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Abstract

Retrieval-Augmented Generation (RAG) tech-
nology effectively addresses the issues of
knowledge update lag and hallucinations in
large language models (LLMs) by integrat-
ing internal and external knowledge. Existing
query augmentation methods improve RAG’s
performance in handling complex queries but
face two key challenges: (1) the separation of
query augmentation and encoding tasks, which
hinders information sharing and introduces cu-
mulative errors, and (2) the difficulty of se-
lecting the optimal augmentation strategy for
different scenarios. In this work, we propose
UniRAG, a unified framework for query under-
standing in RAG. UniRAG employs a decoder-
only LLM to jointly perform query augmenta-
tion and encoding, eliminating task separation.
To facilitate adaptive query augmentation, we
categorize existing techniques into query para-
phrasing, query expansion, and query abstrac-
tion. Our model learns to select the optimal aug-
mentation strategy based on user queries, lever-
aging retrieval and generation outputs as feed-
back. Experimental results show that UniRAG
significantly outperforms traditional query aug-
mentation methods in five knowledge-intensive
benchmark tasks in both closed and open do-
main question answering'.

1 Introduction

In recent years, Large Language Models (LLMs)
have become fundamental components of various
Natural Language Processing (NLP) tasks due to
their remarkable ability to comprehend and gen-
erate human-like text (Dubey et al., 2024; Brown
et al., 2020; Hurst et al., 2024). Despite accumulat-
ing vast knowledge during pretraining, these mod-
els face inherent challenges such as outdated knowl-
edge and the generation of inaccurate or mislead-
ing information. Recently, Retrieval-Augmented

'0ur code is available at https://anonymous.4open.
science/r/UniRAG-8260

Generation (RAG) (Lewis et al., 2020; Asai et al.,
2024) has emerged as a standard approach to ad-
dress these issues by integrating parametric and
non-parametric knowledge through the retrieval of
relevant passages.

Given the complexity of understanding user
queries, many studies have explored query aug-
mentation techniques using LLMs. For instance,
(Ma et al., 2023) employs LLM feedback to train a
query rewriter, while HyDE (Gao et al., 2023a) gen-
erates hypothetical documents to expand queries.
Although these techniques have significantly im-
proved RAG system performance, existing research
still faces two key challenges: (1) Separation of
Query Augmentation and Encoding Tasks: As
shown on the left side of Figure 1, current ap-
proaches typically treat query augmentation and
encoding as independent models or stages, limiting
the effective sharing of information and potentially
leading to cumulative errors. (2) Lack of Adaptive
Augmentation Strategy Selection: Preliminary
experiments in Section 7.1 indicate that different
query augmentation techniques exhibit varying per-
formance across different scenarios. Therefore,
determining the optimal augmentation strategy for
specific contexts or even specific user queries re-
mains a significant challenge.

To address these challenges, this work introduces
UniRAG. As shown on the right side of Figure 1,
we achieve unified execution of query augmenta-
tion and query encoding by training a decoder-only
LLM. To adaptively augment a given query, we
categorize existing query augmentation techniques
into three types: (1) query paraphrasing, (2) query
expansion, and (3) query abstraction, and select
a representative method for each of these three
augmentation techniques. Using a diverse set of
knowledge-intensive question-answering and re-
trieval datasets, we synthesize augmented query
data by applying these augmentation techniques.
Additionally, we leverage feedback scores from
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Figure 1: Overview of UniRAG. UniRAG unifies the query augmentation phase and the query encoding phase, and
adaptively selects augmentation strategies for the given query during the augmentation phase.

both the retriever and generator as signals for se-
lecting the appropriate augmentation strategy. To
control the model’s selection of different augmenta-
tion strategies, inspired by previous research (Asai
et al., 2024; Schick et al., 2023), we supervise the
model to generate action tokens and subsequently
generate augmented queries corresponding to those
actions, while also allowing the model not to per-
form query augmentation. To complete query en-
coding, we expand the dataset to fit the representa-
tion task, adding an extra [EQS] token to the input
to obtain embeddings, and train the model’s encod-
ing ability using contrastive learning.

