Under review as a conference paper at ICLR 2024

APPENDIX

A RELATED WORK

Privacy Preservation in FL. FL (McMahan et al., 2017 |L1 et al.| |2020b) has emerged as a de
facto machine learning area and received rapidly increasing research interest from the community.
One of the primary attractions of FL is that it provides basic-level data privacy and security, as
clients jointly train a global model by sharing model parameters or gradient updates without exposing
their private data. Yet, for such “naked” FL methods that do not provide any formal or provable
privacy guarantees, some inference attacks (e.g., model-inversion (Yin et al., | 2020; [Haim et al.,
2022) and deep leakage from gradients (DLG) (Zhu et al.,[2019} |Geiping et al.,[2020)) can easily
extract sensitive information and even recover the original data from the trained model parameters
or gradient updates without any information assistance. To reduce the risk of privacy leakage, FL
often combines homomorphic encryption (HE) (Gentry} 2009) and differential privacy (DP) (Dwork
et al., 2006). However, HE is computationally inefficient, while DP can deteriorate the training
performance. Meanwhile, there exists an alternative line of FL methods (Arivazhagan et al., 2019
Liang et al., [2020; Shen et al., [2022), which focuses on decomposing a model into private and public
layers and sharing the public layers to boost the privacy of FL at the cost of inevitable performance
drop. Particularly, FedPer (Arivazhagan et al.,[2019) splits a model into base and top layers. Each
client uploads the base layers and hides the top layers from the server. Whereas, LG-FedAvg (Liang
et al.| 2020) shares the top layers while keeps the base layers localized.

Knowledge Distillation in FL. The main insight of KD is to extract knowledge from one or more
teacher models to a student model via learning their soft predictions, attention maps or intermedi-
ate (latent) features (Hinton et al.| [2015} [Zagoruyko & Komodakis| 20165 Yim et al., 2017). FL
with KD has recently emerged as effective methods for dealing with real-world tasks. For example,
FedMLB (Kim et al.,|2022) and RHFL (Fang & Ye,[2022) mitigate the fall of performance caused
by data heterogeneity (i.e., non-1ID). FedMD (Li & Wang, [2019), FedDP (Lin et al., [2020) and
FCCL (Huang et al,[2022) are able to perform FL with heterogeneous local models across clients. In
addition, FedGen (Zhu et al., 2021) and FedKD (Gong et al., [2022) facilitate privacy-preserving of
FL.

Conditional Generator in FL. The objects mimicked by a conditional generator in FL can be roughly
divided into two categories: clients’ raw data and models’ latent features. For the former, FAug
(Jeong et al.| |2018)) requires each client to collectively train a cGAN to augment its local data yielding
an IID dataset. DENSE (Zhang et al.,2022a) and FedFTG (Zhang et al.l 2022c) employ data-free
KD to train a conditional generator on the server, thus training and fine-tuning the global model,
respectively. Note that data-free KD is a promising approach to transfer knowledge from the teacher
model to another student model without any real data (Chen et al., 2019} [Fang et al,[2019). The
mentioned FL methods utilize a conditional generator to enhance the generalization performance of
global models under heterogeneity or communication cost constraints, but they are highly susceptible
to privacy attacks or even violate the key privacy assumptions of FL. Alternatively, the conditional
generator can also be used as an attack tool to reconstruct the private data of the victim clients on a
malicious server (Li et al.,2022). For the latter, FedGen (Zhu et al.,[2021) uploads the last layer of
the local models to the server and trains a global conditional generator using data-free KD to boost
the local model update of each client. FedCG (Wu et al., 2021)) integrates cGAN into FL aiming
to harness a conditional generator to replace the local feature extractor and upload it to the server
together with the local classifier, thus maintaining high-level privacy protection.

