q

).

(22)

Here, item
∑ψ
p=1

∏L
l=1 a

(l)
i,p sums over probabilities of all possible paths of length L from node vj

to vi, which is also the probability that a random walk starting at vi and ending at vj after taking
L steps. Denote this probability as P j→i

L . Since this random walk item is independent of feature
dimension d1 and d2, summing up Equation 22, we get another expression of Equation 20:

Îf (i→ j, L) =
ρ

λ(L−1)/2
P j→i
L (

∑
d1

∑
d2

|
ϕ′∑
q=1

L∏
l=1

W
(l)
d1,q

|). (23)

Note that W (l), as trainable weight matrix in layer l, shares the same value for all nodes. Except
P j→i
L , all other items are independent on nodes. Therefore, the expectation of Îf (i → j, L), the

influence distribution of any node vi ∈ V is in proportion to the expectation of L-step random walk
distribution on G starting at node vj . Since If (i → j, L) =

Îf (i→j,L)∑
vz∈V Îf (z→j,L)

is normalized over all

nodes, the influence distribution is equivalent in expectation to random walk distribution. Formally,
Equation 23 can be simplified to

If (i→ j, L) ∼ P j→i
L (24)

Theorem proved.

B.5 CASE STUDY: 1-LAYER GNN

B.5.1 BOUNDING ESTIMATION ERROR OF ENTROPIES BY LOGITS

Lemma B.1. Given two distributions P1 = {p1,d} and P2 = {p2,d}, the probabilities are obtained
from logits using the softmax function in Equation 16, and assume the difference in logits x1,d =
x2,d + cj for every dimension d. Then the final probability distribution P1 is a reweighted version
of P2:

p1,j =
ecj∑
k∈C e

ck
· p2,j .

Proof. To make P1 and P2 identical, we require p1,j = p2,j for all j ∈ C. This implies:

ex1,j

ex2,j
=

∑
k∈C e

x1,k∑
k∈C e

x2,k

Taking log on both sides:

x1,j − x2,j = some constant c

This shows that x1,j and x2,j must differ by the same constant across all classes j, i.e., for all j ∈ C,
where c is a constant independent of j.

Now, if the difference between the logits x1,j and x2,j is not constant but depends on the class j as
cj , then we have:
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x1,j = x2,j + cj

In this case, the probabilities p1,j can be expressed as:

p1,j =
ex1,j∑
k∈C e

x1,k
=

ex2,j+cj∑
k∈C e

x2,k+ck
=

ecj∑
k∈C e

ck
· p2,j

Thus, the final probability distribution P1 is a reweighted version of P2, where each probability p2,j
is scaled by a factor ecj and then normalized across all classes C.

Lemma B.2. When cj in Lemma B.1 is small enough, and for any class i, j, |ci − cj | ≤ δ, then the
absolute entropy difference between P1 and P2:

|H(P1)−H(P2)| ≤
δ

2
.

Proof. According to definition of Shannon entropy,

H(P1)−H(P2) = −
∑
j∈C

p1,j log p1,j +
∑
j∈C

p2,j log p2,j .

By substituting with relationship between p1,j and p2,j in Lemma B.1, we get

H(P1)−H(P2) = −
∑
j∈C

(
ecj∑
k∈C e

ck
· p2,j

)(
cj − log

∑
k∈C

eck

)
= −

∑
j∈C

p1,j ·

(
cj − log

∑
k∈C

eck

)

For small cj , an approximation could be:

H(P1)−H(P2) ≈ −
∑
j∈C

p1,j · (cj − c̄)

where c̄ is the average of cj . This shows that the entropy difference is a weighted sum of deviations
of cj from its mean, weighted by the probabilities p1,j .

Further, if for any class i, j, |ci − cj | ≤ δ, then

|cj − c̄| ≤ δ

2
.

Therefore, the entropy estimation error

|H(P1)−H(P2)| ≤
∑
j∈C

p1,j
δ

2
=
δ

2

∑
j∈C

p1,j =
δ

2
.