Compared to the previous query augmentation
paradigm, UniRAG offers the following advan-
tages: (1) End-to-End Query Understanding: A
single model performs both query augmentation
and encoding, reducing fragmentation in the pro-
cess. (2) Adaptive Strategy Selection: UniRAG
autonomously determines and applies the most ap-
propriate query augmentation strategy based on the
query. (3) Plug-and-Play Compatibility: Uni-
RAG can be integrated with different LLMs, miti-
gating retrieval noise caused by insufficient query
understanding. Furthermore, it supports customiz-
able decoding algorithms, allowing for flexible
query augmentation frequencies tailored to differ-
ent downstream applications.

The experimental results show that UniRAG
consistently outperforms independent query aug-
mentation methods across five different benchmark
datasets in both closed and open domains. Fur-

thermore, our findings validate the significant ad-
vantages of integrating query augmentation and
encoding within a unified framework.

2 Related Work

2.1 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) (Guu
et al., 2020a; Gao et al., 2023b; Borgeaud et al.,
2022; Asai et al., 2020, 2023) has become a key
paradigm for large language models (LLMs), alle-
viating the hallucination problem of current LLMs
by incorporating external knowledge, and achiev-
ing advantages in several downstream tasks such as
code generation (Parvez et al., 2021; Lu et al., 2022;
Wang et al., 2024¢) and knowledge-based question
answering (Yu et al., 2022; He et al., 2024).

Recently, more and more research (Zhu et al.,
2024; Wang et al., 2024b; Xu et al., 2023) has
focused on enhancing the performance of RAG
systems from various aspects, such as improving
decoding efficiency (Kim et al., 2024; Wang et al.,
2024b), exploring long-context retrieval (Luo et al.,
2024; Li et al., 2024c), and compressing prompts
(Jiang et al., 2023; Xu et al., 2023). Despite the
advantages of these RAG systems, they inevitably
face potential noise issues in the retrieval content
due to imperfect retrievers.

To address this problem, researchers have pri-
marily explored three categories of techniques for
augmentation: (1) Adaptive Retrieval: Self-RAG
(Asai et al., 2024) and ReAct (Yao et al., 2023) in-
troduce reflection techniques to determine whether



the retrieval can assist in answering. (2) Document
Filtering: Xu et al. (2024) proposed incorporating
reranking to reorder the final retrieval results; Kong
et al. (2024) used prompts for LLMs to judge the
relevance of documents. (3) Query Augmentation:
Techniques such as paraphrasing (Ma et al., 2023),
query expansion (Gao et al., 2023a; Lavrenko and
Croft, 2017; Mao et al., 2023), and query abstrac-
tion (Zheng et al., 2023) are used to enhance the
original query to handle diverse user queries.

2.2 LLM-based Embedding Models

Recently, techniques that utilize only decoder
LLMs as embedding models have begun to emerge,
showing significant improvements in accuracy and
generalization capability within the domain. These
studies treat LLMs as query and information en-
coders and optimize through contrastive learning.
During this process, e5-mistral (Wang et al., 2024a)
and Gecko (Lee et al., 2024b) incorporate syn-
thetic datasets, and Gecko attempts to distill a
smaller bidirectional embedding model from a
decoder-only LLM. LLM2Vec (BehnamGhader
et al., 2024) seeks to construct embedding mod-
els from LLMs using only publicly available data.
SFR-Embedding-Mistral (Rui Meng, 2024) fur-
ther fine-tunes on a mix of non-retrieval and re-
trieval datasets to enhance accuracy for both tasks.
Llama2Vec (Li et al., 2024a) adapts LLMs to re-
trieval tasks by proposing autoencoding and autore-
gressive pre-training tasks. GritLM (Muennighoff
et al., 2024) employs instruction fine-tuning tech-
niques to enable LL.Ms to handle both generation
and retrieval tasks. NV-Embed (Lee et al., 2024a)
enhances pooling embeddings by adding latent at-
tention and improves performance on retrieval and
non-retrieval tasks through a two-stage instruction
fine-tuning technique. bge-en-icl (Li et al., 2024b)
generates high-quality text embeddings by incorpo-
rating few-shot examples.

3 Preliminary

We aim to produce an accurate response r from a
user query q and external documents in a corpus
D. The traditional Retrieval-Augmented Gener-
ation (RAG) pipeline has three components: an
augmenter E, a retriever R, and a generator G.