B PSEUDOCODE

In this section, we detail the pseudocode of FedMD-CG in Algorithm|[I}

C ALGORITHM DESCRIPTION

Algorithm|[I] summarizes the training procedure of FedMD-CG. Concretely, starting from the local
. . . A B A ~ B

model update, clients first sample two mini-batch data {x, 2,, y };,_; and {24, 9 };,._; to perform

the local model update (lines 9-13), and then train the local generator with re-sampled mini-batch
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Algorithm 1 FedMD-CG

1:

—

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24
25:

VR IAIUNHEDD

Input: communication round R, client number N, label distribution p(y), client-side training
step I.., client-side learning rates 7%, 7, client-side label counter {ci}ieqny, server-side training
step I, server-side learning rate 7),, batch size B, hyperparameters A1, A2, A3, A4, A5, Ag.
Initialize w' and " = [0%,, %] on the client i.
Initialize [w, Op] on the server.
forr=1,--- ,Rdo
Server broadcasts (w, @p) and p(y) to the clients.
On clients:
for i € [N] parallel do
0L, =0p
forr=1,---,I.do
Sample {xy, 2, yb}l?:l and resample {2y, g]b}{il, where {xp, yp} ~ {X;, Y}, 2p ~
N(0,1) and g, ~ p(y).
Update label counter c;.
Update 6" with 1)’ according to Eq. .
end for
forr=1,---,I.do
Sample {xy, 25, yp } £, where {xp, yp} ~ {X;, Y:} and 2, ~ N(0,I).
Update w® with % according to Eq. @])
end for
Upload [w?, 8%)] and ¢; to the server.

On server: o
[w, Op] Ziem ﬁ[w’, 0] and update p(y) based on {c;};c(n-
forr=1,---,I,do
Sample {2, 9 }£_,, where 2, ~ N(0,I) and gy, ~ p(y).
Update [w, 6] with 7, according to Eq. (12).
end for
end for

data {xp, 2, yb}{f:l (lines 14-17). The trained local generators and classifiers are sent to the server.
The server subsequently aggregates these generators and classifiers by simple model averaging to
form the preliminary global generator and classifier, and then trains the global generator and classifier
by using sampled data {2y, G }2_, (lines 21-24). Notably, the global generator is under-trained at the
early stages of training, which may mislead the local model training. Therefore, during the training
phase, A3, A2 and \; are first initialized to 0 and increase to pre-defined values with the increase of
communication round. Readers are referred to the experimental section for more details.

D

COMPUTING DEVICES AND PLATFORMS

OS: Ubuntu 18.04.3 LTS

CPU: Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz

* CPU Memory: 256 GB.

GPU: NVIDIA Tesla V100 PCle

GPU Memory: 32GB
* Programming platform: Python 3.7.4

* Deep learning platform: PyTorch 1.9.0
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E FULL EXPERIMENTS

E.1 FULL EXPERIMENTAL SETTING

Datasets. We perform our experiments on three public datasets EMNIST (Cohen et al., [2017)),
Fashion-MNIST (Xiao et al.,|2017) (FMNIST in short in this paper), and CIFAR-10 (Krizhevsky
et al.; |2009). Following existing works (Zhang et al., 2022c}, |Acar et al., [2021; |Zhu et al.| [2021)),
we use Dirichlet process Dp(w) to strictly partition the training set of each dataset across clients.
Notably, a smaller w corresponds to higher data heterogeneity. We set w € {0.1,1.0,10.0} in our
experiments.

Backbone Architectures and Baselines. Throughout all our experiments, we deploy LeNet-5 (LeCun
et al.l [1998) as the backbone network with two convolutional layers (i.e., feature extractor) and three
fully connected layers (i.e., classifier). Similarly, we employ three fully connected layers with
BatchNorm as the generator for each client and adjust its output dimension to match that of the
corresponding feature extractor. We select five FL methods most relevant to our work as baselines
for comparison, including FedAvg (McMahan et al., 2017), FedPer (Arivazhagan et al.,2019), LG-
FedAvg (Liang et al.| 2020), FedGen (Zhu et al., 2021)) and FedCG (Wu et al.| 2021). Moreover, we
consider the baseline that trains a local model for each client, without any sharing. We call it Local
Training (LT for short). For fairness, FedGen shares clients’ classifiers with the server. In particular,
we treat the client’s classifier whose output dimension is set to 1 as the discriminator of cGAN in
FedCG.