B.5.2 PREDICT THEN PROPAGATE

Comparing with Equation 22, we are interested in the logit value E[x(L)
j,d1

], instead of derivative

E[
∂x

(L)
j,d1

∂x
(0)
i,d2

]. Therefore, the computational paths are not only those connected to input feature dimen-

sion at d2 position and output at d1, but all activated computational paths that output at d1. Thus,
from Equation 21, we get:

E[x(L)j,d1
] =

ρ

λ(L−1)/2

∑
vi∈V

ψ∑
p=1

ϕ∑
q=1

xi,d1,p,q

L∏
l=1

a
(l)
i,pW

(l)
d1,q

. (25)

Further, we assume E[xi,d1,p,q] = Xd1,q , which means the expectation of input feature only depends
on output position d1 and computational path q . Thus, Equation 25 is converted to:
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E[x(L)j,d1
] =

ρ

λ(L−1)/2

∑
vi∈V

ψ∑
p=1

ϕ∑
q=1

Xd1,q
L∏
l=1

a
(l)
i,pW

(l)
d1,q

=
ρ

λ(L−1)/2

∑
vi∈V

(

ϕ∑
q=1

Xd1,q
L∏
l=1

W
(l)
d1,q

)(

ψ∑
p=1

L∏
l=1

a
(l)
i,p)

=
∑
vi∈V

(
ρ

λ(L−1)/2

ϕ∑
q=1

Xd1,q
L∏
l=1

W
(l)
d1,q

)P j→i
L .

=
∑

vi∈N (j)

E[x
′

d1 ]P
j→i
L .

(26)

The final line is due to E[x′

d1
] = ρ

λ(L−1)/2

∑ϕ
q=1 Xd1,q

∏L
l=1W

(l)
d1,q

, and P j→i
L = 0 for any node

except neighborhoods of vj , N (j). E[x′

d1
] is the expectation of final output for node vi at dimension

d1 by a standard neural network, without neighborhood information aggregation as in GNNs.
This means each node’s features are processed independently through the layers.

By Definition 3.2 and Theorem 3.1, we estimate x(L)j,d1
with ĥj,d1 , which can be calculated through

random walk:

ĥ
(L)
j,d1

(Vpr
′) =

∑
vi∈Vl∪S∪Vp

r−1

x̂
(L)
i,d1

P j→i
∞ , (27)

where x̂(L)i,d1
enote the output logit by trained teacher model fr−1, while ĥj,d1 denotes our estimation

for x̃(L)j,d1
, the true logit by the untrained student model fr. As defined, compared with Equation 26,

we only estimate with logits of labeled or pseudo-labeled nodes in Equation 27.

As all logits will go through Equation 16, which convert them to class probabilities by softmax
function. By Lemma B.1, if the logit estimation error, δj,d1 = x

(L)
j,d1

− ĥ
(L)
j,d1

(Vpr
′), is small for all

dimensions d1, then the final probabilities computed from ĥ
(L)
j,d1

(Vpr
′) are not far from ground-truth

probabilities. Thus, the entropy estimation of node vj is still accurate.

B.5.3 1 LAYER GNN

Now we consider a 1-layer GNN, such that L = 1. Recall Equation 17, the output for node vj by a
standard neural network (NN) without aggregation can be represented as:

x
(1)
j,d1

= ρ

ϕ∑
q=1

xj,d1,qW
(1)
d1,q

. (28)

Now, since only 1 layer is employed, we simply the notation to distinguish variables from (r − 1)-
th and r-th round. Denote xr−1′

i,d1
and xr

′

i,d1
as the output logits by standard NN at (r − 1)-th and

r-th round, and similarly, W r−1
d1,q

for weights at (r − 1)-th round and W r−1
d1,q

for r-th round. Since
we assume initial feature Xd1,q only depends on q and d1, and input feature xd1,q is fixed, the
expectation of output xr−1′

i,d1
is

E[xr−1′

j,d1
] = ρ

ϕ∑
q=1

Xd1,qW r−1
d1,q

, (29)
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where no right-hand item is related with node j. Similarly, the expectation of output xr
′

i,d1
is

E[xr
′

j,d1 ] = ρ

ϕ∑
q=1

Xd1,qW r
d1,q. (30)