Query Augmentation. The augmenter FE trans-
forms the original query ¢ into g. This process may
add context or synonymous rewrites to improve the

likelihood of retrieving relevant documents.

q = E(q). ey

Document Retrieval. The retriever R encodes ¢
and each document d € D into a shared represen-
tation space. A similarity score (e.g., dot product)
ranks how relevant d is to g. We select the top-k
documents with the highest similarity.

{di,...,dy} = top-ksim(q,d). (2)
deD

Response Generation. We concatenate ¢ and the
retrieved documents dy, . . ., di, into C, then pass it
to the generator G to produce the response 7:

r=G(C). 3)
4 UniRAG Training

4.1 Overview

UniRAG can automatically select appropriate aug-
mentation strategies for the raw query given by the
user and encode the augmented query to achieve
unified modeling of augmentation and encoding.
As shown in Figure 2, UniRAG consists of two
training stages: (1) Query augmentation training:
Train the model using synthetic augmented queries
and feedback data from the augmentation strate-
gies. (2) Query encoding training: Augmented
queries are added to the original retrieval dataset,
and use contrastive learning to train the model. We
summarize the training process in Algorithm 1.

4.2 Query Augmentation Training

4.2.1 Data Collection

Seed Dataset Collection. To augment the
model’s capability in handling diverse user queries,
we propose a novel data annotation process to gen-
erate data for instruction tuning. We sample from
knowledge-intensive QA and retrieval datasets, in-
cluding Natural Questions (Kwiatkowski et al.,
2019), MS MARCO Passages (Nguyen et al.,
2016), BoolQ (Clark et al., 2019), Narra-
tiveQA (Kocisky et al., 2018), Dolly15k (Conover
et al., 2023), and SQuAD (Rajpurkar, 2016), to con-
struct a seed dataset for data synthesis. Detailed
statistics are provided in Appendix A.l.

Data Synthesis. To obtain augmented queries,
we select a representative method from each cate-
gory of augmentation techniques. Specifically, for
query paraphrasing, we adopt (Ma et al., 2023) to
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Figure 2: The two-stage training process of UniRAG: first, query augmentation training is conducted based on the
augmented queries and feedback signals, followed by query encoding training using contrastive learning.

rephrase queries by resolving ambiguity and vague-
ness; for query expansion, we employ HyDE (Gao
et al., 2023a) to generate hypothetical documents;
and for query abstraction, we utilize Step-Back
Prompting (Zheng et al., 2023) to abstract the orig-
inal query. We then apply these augmentation
techniques to the seed dataset using the GPT-4o-
mini (Hurst et al., 2024). For a given query ¢ and
a selected augmentation strategy m from the set
of all strategies M, we generate the corresponding
augmented query ¢,, = E,(q), where E,,, denotes
the augmenter instantiated with strategy m.

Feedback Signal Collection. To evaluate the
quality of an augmented query ¢,,, we collect two
types of feedback signals:

* Retriever Feedback: Retriever feedback cap-
tures how well a query x (either q or §,,) re-
trieves relevant documents. We calculate the re-
ciprocal ranking as the retrieval feedback score:
Sret(T) = m, where rank, is the position
of the first relevant document in the ranking list
retrieved by the retriever R for x.

* Generator Feedback: For a given query z, we
retrieve candidate documents {d1, . .., d}, con-
catenate them into the input context and feed
them into generator G to generate an answer r:

C(x) = [x di,. .. dy],

“4)
HpG re | T1:-1,C(2)).

a(r | C(z

where 7, is the token at step ¢ in the generated
answer, and 7" is the number of tokens in r. The
generator score is: Sgen(x) = log pa(r | C(x)).

For each original query ¢, we obtain feedback
scores for g as well as for each augmented query ¢,

produced using an augmentation strategy m. We
then aggregate these scores into two collections:

Sret = {Sret |»”U e{atU{gm:me M}}

Sgen = {sgen(m) ‘ r€{qtU{Gm :mE€ M}}

Data Filtering. Not all queries are suitable for
every augmentation technique. To ensure reason-
able application of augmentation methods and min-
imize noise in the synthetic dataset, we perform
data filtering using the following criteria:

* We use Retriever R to retrieve documents for
query ¢ and discard any instances where the
true document is not among the top &’ results.