Configurations. For EMNIST (FMNIST), we set communication round R = 100 (100) and client
number N = 20 (10). And we set R = 250 and N = 10 for CIFAR-10. We adopt client-side
training step I. = 20 and server-side training step I, = 50. For client-side training, SGD and
Adam are applied to optimize the local models and generators, respectively. The learning rate 7}
for SGD is searched over the range of {0.01,0.05,0.08} and the best one is picked. And we set
1Y = 0.0003 for Adam. For server-side training, the Adam optimizer with s = 0.0003 is used
to update the global generator and classifier. For all update steps, we set batch size B to 64 and
weight decay to le — 4. For FedMD-CG, we set the diversity constraint to £3,, unless otherwise
specified. For the hyperparameters used to balance different loss items, all are set to 1 unless otherwise
specified. Particularly, in the local model update, we initialize A3, A2 and A; to 0 and increase their
values to pre-defined values with the increase of communication round to avoid the misleading
caused by the under-trained global generator. We set the parameter values to be incremented by
A = A\Pre((r — 1)/R)%, where AP is a pre-defined value and d controls how fast the parameter
increases. We set d = 1. The dimension of 2 ~ N(0, I') is 128 for all datasets.

E.2 FULL EXPERIMENTAL RESULTS

Table 6: Test performance (%) comparison between FedMD-CG and baselines over EMNIST. Note
that L.acc and G.acc denote local test accuracy and global test accuracy, respectively.

EMNIST
Alg.s w=10.0 \ w=1.0 \ w=0.1
L.acc G.acc | L.acc G.acc |  L.acc G.acc
FedAvg 96.88+0.08 97.001+0.08 | 96.29+0.06 96.83+0.07 | 85.65+2.33 95.06+0.46
LT 96.45+0.08 96.66+0.13 | 90.48+1.46 95.1740.70 | 40.774+2.34 62.08+5.11

FedPer 96.69+0.10 96.94+0.08 | 91.96+1.20 96.45+0.10 | 41.084+2.40 76.90+2.34
LG-FedAvg 96.57£0.11 96.844+0.10 | 94.014£0.53 96.22+0.19 | 46.294+3.39 86.48+1.75

FedGen 97.34£0.16  97.974£0.09 | 95.62+0.38 97.64+0.17 | 51.2944.01 87.69+2.50
FedCG 97.67+£0.03  98.08+0.07 | 96.06+£0.33  97.70+0.16 | 49.91+£3.83 87.66+2.08
FedMD-CG 96.97£0.05 97.4140.11 | 95.45+0.25 97.18+0.17 | 54.45+3.56 87.87+1.64
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Figure 7: Learning curves for FedMD-CG as well as baselines over EMNIST.

Table 7: Test performance (%) comparison between FedMD-CG and baselines over FMNIST. Note
that L.acc and G.acc denote local test accuracy and global test accuracy, respectively.

FMNIST
Alg:s w=10.0 \ w=1.0 \ w=0.1
L.acc G.acc | L.acc G.acc | L.acc G.ace
FedAvg 84.284+0.24 85.02+0.29 | 80.99+0.81 84.77+0.30 | 59.29+3.19 78.91+2.12
LT 82.894+0.29 83.80+0.23 | 74.19+2.92 80.32+1.02 | 37.714£2.99 56.34+10.42

FedPer 83.68+£0.21 84.83+£0.27 | 75.83£2.42 82.94+1.11 | 37.394£3.17 61.88£9.80
LG-FedAvg 83.25+0.24 84.394+0.19 | 77.03£1.94 82.55+0.46 | 38.89+3.18  66.35+6.65

FedGen 83.52£1.76  85.77£0.12 | 77.88+3.10 83.81£1.95 | 41.964+3.40 68.05£3.96
FedCG 82.29£0.63  84.58+0.77 | 74.92+2.11 81.74+0.81 | 34.97+2.55 54.61£2.67
FedMD-CG 84.32+0.28 87.18+0.08 | 79.00+1.43 84.4740.38 | 42.554+3.68  71.09£1.01

F LIMITATIONS

In the field of Federated Learning (FL), there are many trade-offs, including utility, privacy protection,
computational efficiency and communication cost, etc. It is well known that trying to develop a
universal FL. method that can address all problems is extremely challenging. In this work, we work
on improving privacy leakage defects in FL while maintaining robust model performance. Next, we
discuss some of the limitations of FedMD-CG.