In Definition 3.3, the sampled nodes are in set S. Denote ηj,d1(S) as the logit estimation error
of node vj at d1 using S. Note that by softmax conversion, for any C dimensional variable X ,
H(X) = H(aX), where a is a constant for every dimension. Let a = 1∑

vi∈Vl∪Vp
r−1

P j→i
∞

. Then

expanded by Equation 26, the logit estimation error of node vj at dimension d1:

E[δj,d1(S)] = E[x(1)j,d1 − aĥ
(1)
j,d1

(S)]

= E[x(1)j,d1 ]− a
∑

vi∈Vl∪Vp
r−1∪S

E[x̂(1)i,d1 ]P
j→i
∞

=
∑

vi∈N (j)

E[xr
′

i,d1 ]P
j→i
1 − a

∑
vi∈Vl∪Vp

r−1∪S

P j→i
∞

∑
vk∈N (i)

E[xr−1′

k,d1
]P k→j

1

= E[xr
′

i,d1 ]−

∑
vi∈Vl∪Vp

r−1∪S P
j→i
∞∑

vi∈Vl∪Vp
r−1

P j→i
∞

E[xr−1′

k,d1
].

(31)

The first to third line is expansion by prior definitions. The fourth line is according to Equa-
tion 29, that feature expectation only depends on output dimension d1, and

∑
vi∈N (j) P

j→i
1 =∑

vk∈N (i) P
k→j
1 = 1. Assume that activation paths remain the same in both round,

E[δj,d1(S)] = ρ(

ϕ∑
q=1

Xd1,qW r−1
d1,q

−

∑
vi∈Vl∪Vp

r−1∪S P
j→i
∞∑

vi∈Vl∪Vp
r−1

P j→i
∞

ϕ∑
q=1

Xd1,qW r
d1,q)

= ρ

ϕ∑
q=1

Xd1,q(W r−1
d1,q

−

∑
vi∈Vl∪Vp

r−1∪S P
j→i
∞∑

vi∈Vl∪Vp
r−1

P j→i
∞

W r
d1,q).

(32)

Though we can initialize network weights as the same, the loss function is computed differently,
resulting difference in W r−1

d1,q
and W r

d1,q
. Therefore, we need to further discuss the weight update

equation. The loss function, e.g., cross-entropy loss, is set as the sum of prediction error on each
labeled sample. That is, for n samples, we have the loss at dimension d1:

Ld1 =
∑
vi

Li,d1(yi,d1 , ŷi,d1), ŷi,d1 = Softmax(x
′

i,d1), (33)

where Lr−1
d1

is the loss at d1 position.

Therefore, consider the classic gradient descent with one step η, we can update initial weight Wd1,q

in (r − 1)-th round through:
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W r−1
d1,q

=Wd1,q − η
∂Lr−1

d1

∂Wd1,q
,

∂Lr−1
d1

∂Wd1,q
=

∑
vi∈Vl∪Vp

r−1

∂Lr−1
i,d1

∂Wd1,q
(Eq. 33)

=
∑

vi∈Vl∪Vp
r−1

∂Lr−1′

i,d1

∂xr−1′

i,d1

∂xr−1′

i,d1

∂Wd1,q
(chain rule)

= ρ
∑

vi∈Vl∪Vp
r−1

∂Li,d1
∂x

′
i,d1

ϕ∑
q=1

xi,d1,q (Eq. 28)

(34)

Similarly, we derive weight update for r-th round:

W r
d1,q =Wd1,q − η

∂Lrd1
∂Wd1,q

,

∂Lrd1
∂Wd1,q

=
∑

vi∈Vl∪Vp
r−1∪S

∂Lri,d1
∂Wd1,q

= ρ
∑

vi∈Vl∪Vp
r−1∪S

∂Li,d1
∂x

′
i,d1

ϕ∑
q=1

xi,d1,q.