* If any feedback signal score for an augmented
query ¢ is lower than that of the original query
q, we discard the augmented instance.

To address the case where no augmentation is
needed, we add the original query to the dataset
when the original query has the highest feedback
score, at which point G, is the empty string. The
final dataset consists of instances of the format
(¢, M, Gm Sret, Sgen). We ended up collecting
263K data points for instruction tuning, including
105K valid feedback signals. See the Appendix
A.1 for more details and analysis.

4.2.2 Training Objective

To train the model to both select the appropriate
augmentation strategy m for a given query ¢ and
generate a corresponding augmented query G,, we
design a joint training objective. For each training
instance, we first construct the input by applying an
instruction template Z ., (details in Appendix D)
to ¢ and then define the expected output based on
the augmentation strategy m and the corresponding
augmented query G,.



¢ Augmentation Strategy Selection Loss L.;:
To align the model selection strategy probabili-
ties with feedback scores, we map s;..; and Sge;,
to a vocabulary V of action tokens and apply a
softmax function with a temperature of 0.1. This
yields p;..(v) and py.,(v). At the designated
action token position, the model predicts a prob-
ability distribution p(v | ¢), and we compute the
KL-divergence between this predicted distribu-
tion and feedback score probability:

Lo = KL(p1(v) || 50 | 0))

4)

+KL (p;en(v) H v | q)) :

* Augmented Query Generation Loss L .,:
Once the augmentation strategy is selected, the
model generates the corresponding augmented
query G,. At each time step ¢, the model predicts
the next token in ¢,,. The generation process
follows the standard next token loss:

T

Egen = - Z IngG (ij,t | ij,l:tfla q, TTL),

t=1

(6)
where 7' is the total number of tokens in ¢,,. We
do not supervise the predictions of action tokens.

The overall training objective combines the two
losses: Lepn = Lel + Lgen-

4.3 Query Encoding Training
4.3.1 Data Collection

During the query augmentation stage, our collected
dataset includes relevant document annotations,
making it suitable for training the encoder. Specifi-
cally, we combine the original query ¢, augmenta-
tion strategy m, and the augmented query ¢,, with
a preset instruction template Z.,. (details in Ap-
pendix D) to generate a new query gins, which is
paired with annotated positive documents.

To achieve scalable expansion of the retrieval
dataset, we further include other data instances
from the original dataset that have not been aug-
mented into the retrieval dataset. Since these addi-
tional data instances do not contain annotations
for the augmented query, we uniformly add an
<0riginal> token to them and apply the instruc-
tion template to generate the corresponding ging.
Additionally, we mined hard negative samples for
each query to improve retrieval performance. For
detailed information on the collection of the re-
trieval dataset, see Appendix A.2.

4.3.2 Training Objective

Given a relevant query-document pair (q;'. ,, d™),
we append an <EOS> token to both the query and
the document. These are then fed into the model to
extract their respective embeddings from the final
layer <EOS> vector, denoted as h a and hg+.

To optimize the embedding model, we employ
the InfoNCE loss £L,.;, which ensures that positive
query-document pairs are assigned higher similar-

ity scores compared to negative samples:

Qs(ngzst’ d+)
st d7) + 32 s A7)’
d—€eN
(N
where N represents the set of all negative sam-
ples. The function ¢(q, d) = exp (sim(hq, hq)/T),
where 7 is the temperature hyperparameter.

Eret = - 10g

5 UniRAG Inference

In the query augmentation phase, UniRAG defaults
to using constraint decoding to generate action to-
kens. After generating the action token, UniRAG
applies the corresponding augmentation strategy
and employs a greedy search to produce the aug-
mented query. To adapt different task scenarios and
flexibly control the augmentation frequency, we ad-
ditionally designed two decoding strategies and
summarized the inference process in Algorithm 2.

Threshold-based Decoding. This strategy dy-
namically determines whether to adopt an aug-
mentation method by calculating the ratio of
the generation probability of the <Original>
token to the maximum generation probability
among the action tokens corresponding to var-
ious augmentation methods.  Formally, let
P(<Original>) and max;,cr P(m) denote
the generation probability of the <Original> to-
ken and the maximum generation probability of the
action tokens, respectively. We define a threshold .
When the following conditions are met, UniRAG
will select the action token with the highest gener-
ation probability and generate the corresponding
augmented query:

P(<Original>) -
P(<0riginal>) + max,,ep P(m) 7

®)

This decoding strategy achieves a balance between
augmented accuracy and computational cost by
controlling the threshold ~.