Computational Efficiency, Communication Cost and Utility. We acknowledge that deploying
FedMD-CG in a real-world FL application requires clients to have more hardware and computational
resources to train generators and local models as compared to FedAvg. Specifically, compared with
FedAvg or MD-based methods (e.g., FedPer and LG-FedAvg), the training time of FedMD-CG will
be longer, as it needs to additionally train the generator on the clients. In our experiments, FedMD-CG
takes two to three times longer to run per communication round than they do. Moreover, compared
to FedAvg or MD-based methods, FedMD-CG requires an additional vector of label statistics to be
transmitted (see line 18 in Algorithm[T). However, the communication cost of this vector is negligible
compared to that of the model. We also acknowledge that FedMD-CG still has room for improvement
in model performance. Table [I|shows that FedAvg achieves the optimal model performance in many
scenarios, so it is an attractive topic in the field of FL to achieve comparable test performance levels
to FedAvg with high-level privacy protection. Meanwhile, there is a trade-off between the capacity of
the generator and the communication cost.

Privacy Protection. Since FedMD-CG trains a local generator on each client for replacing the
local feature extractor (LFE) by simulating the output vector space of LFE, i.e., the latent feature
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Figure 8: Learning curves for FedMD-CG as well as baselines over over FMNIST.

Table 8: Test performance (%) comparison between FedMD-CG and baselines over CIFAR-10. Note
that L.acc and G.acc denote local test accuracy and global test accuracy, respectively.

CIFAR-10
Alg.s w = 10.0 \ w=1.0 \ w=0.1
L.acc G.acc | L.acc G.acc | L.acc G.acc
FedAvg 51.68+0.53 54.1840.52 | 42.844+2.03 52.394+0.58 | 23.284+1.94 45.08+2.03
LT 49.83+0.88 48.99+1.35 | 40.92+2.25 37.924+2.24 | 24.424+1.47 24.334+3.66

FedPer 50.72+0.63 53.87+£0.58 | 41.80+2.15 49.83£1.66 | 23.26+1.74 31.74+4.21
LG-FedAvg 50.11£0.80 51.804+0.67 | 41.49+£2.56 44.59+1.88 | 24.2841.76 26.21£3.59

FedGen 52.944+2.38 48.49+3.13 | 38.13£4.89 40.85+3.87 | 23.33+1.86 27.84+2.67
FedCG 39.39+5.23  37.06+4.35 | 30.44+3.30 26.79£2.82 | 17.65+3.45 16.75£2.40
FedMD-CG  54.82+£0.79 55.18+1.75 | 46.30+2.24 47.56+2.21 | 26.18+1.79 30.55£2.42

space, rather than the distribution space of private data, it provides high-level privacy protection.
Also, FedMD-CG requires clients to upload the label statistics of the data, which also is at risk of
compromising privacy. In addition, we argue that the theoretical guarantee for privacy protection
is crucial. However, it’s worth noting that even in exist well-known MD-based federated learning
efforts (Wu et al.| 2021} |Zhu et al., 2021} |Arivazhagan et al., 2019; [Liang et al., |2020), as well as
federated learning methods with the help of the generator (Wu et al., 2021} |Zhu et al.,|2021; Zhang
et al., [2022cfal), comprehensive theoretical analysis concerning the privacy guarantees (or privacy
disclosure) is often absent. Given the lack of suitable theoretical frameworks, we concentrated on
robust empirical validation, showcasing our method (FedMD-CG). Our results, we believe, robustly
demonstrate our method’s utility. We intend to delve deeper into theoretical aspects in future work.

G BROADER IMPACTS

We work on how to improve privacy leakage defects in FL. while maintaining robust model perfor-
mance. Our work points out the pitfalls of the existing method FedCG. First, knowledge transfer
modality at the latent feature level may not be sufficient. Second, additional discriminators need to
be trained to satisfy the adversarial training of cGAN. Third, the trained local generator may not
match the local classifier, terming their inconsistency. Our proposed FedMD-CG can deal with the
said issues well. FedMD-CG exemplifies potential positive impacts on society, enabling models with
superior performance while ensuring high-level privacy protection in real-world FL applications.
Meanwhile, FedMD-CG may have negative social impacts related to high resource consumption.
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Figure 9: Learning curves for FedMD-CG as well as baselines over over CIFAR-10.

