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A APPENDIX

In the supplementary materials, we provide the following sections:

(a) More implementation details in Section B.

(b) Ablation study experiments in Section C.

(c) Visualization result analysis in Section D.

B IMPLEMENTATION DETAILS

For the initialization of the proposed prompt embedding network (PEN), we use Kaiming initialization
technology [1]. The UAE-Large-V11 model is adopted as the pre-trained textual encoder to extract
textual embeddings for the visual prompt.

C ABLATION STUDY

Next, we conduct more ablation study experiments to provide deeper insight into the components of
our proposed approach.

Object Detector v.s. Segmentation Model. To determine the effect of using an object detector
or segmentation model to incorporate pixel-level semantics into the proposed visual prompt, we
conduct an ablation study with the popular object detector GroundingDINO [2] and the segmentation
model OpenSeed [3]. The results are shown in Table 1. We observe that both GroundingDINO and
OpenSeed significantly boost performance across all benchmarks. However, utilizing OpenSeed
achieves better performance gains due to its fine-grained mask regions. Thus, we adopt OpenSeed by
default to generate object regions.

The Effect of Fine-Tuning with the Visual Prompt. As displayed in Table 2, the model fine-tuned
with the proposed visual prompt (i.e., the third row) achieves remarkably better performance than the
one fine-tuned without our visual prompt (i.e., the second row) across all benchmarks. Specifically,
without using our visual prompt for fine-tuning, the model even shows performance degradation on
Text-VQA benchmark [4] and has negligible gains on Science-QA [5], VQAv2 [6], MME-P [7], and
MME-C [7] benchmarks. All these results demonstrate the superiority of the proposed method.

Discussion. We also compare our presented REVIP method with V∗ [8], which employs an LLM-
guided visual search mechanism to enhance MLLM’s contextual understating capacities. In Table 3, to
ensure a fair comparison with V∗ [8], we present our method’s results using the experimental settings
from [8]. We also report the accuracy metrics (1st and 2nd rows) for the multimodal benchmarks
as adopted by LLAVA [9] in its paper, As stated in V* [8] and evident from the Table 3, there’s
significant degraded performance on MM-Vet [10], LLaVA-BenchW [11] and MMBench [12]. In
contrast, our method demonstrates consistent improvements across all these multimodal benchmarks.
ViperGPT [13] also utilizes LLM to solve visual tasks, however, it focuses on code generation to
solve complex tasks based on Codex, which isn’t related with our method.

D VISUALIZATION RESULT ANALYSIS

We’ve provided more visualization results in Table 4, 5, 6, and 7. Compared to LLaVA-1.5 7B [9],
our method generates more reasonable and accurate responses to the questions.

As shown in Table 4, our approach can generate accurate movie titles, such as “The Godfather”,
and the two actors’ names, such as “Al Pacino” and ’Robert De Niro”. Additionally, it provides a
corresponding introduction, such as “The movie is a classic crime drama film directed by Francis Ford
Coppola, known for its iconic characters, storytelling, and memorable scenes" for the left example. In
the right example, our method generates the precise title “The Lord of the Rings: The Fellowship of

1https://huggingface.co/WhereIsAI/UAE-Large-V1
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Table 1: The ablation study of using an object detector or a panoptic segmentation model to extract
object regions for pixel-level textual embeddings.

Method Region Generator VQAv2 GQA VisWiz SQAI VQAT MME-P MME-C MMB MM-Vet POPE MMMU

Mipha-3B - 81.3 63.9 45.7 70.9 56.6 1488.9 295.0 69.7 32.1 86.7 32.5
Mipha-3B+ GroundingDINO 82.0↑ 64.9↑ 46.4 ↑ 71.4↑ 57.2↑ 1491.7↑ 350.2↑ 71.0↑ 34.5↑ 88.4↑ 32.9 ↑
Mipha-3B+ (Ours) OpenSeed 82.4↑ 65.3↑ 47.0↑ 71.8↑ 57.8↑ 1501.2↑ 369.1↑ 71.5↑ 35.1↑ 88.7↑ 33.5↑

Table 2: The ablation study of fine-tuning with and without the proposed visual prompt. The first
(Mipha-3B), second (Mipha-3B∗) and third (Mipha-3B+) rows mean Mipha-3B baseline, fine-tuning
on Mipha-3B without and with the proposed visual prompt using LoRA [14].