Tree-based Decoding. For scenarios with a
higher inference budget, multiple query augmen-
tation methods can be combined to further im-
prove performance. In this strategy, UniRAG gen-
erates all action tokens whose generation proba-
bilities are no lower than that of the <Original>
token. Then, during the augmented query genera-
tion, beam search is applied with a global beam
size B to explore all possible combinations of
augmentation methods. In this way, we can ul-
timately generate a set of B augmented queries
9 = {¢1,G2,--.,4p} and their corresponding
embedding. In the retrieval phase, we apply Recip-
rocal Rank Fusion (RRF) (Cormack et al., 2009)
to merge the retrieval results obtained from the dif-
ferent query embeddings, thereby improving the
accuracy and recall of query matching.

6 Experimental Setups

6.1 Datasets

We comprehensively validated the effectiveness of
UniRAG on closed-set tasks and open-domain
question answering tasks.

Closed-set QA Tasks. The closed-set QA tasks
include: (1) PubHealth (Zhang et al., 2023): a fact
verification dataset for the public health domain.
(2) ARC-Challenge (Clark et al., 2018): a multiple-
choice reasoning dataset constructed from science
exam questions.

Open-domain QA Tasks. The open-domain QA
tasks cover the following datasets: PopQA (Mallen
et al., 2022), TriviaQA-unfiltered (Joshi et al.,
2017), and TimeQA (Chen et al., 2021). In the
PopQA, the system needs to answer open questions
involving factual knowledge. We employed the
long-tail subset for evaluation containing queries
involving rare entities. For TriviaQA-unfiltered,
we followed the validation and test set division
method of previous research (Asai et al., 2024;
Guu et al., 2020b) to evaluate model performance.
In the TimeQA, the model needs to answer queries
involving complex time-sensitive knowledge.

We followed the experimental setup of previous
research (Asai et al., 2024; Zheng et al., 2023),
using accuracy as the evaluation metric. Our evalu-
ation approach does not rely on strict text matching,
but rather is based on whether the model-generated
results contain the gold standard answers. Statis-
tical details of these datasets are provided in the
Appendix E.

6.2 Baselines

To comprehensively evaluate UniRAG’s perfor-
mance, we compare it with existing query aug-
mentation methods. Specifically, we examine the
following augmentation methods: (1) Paraphrase,
which involves abbreviation replacement and ambi-
guity elimination of the original query, referencing
the specific implementation in (Ma et al., 2023);
(2) HyDE (Gao et al., 2023a), which generates hy-
pothetical documents based on the query to expand
the original query; (3) Step-back Prompting (Zheng
et al., 2023), by abstracting higher-level concepts
from the original query, generates abstract query.

To ensure fair comparisons, we uniformly
use Llama-3-8B-Instruct (Dubey et al., 2024)
as the base model and select Contriever-MS
MARCO (Izacard et al., 2021) as the dense re-
triever to retrieve relevant passages. Furthermore,
we report two reference baselines: (1) zero-shot
prompting without retrieval as the no-retrieval base-
line; (2) using the original query for retrieval as the
standard retrieval baseline, in order to more clearly
measure the improvements of UniRAG under dif-
ferent settings.

To verify the model independence of Uni-
RAG, we used Llama-3-8B-Instruct, Llama-3-70B-
Instruct and GPT-40-mini (Hurst et al., 2024) as
generators to evaluate its cross-model generaliza-
tion ability. For the implementation details of the
experiment, including the training and inference
processes, please see Appendix C.

7 Results and Analysis
7.1 Main Results

Comparison of Individual Query Augmentation
Methods. Table 1 presents the overall experi-
mental results, showing that the performance im-
pact of different query augmentation techniques
varies across benchmark datasets. In most cases,
applying query paraphrasing leads to consistent
performance improvements. Additionally, using
the HyDE method to generate hypothetical docu-
ments for query expansion yields the best results
on TriviaQA and PubHealth. It is worth mention-
ing that in the PopQA, using the original query
without any augmentations achieves the highest
performance. Additionally, we observe that this
variation in performance remains consistent across
different generator. This finding underscores the
importance of selecting the most suitable augmen-
tation method for each query, as different datasets



Table 1: The overall performance of UniRAG and the baseline model in five knowledge-intensive tests was evaluated,
and we conducted performance tests on three LLMs. The results of the optimal augmentation method are highlighted
in bold, and the best results obtained by using the augmentation method alone are underlined.