Table 9: Test performance (%) comparison between FedMD-CG and FedCG with different server-side
aggregation manners over EMNIST. Note that AVE_agg and AVE_agg* denote weighted average
aggregation. Specifically, FedMD-CG with AVE _agg transfers the knowledge from the global
generator to local models at both the latent feature level and the logit level, whereas FedMD-CG with
AVE_agg™ transfers the knowledge from the global generator to local models only at the latent feature
level. Also, KD_agg and KDC_agg denote the server-side aggregation manners from FedCG and

FedMD-CQG, respectively.

| | EMNIST
Algs | Agg | w=10.0 | w=10 | w=0.1
| | L.acc G.ace | L.acc G.ace | L.ace G.ace
AVE_agg* | 97.26+0.02 98.00+£0.04 | 95.054+0.17 97.05+0.24 | 50.554+4.32 86.74+1.44
FedCG KD _agg 97.67+0.03 98.08+0.07 | 96.06+0.33 97.70+0.16 | 49.914+3.83 87.66+2.08
KDC_agg | 96.02+0.27 96.78+0.28 | 93.174+0.63 96.314+0.27 | 39.654+4.67 82.324+4.66
AVE_agg* | 97.2940.01 98.19+0.03 | 95.12+0.46 97.21+£0.21 | 51.36£3.63 86.88+1.53
AVE_agg 97.74+0.05 98.36+0.04 | 95.51+0.25 97.86+0.08 | 52.62+3.74 86.95+1.35
FedMD-CG | KD age | 96.69+0.11 97.19+0.10 | 94.70+0.44 96724022 | 53.14+4.73 83.864+2.10
KDC_agg | 96.97+£0.05 97.41£0.11 | 95.454+0.25 97.184+0.17 | 54.454+3.56 87.87+1.64

FedMD-CG-based FL systems require more client-side power resources to train the generator and
local model. FedMD-CG does not involve social ethics.
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Figure 10: The consistency comparison between local generators and classifiers for FedCG and
FedMD-CG w.r.t. AVE_agg™ over EMNIST. G+D loss denotes the classification loss of the local
classifier on the output of the local generator.

Table 10: Test performance (%) comparison between FedMD-CG and FedCG with different server-
side aggregation manners over FMNIST. Note that AVE_agg and AVE_agg* denote weighted average
aggregation. Specifically, FedMD-CG with AVE _agg transfers the knowledge from the global
generator to local models at both the latent feature level and the logit level, whereas FedMD-CG with
AVE _agg™* transfers the knowledge from the global generator to local models only at the latent feature
level. Also, KD_agg and KDC_agg denote the server-side aggregation manners from FedCG and

FedMD-CG, respectively.

\ \ FMNIST
Alg.s \ Agg. \ w = 10.0 \ w=1.0 w=0.1
\ \ L.acc G.acc | L.acc G.ace L.acc G.ace
AVE_agg* | 83.0840.20 85.1340.23 | 77.53+1.53 82.87+0.31 | 39.46:3.40 67.41+3.59
FedCG | KDagg | 822940.63 84.58+0.77 | 74.9242.11 81.7440.81 | 34.9742.55 54.6142.67
KDC_agg | 83.2843.49 85.5243.37 | 75.6442.26 82.63+0.48 | 37.23+2.54 62.89+7.01
AVE_agg* | 83.324+0.14 85.88+0.17 | 78.01+1.14 83.79+0.73 | 40.55+3.55 67.34+5.41
AVE_agg | 83.78+0.19 86.57+0.11 | 78.94+1.43 84.91+0.48 | 41.44+2.98 67.88+6.07
FedMD-CG | kD_agg | 83.07£0.23 85.65+0.14 | 78.08+1.51 83.89+0.67 | 41.79+3.54 64.68+4.31
KDC_agg | 84.320.18 87.18+0.13 | 79.00+1.43 84.47+0.38 | 42.55+3.68 71.09+1.01
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Figure 11: The consistency comparison between local generators and classifiers for FedCG and
FedMD-CG w.r.t. AVE_agg* over FMNIST. G+D loss denotes the classification loss of the local
classifier on the output of the local generator.
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Table 11: Test performance (%) comparison between FedMD-CG and FedCG with different server-
side aggregation manners over CIFAR-10. Note that AVE_agg and AVE_agg™ denote weighted
average aggregation. Specifically, FedMD-CG with AVE_agg transfers the knowledge from the global
generator to local models at both the latent feature level and the logit level, whereas FedMD-CG with
AVE_agg™ transfers the knowledge from the global generator to local models only at the latent feature
level. Also, KD_agg and KDC_agg denote the server-side aggregation manners from FedCG and
FedMD-CQG, respectively.