Method Visual Prompt VQAv2 GQA VisWiz SQAI VQAT MME-P MME-C MMB MM-Vet POPE MMMU

Mipha-3B - 81.3 63.9 45.7 70.9 56.6 1488.9 295.0 69.7 32.1 86.7 32.5
Mipha-3B∗ ✗ 81.4↑ 64.3↑ 45.9↑ 71.0↑ 56.5↓ 1489.2↑ 303.2↑ 70.4↑ 33.5↑ 87.4↑ 32.6
Mipha-3B+ (Ours) ✓ 82.4↑ 65.3↑ 47.0↑ 71.8↑ 57.8↑ 1501.2↑ 369.1↑ 71.5↑ 35.1↑ 88.7↑ 33.5↑

Table 3: The results compared with V∗ [8] has been reported, we adopt the setting and benchmarks
from V∗ [8], the compared benchmarks including MME [7], MMBench [12], SEED-Bench(Img) [15],
MM-Vet [10], LLaVAW : LLaVA-BenchW [16] and POPE [17]. LLaVA-7B+ denotes LLaVA (7B)+
using presented REVIP method.

Method MME MMBench SEED-Bench(Img) MM-Vet LLaVAW POPE

LLaVA (7B) [8] 1051.2 34.4 41.8 30.4 62.6 76.5
V∗ (7B) [8] 1128.9↑ 33.1↓ 41.7↓ 27.7↓ 59.1↓ 82.4↑
LLaVA (7B)+ (Ours) 1156.4↑ 37.5↑ 43.2↑ 34.5↑ 64.5↑ 82.8↑

the Ring” and provides an accurate introduction, such as “The movie is an epic fantasy adventure that
follows the journey of a fellowship of characters". In contrast, LLaVA’s responses are very general
without fully understanding the global contexts within the images.

In Table 5, our method not only recognizes the text “Me: I’ll do it at 8. Time: 8.05. Looks like I gotta
wait till 9 now”, but also understands its implication, such as “the puppet is aware of the time and is
intentionally delaying any work or task it might be assigned”, in the left image. For the right image,
our method generates more potential options, such as a “private school”, “a religious school”, etc. In
contrast, LLaVA’s answers are either inappropriate or too limited.

Finally, as shown in Table 6 and 7, our method understands spatial relationships and accurately
recognizes the text within the images. For example, in the left example of Table 6, our approach
accurately names the person on the left as “Keira Knightley”. It also recognizes the plate number
“S3302CD” in the left example of Table 7, while LLaVA’s answers are all incorrect. This indicates
the strong fine-grained multimodal understanding capacity of our proposed method.
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Visual input example, context-related questions:

Can you give a short introduction to this
movie?

Can you give a short introduction to this
movie?

LLaVA-7B The image features a scene from a movie
where two men are standing close to each
other, with one man placing his hand on the
other’s shoulder. They are both wearing tuxe-
dos, which suggests that they are attending
a formal event or a special occasion. The
men appear to be engaged in a conversation
or interacting with each other in some way,
possibly discussing the event or sharing a mo-
ment of camaraderie.

The image features a young man wearing a
brown shirt and holding a ring in his hand.
He appears to be in a dark setting, possibly a
cave or a dungeon. The man is looking at the
camera, possibly engaging in a conversation
or sharing a story. The ring he is holding
suggests that the scene might be related to a
fantasy or adventure movie, where the ring
could represent a magical or powerful object.