(35)

Note that as both equations are initialized with the same weight matrix W and activation path,
according to Equation 28, xr−1′

i,d1
= xr

′

i,d1
. Further, since labels are fixed for Vl ∪ Vpr−1, so ∂Li,d1

∂xi,d1

is also the same. Therefore, in the final line of both equations, we remove r or r − 1 from the
superscripts. Substituting Equation 34 and 35 into 32, we get:

E[δj,d1(S)] = ρ

ϕ∑
q=1

Xd1,q[(Wd1,q − η
∂Lr−1

d1

∂Wd1,q
)−

∑
vi∈Vl∪Vp

r−1∪S P
j→i
∞∑

vi∈Vl∪Vp
r−1

P j→i
∞

(Wd1,q − η
∂Lrd1
∂Wd1,q

)]

= ρ

ϕ∑
q=1

Xd1,q[(1−

∑
vi∈Vl∪Vp

r−1∪S P
j→i
∞∑

vi∈Vl∪Vp
r−1

P j→i
∞

)Wd1,q

− ηρ(
∑

vi∈Vl∪Vp
r−1

∂Li,d1
∂x

′
i,d1

ϕ∑
q=1

Xd1,q

−

∑
vi∈Vl∪Vp

r−1∪S P
j→i
∞∑

vi∈Vl∪Vp
r−1

P j→i
∞

∑
vi∈Vl∪Vp

r−1∪S

∂Li,d1
∂x

′
i,d1

ϕ∑
q=1

Xd1,q)].

(36)

According to Lemma B.2, when δj,d1(S) − δj,d2(S) is small for any d1 and d2, the final entropy
estimation is bounded.
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1

ρ
E[δj,d1(S)− δj,d2(S)]

=
1

ρ
(E[xr

′

j,d1 − xr
′

j,d2 ]−

∑
vi∈Vl∪Vp

r−1∪S P
j→i
∞∑

vi∈Vl∪Vp
r−1

P j→i
∞

E[xr−1′

j,d1
− xr−1′

j,d2
])

=

ϕ∑
q=1

(Xd1,qW r
d1,q −Xd2,qW r

d2,q)−

∑
vi∈Vl∪Vp

r−1∪S P
j→i
∞∑

vi∈Vl∪Vp
r−1

P j→i
∞

(Xd1,qW r−1
d1,q

−Xd2,qW r−1
d2,q

)]

=[

ϕ∑
q=1

Xd1,q(Wd1,q − η
∑

vi∈Vl∪Vp
r−1∪S

∂Li,d1
∂Wd1,q

)

−Xd2,q(Wd2,q − η
∑

vi∈Vl∪Vp
r−1∪S

∂Li,d2
∂Wd2,q

)]

−

∑
vi∈Vl∪Vp

r−1∪S P
j→i
∞∑

vi∈Vl∪Vp
r−1

P j→i
∞

[

ϕ∑
q=1

Xd1,q(Wd1,q − η
∑

vi∈Vl∪Vp
r−1

∂Li,d1
∂Wd1,q

)

−Xd2,q(Wd2,q − η
∑

vi∈Vl∪Vp
r−1

∂Li,d2
∂Wd2,q

)].

(37)

This is to say, the entropy estimation is accurate when the predicted output logits difference between
d1 and d2 by student model fr, E[xr

′

j,d1
− xr

′

j,d2
], is in proportion to the difference by teacher model

fr−1, E[xr−1′

j,d1
−xr−1′

j,d2
], i.e., E[ x

r′
j,d1

−xr′
j,d2

xr−1′
j,d1

−xr−1′
j,d2

] =

∑
vi∈Vl∪Vp

r−1
∪S P

j→i
∞∑

vi∈Vl∪Vp
r−1

P j→i
∞

. This is aligned with the gradient

of W r and W r−1: Vl ∪ Vpr−1 ∪ S and Vl ∪ Vpr−1.