\ \ CIFAR-10
Alg.s ‘ Agg. ‘ w = 10.0 ‘ w=1.0 ‘ w=0.1
‘ ‘ L.ace G.acc | L.acc G.acc | L.acc G.acc
AVE_agg* | 48.88+£0.19 51.47+1.16 | 41.85+2.48 44.98+1.79 | 24.78£1.46 28.35+£2.33
FedCG | KD-agg | 39394523 37.06+4.35 | 3044330 26.79+2.82 | 17.65+3.45 16.75+2.40
KDC_agg | 28.70+£2.44 29.14+0.54 | 28.87£0.90 25.92+1.53 | 21.63£2.02 26.44+3.91
AVE_agg* | 51.34+0.80 52.71+1.73 | 43.24+2.32 45.10+£2.32 | 25.80£1.72 30.27+2.65
AVE_agg 52.344+0.80 53.71+1.73 | 45.164+2.35 46.72+2.32 | 25.814+1.82 30.70+2.12
FedMD-CG | kD agg | 52.48+1.03 53.71£1.65 | 45.124£2.30 46.98-+2.60 | 26.06£1.71  31.04-2.60
KDC_agg | 54.82+0.79 55.18+1.75 | 46.30+2.24 47.56+2.21 | 26.18+1.79 30.554+2.42
1e —— FedMD-CG 81 — FedMD-CG 0 —— FedMD-CG
14 FedCG 21 FedCG FedCG
12 6 ’
o8 ag, o
5. 5| 5.
4 5
2
' ) L |
M-
0 0

0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Communication rounds Communication rounds Communication rounds

(a) CIFAR-10, w = 0.1 (b) CIFAR-10, w = 1.0 (c) CIFAR-10, w = 10.0

Figure 12: The consistency comparison between local generators and classifiers for FedCG and
FedMD-CG w.r.t. AVE_agg™ over CIFAR-10. G+D loss denotes the classification loss of the local
classifier on the output of the local generator.

Table 12: Impact of each loss for client-side training in FedMD-CG over EMNIST with w = 0.1.
Note that L.M.U and L.G.U denote the local model update and the local generator update, respectively.
Also, we omit the subscript 7 of each loss for client 7.

FedMD-CG (baseline)

L.ace G.ace
54.45£3.56 87.87-+1.64

LM.U L.acc G.acc | L.G.U L.acc G.acc
L 52.5143.61  85.4441.40 —Lomse 49334327  81.09+4.49
~Lose 52.8543.17 86.47+1.54 L 51.8742.67 82.97+1.54
. 52314229  84.70+1.03 L 52.1743.68 87.86+2.15
Leer —Lrmse 51.5543.42  84.354+1.20 —Lomser —Lee 47.8142.95 80.66+3.45
Lo — L 50424343  82.59+137 ~Lomser —Laiv 47.1242.65 80.49+2.05
— Lomser —Lai 513443.16 85.63+1.07 s —Loaiv 50.3243.35  82.09+2.38
Lees —Lomser —Lrt 46534477 84514224 | —Lonor — Loos —Laze 40.1242.15  61.5343.55
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Table 13: Impact of each loss for client-side training in FedMD-CG over FMNIST with w = 1.0.
Note that L.M.U and L.G.U denote the local model update and the local generator update, respectively.
Also, we omit the subscript ¢ of each loss for client 4.