Model Method PopQA  TriviaQA  PubHealth ARC-Challenge TimeQA
Zero-shot Prompting 22.8 68.5 70.5 85.1 50.7
Original Query 44.2 69.4 70.6 85.3 55.8
2 en. Query Paraphrase 43.5 69.7 71.3 86.1 56.7
Llama-3-8B-Instruct HyDE 40.5 73.0 74.5 85.8 55.7
Step-Back Prompting 42.0 63.7 70.2 85.2 56.9
UniRAG 49.2 76.8 77.5 90.4 60.5
Zero-shot Prompting 28.9 69.2 60.5 86.3 51.4
Original Query 40.8 71.1 58.2 89.7 56.1
Query Paraphrase 39.5 71.2 58.3 90.1 56.3
Llama-3-70B-Instruct HyDE 3.1 74.4 59.0 89.7 55.1
Step-Back Prompting 37.7 67.1 55.5 89.6 57.0
UniRAG 47.5 77.1 624 92.3 61.2
Zero-shot Prompting 14.3 69.9 72.3 86.4 46.6
Original Query 41.0 71.1 59.2 87.8 50.1
A Query Paraphrase 39.1 71.1 58.8 89.0 50.4
GPT-do-mini HyDE 38.0 73.5 60.9 88.7 50.3
Step-Back Prompting 40.8 68.8 58.4 90.3 51.9
UniRAG 47.6 78.0 63.6 92.5 58.3

benefit from different augmentation strategies.

Comparison Between UniRAG and Baselines.
Across all tasks, our proposed UniRAG consis-
tently outperforms individual query augmentation
methods. Moreover, UniRAG demonstrates robust
improvements across all three generation models
used in our experiments. These results highlight
the advantages of integrating query augmentation
and encoding into a unified framework while adap-
tively applying augmentation strategies. Notably,
when individual query augmentation methods yield
substantial performance gains, UniRAG exhibits
even greater improvements. This observation fur-
ther reinforces the effectiveness of our approach in
dynamically selecting the most appropriate strat-
egy, leading to superior overall performance.

7.2 Ablation Study

In order to identify which factors play a key role,
we conducted a series of ablation experiments
on our framework during the query augmentation
phase and the query encoding respectively. We
used Llama-3-8B-Instruct as the generator and pre-
sented the ablation results in Table 2.

7.2.1 Ablation Study on Query Augmentation

During the query generation phase, we try the fol-
lowing three model variants: (1) Using only re-
triever feedback (2) Using only generator feedback
(3) Using a rejection sampling strategy to train the
model to select the augmentation strategy with the
highest retriever score. We see that all components

Table 2: Results of ablation study on different modules.

PopQA Pub ARC

UniRAG 49.2 77.5 904

" Query Augmentation Phase
Retrieval Feedback 47.9 74.8 88.5
Generator Feedback 48.5 755 89.2
Rejection Sampling 46.3 732 85.7

" Query Encoding Phase
Contriever 46.8 752 87.9
w/0 Lenh 47.9 76.3 894
— w/o Extra Data 47.3 759 88.7

play an important role, and the feedback from the
generator is more important than the feedback from
the retriever for the model’s query augmentation
strategy selection. Using the rejection sampling
strategy resulted in the worst performance, indicat-
ing that it is crucial to design a refined loss function
based on the feedback from the retriever and gener-
ator for selecting augmentation strategies.

7.2.2 Ablation Study on Query Encoding

During the query encoding phase, we tried different
model variants: (1) Using Contriever-MSMARCO
for retrieval (2) Skipping the training of the query
augmentation phase (denoted as "w/o L.,,") (3)
Based on 2, only using the original retrieval data
without adding augmented query data. We ob-
served that using Contriever as the retriever re-
sulted in the worst performance, as the decoder-
only LLM has better generalization capabilities.
Furthermore, the retriever trained with the Llama3-
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8b-base model still lags behind the UniRAG model
trained in two stages, which proves that unifying
the query augmentation stage and the query encod-
ing stage can improve the model’s performance.

