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1 DETAILS ABOUT MODEL AND LEARNING

Our model is of the form p, (2)pg(x|2)p,(y|z). The marginal distribution of (z, y) is

po(z,y) = /po(:c,y,Z)dz = /pa(z)pﬁ(wlz)pw(yIZ)dZ-

We use pg(x, y) to approximate the data distribution of (z,y).

For the data distribution of (z,y), y is a deterministic function of . However, a machine learning method usually cannot
learn the deterministic function exactly. Instead, we can only learn a probabilistic py(y|z). Our model py(z, y) seeks to
approximate the data distribution p(z, y) by maximum likelihood. A learnable and flexible prior model p,,(z) helps to make
the approximation more accurate than a fixed prior model such as that in VAE.

Let the training data be {(z;,v;),i = 1,...,n}. The log-likelihood function is L(0) = >, log pg(z;, y;). The learning
gradient is L' (0) = >, Vg log pg(x;, y;). In the following, we provide details for calculating V¢ log pg(x, y) for a single
generic training example (x, y) (where we drop the subscript ; for notation simplicity).

Vo logps(z,y) = )Vepe(% Y)

po(z,y

1
= \Y% Ty, 2)dz
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For the prior model,
Va Inga(Z) = Vozfoz(z) — Vg log Z(Oé)
1
= vafa(z) - 7VQZ(O¢)

Z (@)
= Vafalz) % / Vo exp(fa(2))po(2)dz
= Vahale) = [ Vadale) g explla ({210

= vafa(z) - ]Epa(z) [vafa z ]

Thus the learning gradient for « given an example (z,y) is

504(xa y) =V, Inge(xa y) = Epg(z\m,y) [Vafa(z)] - Epa(z) [vafa(z)]' (D

The above equation has an empirical Bayes nature. py(z|z,y) is based on the empirical observation (z, y), while p,, is the
prior model. For the generation model,

dp(x,y) = Vglogpe(x,y) = Epy 2]z, [V log ps(z|2)]. 2)

Similarly, for the regression model,

Oy (x,y) = Vi logpe(z,y) = Epy (212, [V~ l0g py (y]2)]- (3)

Estimating expectations in the above equations requires Monte Carlo sampling of the prior model p, (z) and the posterior
distribution pg(z|x,y). If we can draw fair samples from the two distributions, and use these Monte Carlo samples to
approximate the expectations, then the gradient ascent algorithm based on the Monte Carlo samples is the stochastic gradient
ascent algorithm or the stochastic approximation algorithm of Robbins and Monro [Robbins and Monro, [1951], who
established the convergence of such an algorithm to a local maximum of the log-likelihood.

For MCMC sampling using Langevin dynamics, the finite step or short-run Langevin dynamics may cause bias in Monte
Carlo sampling. The bias was analyzed in|Pang et al.|[2020]. The resulting algorithm is an approximate maximum likelihood
learning algorithm.

2 TRAINING TIME

The training of joint distribution of molecule and its properties takes around 4 hours with 25 iterations on a single Nvidia
Titan XP GPU with batch size 2048. For non-biological single-objective property optimization, it takes around 20 minutes to
do 30 distribution shifting (SGDS) iterations. If we use SGDS without warm start, it takes around half an hour. For biological
binding affinity maximization, the optimization time is mainly dependent on the number of queries of AutoDock-GPU. We
do 30 and 20 SGDS iterations for the single-objective and multi-objective tasks, respectively, which cost 10 hours and 8
hours with warm start, and cost 14 hours and 10 hours without warm start. For biological property optimization tasks, we
use two Nvidia Titan XP GPUs, one for running our code and the other for running AutoDock-GPU. We have added a table
to compare with previous methods.

Model Penalized-logP/QED  Single binding affinity
JT-VAE 24 -

GCPN 8 6

MolDQN 24 6

GraphDF 8 12

Mars 12 6

LIMO 1 1

SGDS without warm start 4.5 18

SGDS with warm start 4.3 14

Table 1: Comparison of molecule generation time in (hrs). Results obtained from [Eckmann et al.,2022].



Even if we use MCMC sampling-based methods, our training speed is affordable comparing to existing methods. That
is because our designed latent space EBM is low-dimensional (i.e. dim(z)=100) and we use short-run MCMC (i.e. with
fixed iteration steps 20) in our experiments. The major bottleneck of the training speed is the time of querying the property
compute engines.

3 GENERATED SAMPLES

3.1 BIOLOGICAL PROPERTY OPTIMIZATION

Figure[I]and Figure 2] show generated molecules with high binding affinities towards ESR1 and ACAALI respectively in
single-objective property design experiments.

Figure [3|and Figure 4] show generated molecules with high binding affinities towards ESR1 and ACAAI respectively in
multi-objective property design.

Comparing to the previous state-of-the-art methods, SGDS is able to produce more high quality molecules than top-3
molecules because after gradual distribution shifting, the joint distribution locates at the area supported by molecules with
high binding affinities.

Meanwhile, compared to previous generative model-based methods, we use Langevin dynamics to infer the posterior distri-
bution p(z|x,y1,. - ., yn) without bothering to design different encoders when facing different combination of properties.

G 8.8 T Bp
30 98 T fo

0.03648 0.03352 0.04105 0.06155 0.06260

& p@ 0 T P

0.09075 0.09708 0.13155 0.13607 0.14805

P TR e s B

0.18751 0.20061 022198 0.22961 024153

% Q0 BB o
463 ﬁ;“CQ “ o T

0.26727 0.27182 0.27645 0.31641 0.35013

Figure 1: Generated molecules in singe-objective esrl binding affinity maximization experiments with corresponding Kp ({) in nmol/L.
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Figure 2: Generated molecules in singe-objective acaal binding affinity maximization experiments with corresponding Kp ({) in nmol/L
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Figure 3: Generated molecules in multi-objective esrl binding affinity maximization experiments with corresponding Kp ({.) in nmol/L,
SA(]) and QED(?) respectively.
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Figure 4: Generated molecules in multi-objective acaal binding affinity maximization experiments with corresponding Kp ({.) in nmol/L,
SA(]) and QED(?) respectively.

3.2 P-LOGP AND QED OPTIMIZATION
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Figure 5: Top-3 molecules in single-objective QED maximization.
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Figure 6: Top-3 molecules in single-objective p-logP maximization.



4 ILLUSTRATION OF SAMPLING WITH GRADUAL DISTRIBUTION SHIFTING (SGDS)

Figures|7]to[0] show property densities of sampled molecules of the distribution shifting process in single-objective penalized
logP, esrl and acaal optimization respectively. SGDS is implemented with warm start. We can see the model distribution is
gradually shifting towards the region supported by molecules with high property values. To better visualize the shifting
process, we plot the docking scores rather than Kp. The increase in docking scores corresponds to the exponential decrease
in KD.
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Figure 7: Illustration of SGDS in a single-objective penalized logP optimization experiment.

16

17

18

19

20

21

22

24

2.5 5.0 7.5 10.0 12.5 15.0

Figure 8: Illustration of SGDS in a single-objective esrl optimization experiment.
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Figure 9: Illustration of SGDS in a single-objective acaal optimization experiment.
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