B.6 ROBUSTNESS OF k-BOUNDED BANZHAF VALUE

In this section, we recall conditions in Theorem 3.2 – the distinguishability of ground-truth utility
between vi and vj on coalitions less than size k is large enough, minm≤k−1 ∆

(m)
i,j (U) ≥ τ , and the

utility perturbation is small such that
∥∥∥Û − U

∥∥∥
2
≤ τ

√∑k−1
m=1

(|Vu
r−1|−2

m−1

)
.

Proof. We begin by recalling the definition of ∆(m)
i,j (U) and Di,j(U) as:

∆
(m)
i,j (U) =

(
|Vur−1| − 2

m− 1

)−1∑
S⊆Vu

r−1\{vi,vj},|S|=m−1
[U(S ∪ vi)− U(S ∪ vj)], (38)

and

Di,j(U) =
k

ns

k−1∑
m=1

(
|Vur−1| − 2

m− 1

)
∆

(m)
i,j (U). (39)

Then, we rewrite Di,j(Û) as a dot product of U and a column vector a ∈ Rns :

Di,j(Û) = aTU, (40)

where each entry of a corresponds to a subset S. Then,

Di,j(U)Di,j(Û) = (aTU)(aT Û) = (aTU)T (aT Û) = UTaaT Û = UTAÛ . (41)
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Thus, since AA = (aaT )(aaT ) = a(aTa)aT = (aTa)aaT = (aTa)A, then

|UTAU |
∥UTA∥2

=
|UTAU |√
UTAAU

=
|UTAU |√

aTa
√

|UTAU |
=

√
|UTAU |
aTa

. (42)

As the weight of Banzhaf value is the same for all subset, and by assumption that
minm≤k−1 ∆

(m)
i,j (U) ≥ τ , we can rewrite |UTAU |

aTa
as

|
∑|S1|≤k−2

S1⊂Vu
r−1\{vi,vj}

∑|S2|≤k−2
S2⊂Vu

r−1\{vi,vj}
( kns

)2(U(S1 ∪ vi)− U(S1 ∪ vj))(U(S2 ∪ vi)− U(S2 ∪ vj))|∑|S|≤k−2
S⊂Vu

r−1\{vi,vj}
( kns

)2

=
(
∑|S|≤k−2

S⊂Vu
r−1\{vi,vj}

k
ns
(U(S ∪ vi)− U(S ∪ vj))2∑|S|≤k−2

S⊂Vu
r−1\{vi,vj}

( kns
)2

=
(
∑k−1
m=1

(|Vu
r−1|−2
m−1

)
k
ns

(|Vu
r−1|−2
m−1

)−1∑|S|=m−1
S⊂Vu

r−1\{vi,vj}
k
ns
(U(S ∪ vi)− U(S ∪ vj)))2∑k−1

m=1

(|Vu
r−1|−2

m−1

)
( kns

)2

=
(
∑k−1
m=1

(|Vu
r−1|−2
m−1

)
k
ns
∆

(m)
i,j (U))2∑k−1

m=1

(|Vu
r−1|−2

m−1

)
( kns

)2

≥
(
∑k−1
m=1

(|Vu
r−1|−2
m−1

)
k
ns
)2τ2∑k−1

m=1

(|Vu
r−1|−2

m−1

)
( kns

)2

=

k−1∑
m=1

(
|Vur−1| − 2

m− 1

)
τ2.

(43)

Therefore,
√

|UTAU |
aTa

≥
√∑k−1

m=1

(|Vu
r−1|−2

m−1

)
τ . Further, since the utility perturbation is small such

that
∥∥∥Û − U

∥∥∥
2
≤ τ

√∑k−1
m=1

(|Vu
r−1|−2

m−1

)
, and by Equation 42, then

∥∥∥Û − U
∥∥∥
2
≤
√

|UTAU |
aTa

=

|UTAU |
∥UTA∥2

, which equals |UTA(Û − U)| ≤
∥∥UTA∥∥

2

∥∥∥Û − U
∥∥∥
2
≤ |UTAU | by triangle inequality.