Ours The image features a scene from the movie
“The Godfather”, where two men played by
actors Al Pacino and Robert De Niro, are
standing close to each other. One man has
his hand on the other’s shoulder, and they
appear to be engaged in a conversation or a
confrontation. The movie is a classic crime
drama film directed by Francis Ford Coppola,
known for its iconic characters, storytelling,
and memorable scenes.

The image features a scene from the movie
“The Lord of the Rings: The Fellowship of
the Ring”, where the character Gandalf is
holding out his hand to the hobbit Frodo, of-
fering him the One Ring. This iconic mo-
ment captures the essence of the story, where
Frodo is entrusted with the task of destroying
the ring to prevent its power from falling into
the wrong hands. The movie is an epic fan-
tasy adventure that follows the journey of a
fellowship of characters as they embark on a
perilous quest to rid Middle-earth of the dark
lord Sauron and his army of orcs.

Table 4: The challenging examples on LLaVA-1.5, our approach can provide reasonable reponses
for the tricky questions which need to fully understand the contexts of the images.
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Visual input example, context-related questions:

Can you explain this meme? What kind of school does the boy go to? An-
swer it and give the rationale.

LLaVA-7B The meme features a green Kermit the Frog
puppet lying on a bed, with a caption that
reads, “Me looks like I gotta wait till 9” The
puppet appears to be relaxing on the bed, pos-
sibly waiting for someone or something. The
image is a playful and lighthearted represen-
tation of a common situation where people
might have to wait for a certain time before
they can proceed with their plans.

The boy likely goes to a private school, as he
is wearing a suit and tie, which is a common
attire for students in private schools. The
presence of a tie suggests that the school has
a formal dress code, and the boy is dressed
appropriately for the occasion.

Ours The image features a green frog, which is a
popular character from the television show
“The Muppet Show”, the frog is sitting on a
bed, appearing to be in a relaxed and com-
fortable position. The puppet is holding its
belly and seems to be enjoying its time. The
bed has a white sheet, and the scene appears
to be set in a cozy bedroom. The meme is
captioned with a humorous message which
reads “Me: I’ll do it at 8. Time: 8.05. Looks
like I gotta wait till 9 now”, this implies that
the puppet is aware of the time and is inten-
tionally delaying any work or task it might
be assigned. The meme is likely meant to be
amusing and entertaining, as it combines the
idea of a puppet with a human-like sense of
humor and awareness of time.

The boy in the image is wearing a tie, which
suggests that he might be attending a school
with a formal dress code or a school that re-
quires students to wear ties as part of their
uniform. This could be a private school, a
religious school, or a school with a strong
emphasis on discipline and professionalism.
The presence of a woman, who is wearing a
dress, in the image, possibly his mother, indi-
cates that the boy might be going to school
with her support and guidance.

Table 5: The challenging examples on LLaVA-1.5, our approach can provide reasonable reponses
for the tricky questions which need to fully understand the contexts of the images.
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Visual input example, relationship-aware questions:

Who is the person on the left? Who is the person in the bottom right?

LLaVA-7B The person on the left is Reese Witherspoon. The person in the bottom right is a man
named Tom Hiddleston.

Ours The person on the left is Keira Knightley. The person in the bottom rights is Jamie Dor-
nan.

Table 6: The challenging examples on LLaVA-1.5, our approach can provide reasonable reponses for
the tricky questions which need to fully understand the relationships among objects within images.
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Visual input example, text-related questions:

What are all the scene text in the image? What are all the scene text in the image?

LLaVA-7B The scene text in the image is “S33020CD”. The scene text in the image is “Connecticut
Law of 1652”.

Ours The scene text in the image includes the li-
cense plate number “S3302CD” which is
written in white on a black background.

The scene text in the image includes “Con-
necticut Law of 1642”, which states “If any
man or woman be a witch - that is hath or
consulteth with a familiar spirit - they shall
be put to death”.

Table 7: The challenging examples on LLaVA-1.5, our approach can provide reasonable reponses
for the tricky questions which need to accurately recognize the texts within the images.
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