FedMD-CG (baseline)

L.acc G.ace
79.00+1.43 84.47+0.38

LM.U L.acc G.acc | L.G.U L.acc G.acc
L 78.6141.63 84.67+0.32 —Lomse 77.98+1.78  84.9040.40
Lonse 77554137 83.67+0.41 —Lee 78434157 83.8240.59
iy 78024134 84.16+0.28 L 77.87+41.49  83.84+0.41
Lees —Lomse 77024179 82.7340.24 —Lomser — Loc 77714178 84.35+0.41
—Loes —Ln 71914157 83.64£029 | —Loser —Laze  76.93£1.54  82.58+£0.53
—Lonses —La 76.9241.66  82.66+0.35 ~Lees —Lain 77.6142.00  84.50+0.35
Leor —Lomser —Lat 15344142 81.46+0.98 | — Lonses —Looes —Laie T226+1.85  79.4140.15

Table 14: Impact of each loss for client-side training in FedMD-CG over CIFAR-10 with w = 10.0.
Note that L.M.U and L.G.U denote the local model update and the local generator update, respectively.
Also, we omit the subscript ¢ of each loss for client i.

FedMD-CG (baseline)

L.acc G.ace
54.82+0.79 55.18+1.75

L.M.U L.acc G.acc | L.G.U L.acc G.acc
Lo 51.53+£1.04 52524137 —Lomse 52734115 53.19+1.72
Lose 53.0740.97 53.73+1.99 L 53.89+0.89  52.88+2.09
iy 53.46:£0.94 53.34+1.74 ~Lai 52.66£0.77 53.1141.72
Lees —Lrmse 51.0240.52  52.96+1.01 Lomses —Loe 46.94+133 49374153
Lo — L 515540.60 52814122 | —Loneer —Laiw 47804030  50.15+124
—Lonses — Lk 52644040 53.46+1.25 —Leer —Laio 48024031  50.41+1.61
Lees —Lomses —Lrt 50274041 49554128 | — Lonses — Loos —Laiy 44334138 47.66+1.35

Table 15: Test performance (%) comparison among different diversity constraints used by FedMD-CG
over EMNIST. Note that we omit the subscript 7 of diversity loss for client s.

| EMNIST
Div. con. | w=10.0 \ w=10 \ w=0.1
| L.acc G.acc | L.acc G.acc |  L.acc G.acc
['21‘1; 96.96+0.06 97.414+0.11 | 95.3940.21 97.17+0.17 | 53.09+4.27 88.85+1.31
Eéw 96.98+0.05 97.4040.11 | 95.434+0.27 97.16+0.19 | 53.65+4.12 88.51£0.80

L% 96.97£0.05 97.41+0.11 | 95.45+0.25 97.18+0.17 | 54.45+3.56 87.87£1.64

21



Under review as a conference paper at ICLR 2024

Table 16: Test performance (%) comparison among different diversity constraints used by FedMD-CG
over FMNIST. Note that we omit the subscript ¢ of diversity loss for client i.

| FMNIST
Div. con. \ w=10.0 \ w=1.0 ‘ w=0.1
\ L.acc G.acc |  L.acc G.acc |  L.acc G.acc
‘C?im; 83.934+0.20 87.794+0.17 | 78.58+1.58 84.694+0.46 | 42.20+3.42 70.47+£1.79
(112»1) 84.10+0.16 87.60+0.12 | 79.03+1.52 84.73+0.49 | 42.25+3.36 70.28+1.26
[211-1) 84.32+0.18 87.18+0.13 | 79.00+1.43 84.47+0.38 | 42.55+3.68 71.09+1.01

Table 17: Test performance (%) comparison among different diversity constraints used by FedMD-CG
over CIFAR-10. Note that we omit the subscript 7 of diversity loss for client 7.

‘ CIFAR-10
Div. con. \ w = 10.0 \ w=1.0 \ w=0.1
| L.acc G.acc |  L.acc G.acc |  L.acc G.acc
ng 54.24+0.72 54.78+1.88 | 46.36+2.36 47.20+2.15 | 26.04+1.76 30.62+2.56
(liiv 54.81+£0.71 5490+1.73 | 46.384+2.37 47.53+2.14 | 26.14+1.80 30.70+2.55
gw 54.82+0.79 55.18+1.75 | 46.30+2.24 47.56+2.21 | 26.18+1.79 30.554+2.42
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Figure 13: Test performance of FedMD-CG using varying hyperparameters on EMNIST with w = 0.1
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Figure 14: Test performance of FedMD-CG using varying hyperparameters on FMNIST with

w = 1.0.
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Figure 15: Test performance of FedMD-CG using varying hyperparameters on CIFAR-10 with

w =10.0
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