Finally, with Equation 41,

Di,j(U)Di,j(Û) = (ϕ̂(i)− ϕ̂(j))(ϕ(i)− ϕ(j)) = UTAÛ = UTA((Û − U) + U) ≥ 0. (44)

C ALGORITHM FORMULATION

In this section, we provide pseudo-code in Algorithm 1 and pipeline figure in Figure 3 for our
method, BANGS.

C.1 TIME COMPLEXITY

• Line 1: Add self-loop takes O(|V|), and row normalization takes O(|V|2).
• Line 2: This depends on model selection. Consider a simple GNN model with number of

layers L and hidden units nu, and train ne epochs. The time complexity is O(Lnune|V|2).
• Line 5: Softmax activation takes O(C|V|), C is the number of classes.
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Algorithm 1 BANGS

Input: Graph G including A, X and yl, Iteration NumberR, Candidate Node NumberK, Selection
Node Number k, Sample Size k and Number B, Confidence Calibration Model fc

1: Calculate Â by A, with added self-loop and row normalization.
2: Train the initial teacher model f0.
3: for Every iteration r ∈ [1, ...R] do
4: Employ fr−1 as teacher model.
5: Calculate confidence for all nodes V with maximum softmax output of fr−1.
6: Calibrate confidence with fc.
7: Select the top K confident nodes as candidate node set SK ⊂ V .
8: Store the initial logits propagated by current labeled nodes Vl ∪ Vpr−1.
9: Sample B times candidate set S ⊂ Vur−1, |S| ≤ k

10: for Every S do
11: Add initial logits by the new logits propagated by S.
12: Get entropy and calculate utility function U(S) by Eq. 2.
13: end for
14: Calculate Banzhaf value ϕ(i;U,Vur−1) for every vi accordingly.
15: Select top k nodes of highest Banzhaf value from K candidate nodes to label Vpr , and get

ŷpr , the predicted label of Vpr by fr−1,
16: Train student model fr on Y l and ŷpr .
17: end for

• Line 6: The calibration process also depends the selection of claibration model. Consider
Temperature Scaling with nTS iterations. This takes O(nTSC|V|).

• Line 7: Top-K node takes O(|Vur−1|log(|Vur−1|)).
• Line 8: This step only propagates from V\Vur−1 = Vl ∪ Vpr−1. Consider propagate H

times. So it takes O(H|V||V\Vur−1|C).
• Line 9: Sampling takes O(B|Vur−1|).
• Line 10 -13: Similarly, line 11 takes O(H|V|kC), and line 12 takes O(kC). For all sam-

ples, the total running time is O(B|V|kC).
• Line 14: Using MSR, this could be done in a linear time to sample num – O(B).
• Line 15: The Top-k ranking is no longer than Top-K, as K ≥ k.
• Line 16: Same as line 2, takes O(Lnune|V|2).

In summary, the initialization takes O(Lnune|V|2). In each round, 1) confidence estimation
takes O(nTSC|V|); 2) node selection takes O(H|V|(|V\Vur−1| + Bk)C); 3) retraining also takes
O(Lnune|V|2). Given R self-training rounds, the total complexity is roughly O(R|V|(H(|V| +
Bk)C + Lnune|V|)). The final running time mainly depends on the selection of GNN structure,
alongwith Banzhaf sampling number and size.

C.2 SPACE COMPLEXITY

We have provided illustration in Sec. 3.3. The bottleneck is in loading graph and utility function
computation. We can control space complexity to O(|Eb||V b|C) at the r-th iteration, where V b

means the batch of labeled nodes, and Eb denotes edges connected to V b in Â. Nonetheless, the
tradeoff between space and time complexity needs consideration. For smaller graphs whose influ-
ence matrix can be stored, it takes shorter time to first compute influence matrix for all nodes, and
query values during node selection.

D IMPLEMENTATION DETAILS

D.1 DATASETS AND CODE

The statistics of datsets are listed in Table D.1. Datasets used in this paper could be found in:
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Input: Graph !, Calibration Model "!, 

Self-training Iteration Number #, …

Self-Training !-th Iteration

Initialization: 
1) Train Initial Teacher Model ""
2) Calculate Feature Influence Matrix

Confidence Estimation: 
1) Calculate Softmax Confidence with "#$%
2) Calibrate Confidence with "!

Node Selection: 
1) Select Top K confident Nodes as Candidates
2) Sample Candidate Subsets B Times, and Calculate 
Utility Function Using Feature Influence
3) Calculate Banzhaf Value for Each Candidate 
Nodes, Select Top k Highest Ones

Model Training: 
Add Selected Nodes with Predicted Label and Train 
Student Model "#

Output: Prediction by "&
!-th

Figure 3: Pipeline of BANGS

• Cora, Citeseer and PubMed (Yang et al., 2016) (https://github.com/
kimiyoung/planetoid);

• LastFM (Rozemberczki & Sarkar, 2020) (https://github.com/
benedekrozemberczki/FEATHER).

• Flickr (Zeng et al., 2019) (https://github.com/GraphSAINT/GraphSAINT).

We employ the re-packaged datasets from PyG (Fey & Lenssen, 2019) (https://github.com/
pyg-team/pytorch_geometric, version 2.5.2).

Baseline methods:

• M3S (Sun et al., 2020) (https://github.com/datake/M3S). We use the repro-
duced version in CPL;

• CaGCN (Wang et al., 2021) (https://github.com/BUPT-GAMMA/CaGCN);

• GATS (Hsu et al., 2022) (https://github.com/hans66hsu/GATS);

• DR-GST (Liu et al., 2022a) (https://github.com/BUPT-GAMMA/DR-GST). We
use the reproduced version in CPL;

• CPL (Botao et al., 2023) (https://github.com/AcEbt/CPL)

All code and datasets used in this paper, if presented, are open-sourced under MIT license.

Table 5: Dataset statistics.

Dataset Cora Citeseer PubMed LastFMAsia Flickr
#Nodes 2,708 3,317 19,171 7,624 89,250
#Links 10,556 9,104 88,648 5,5612 899,756

#Features 1,433 3,703 500 128 500
#Classes 7 6 3 18 7

Our own codes are provided in https://github.com/fangxin-wang/BANGS.

26

https://github.com/kimiyoung/planetoid
https://github.com/kimiyoung/planetoid
https://github.com/benedekrozemberczki/FEATHER
https://github.com/benedekrozemberczki/FEATHER
https://github.com/GraphSAINT/GraphSAINT
https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric
https://github.com/datake/M3S
https://github.com/BUPT-GAMMA/CaGCN
https://github.com/hans66hsu/GATS
https://github.com/BUPT-GAMMA/DR-GST
https://github.com/AcEbt/CPL
https://github.com/fangxin-wang/BANGS


Published as a conference paper at ICLR 2025

D.2 COMPUTING RESOURCES

The experiments are mainly running in a machine with NVIDIA GeForce GTX 4090 Ti GPU with
24 GB memory, and 80 GB main memory. Some experiments of small graphs are conducted on a
MacBook Pro with Apple M1 Pro Chip with 16 GB memory.

E EXPERIMENT DETAILS

E.1 ADDITIONAL EXPERIMENT RESULTS

In this section, we include and analyze additional experiment results.

Table 6: Node classification accuracy (%) with graph self-training strategies on different datasets.
Baseline methods report final test accuracy, our method reports test accuracy by early stopping.

Base
Model

Baselines BANGS
Raw M3S CaGCN DR-GST Random CPL

Cora 80.82±0.14 81.38±0.75 83.06±0.11 82.03±0.93 82.43±0.21 83.00±0.57 83.47±0.54*
Citeseer 70.18±0.27 68.80±0.53 72.84±0.07 71.10±0.88 72.50±0.52 72.45±0.54 73.23±0.70**
PubMed 78.40±0.11 79.10±0.28 81.16±0.10 77.42±0.60 78.93±0.47 79.37±0.63 81.03±0.56
LastFM 78.07±0.31 78.32±0.81 79.60±1.02 79.92±0.44 79.13±0.11 80.56±1.22 82.66±0.43**

In Table 6, we include test accuracy that is early stopped by validation accuracy. Our methods are
the best or second best across all datasets. Nonetheless, it is worth noticing that though CPL tends to
achieve best test accuracy in the self-training iteration, CaGCN tends to perform better with early-
stopping criterion. This is because the confidence of test data are calibrated using validation data in
CaGCN, such that test accuracy is high using with validation accuracy.

Table 7: Total running time (seconds) comparison for BANGS and CPL on datasets with GCN or
GAT as base models.

Dataset BANGS (GCN) CPL (GCN) BANGS (GAT) CPL (GAT)
Cora 201.82 118.64 288.54 326.62
Citeseer 242.40 184.48 422.88 432.39
Pubmed 423.40 320.22 954.87 929.13
LastFM 325.62 209.80 725.54 697.88

Table 8: Iteration block average running time comparison (s) on Cora.

Base Model Method Sample Size Confidence Estimation Node Selection Model Training
GCN CPL NA 0.04 0.00 3.45
GCN Ours 100 2.45 0.80 4.08
GCN Ours 200 2.41 1.33 3.69
GAT CPL NA 0.06 0.00 11.20
GAT Ours 100 0.16 0.80 10.20
GAT Ours 200 0.16 1.31 10.76

In Table 7, we use GCN with simple network structure, our methods are slower than CPL; while
using GAT that takes longer inference time, our methods is comparable to CPL. In Table 8, we
further show the running times in one seed to compare with the CPL.

In Table 9, we compare running time and test performance of our method with the raw model
and best baseline, CPL, on the same setting as described in Section 4. We test on Flickr dataset
with ∼90k nodes and the additional obgn-arxiv (Hu et al., 2020) dataset with ∼170k nodes. We
observe that graph self-training methods often exhibit comparatively smaller improvements on larger
datasets. To address this problem, additional techniques, such as contrastive sampling (Zhou et al.,
2023), may be incorporated as a future direction. The total running time of our algorithm also
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Table 9: Running time and accuracy comparison on larger datasets.

Dataset Methods Running Time (s) Accuracy (%)
Flickr GCN 15.16 49.53±0.11

CPL 633.35 50.02±0.22
BANGS 1189.48 50.23±0.25

obgn-arxiv GCN 30.81 63.82±0.12
CPL 1287.57 63.81±0.17

BANGS 1668.98 63.86±0.18

exhibits increase in larger graphs, largerly due to computation involves adjacency matrix in PPR
calculation. In this case, mini-batching PPR (Gasteiger et al., 2022) is a good choice.

E.2 CASE STUDY: CONFIDENCE CALIBRATION

To motivate the integration of calibration, we perform a case study. In Figure 4, we predict labels of
PubMed data, which have only 3 classes and exhibits high confidence. The other hyperparameters
except node selection criterion are fixed. To select informative nodes from highly confident ones,
our framework sets the top K = 200 confident nodes as candidates and selects k = 100 nodes with
the highest Banzhaf value (Definition 3.3). Selecting nodes with the highest confidence, denoted by
Conf (Uncal), would bring slightly better performances compared with the raw GCN predictions.
Surprisingly, calibrating the same with CaGCN (Wang et al., 2021), denoted by Conf (cal), pro-
duces worse performance under raw GCN. In contrast, with uncalibrated confidence, our framework
produces comparable or better results than Conf (Uncal). However, with calibrated confidence, our
framework exhibits a significant improvement. In the experiments (Section 4.3), we observe similar
trends for most datasets.

Figure 4: The test accuracy of PubMed data with different node selection criteria in self-training
iteration with 40 rounds. In each round, 100 nodes are selected to pseudo-label. Our method with
confidence calibration outperforms others.
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