7.3 Analysis
7.3.1 Accurate of the Selected Strategy

Win Tie Lose
UniRAG 1
Step-Back
HyDE A
Paraphrase 1
0.0 0.2 0.4 06 08 1.0
Proportion

Figure 4: Comparison of win rates of different augmen-
tation methods.

Based on the data collection process in Sec-
tion 4.2.1, we additionally constructed a validation
set of 2.1K entries and compared the predictive
performance of the augmented strategy applied by
UniRAG with that of using the original query for
each question. We counted the wins and losses ac-
cording to the ranking of the actual documents and
added the comparative results of other augmenta-
tion methods, as shown in Figure 4. We found that
UniRAG’s augmentation strategy improves perfor-
mance in over 90% of cases and has a better win
rate compared to other augmentation methods.

7.3.2 Comparison of Inference Methods

We conducted an analysis of UniRAG’s perfor-
mance and latency under different inference meth-
ods. Specifically, we used Llama-3-8B-Instruct as
the generator on the PopQA dataset, and the exper-
imental results are shown in Figure 3a. We found
that tree-based methods perform best in terms of
performance, but their computational latency is

also the highest. In addition, threshold-based infer-
ence methods show a trend of gradually improving
performance with increasing threshold -, while la-
tency also increases correspondingly. These results
indicate that the various decoding strategies we
provide can adapt to different application needs.

7.3.3 Effects of Synthetic Data Size

We analyzed the impact of synthetic data scale on
model performance. Specifically, we randomly
sampled 5k, 10k, 20k, 50k, and 100k instances
from the original 263k training instances and per-
formed two-phase fine-tuning on these subsets.
Subsequently, we compared the performance of
these models on the PopQA and PubHealth bench-
mark datasets with that of models trained on the
complete training dataset. The experimental results
are shown in Figure 3b. Based on the results, an
increase in training data typically accompanies an
improvement in model performance. This trend
suggests that further expanding the training dataset
may yield additional performance gains.

8 Conclusion

In this work, we propose UniRAG, a unified query
understanding framework for retrieval-augmented
generation. By integrating query augmentation and
encoding within a single model, UniRAG improves
information sharing and reduces cumulative errors.
Through adaptive selection of augmentation strate-
gies and contrastive learning, our approach signif-
icantly boosts retrieval performance. Experimen-
tal results demonstrate UniRAG’s effectiveness in
improving both query understanding and retrieval
accuracy, making it a robust and adaptable solu-
tion for RAG-based applications. Future research
can combine UniRAG with broader augmentation
strategies and explore improving query understand-
ing capabilities by scaling testing time.



Limitations

Despite its advantages, UniRAG still has certain
limitations. First, our approach relies on predefined
augmentation strategies, which may not generalize
well across all domains or user intents. Future work
could explore more dynamic and broader scenarios
for augmentation strategies. Secondly, although
our model enhances retrieval accuracy, its perfor-
mance is still affected by the quality of retrieved
documents. In low-resource or highly specialized
fields, this dependency can introduce noise that
negatively impacts overall effectiveness.
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A Training Dataset Collection

We collected a training dataset from multiple
knowledge-intensive question-and-answer and re-
trieval datasets for query augmentation and query
encoding training. We will introduce the collection
process of this dataset and the statistical results of
the final collected dataset.

A.1 Query Augmentation Dataset collection.

We create a seed dataset for data synthesis by
sampling from various knowledge-intensive QA
and retrieval datasets, including Natural Ques-
tions (Kwiatkowski et al., 2019), MS MARCO
Passages (Nguyen et al., 2016), BoolQ (Clark
et al., 2019), NarrativeQA (Kocisky et al., 2018),
Dolly15k (Conover et al., 2023), and SQuAD (Ra-
jpurkar, 2016). In order to obtain a diverse seed
dataset, we extracted 32K pieces of data from
the Natural Questions and MS MARCO datasets,
and 16K from other datasets. For datasets with
fewer than 32K pieces of data, we included the
complete dataset. For the MS Marco dataset, we
performed stratified sampling based on the given
query_type field, sampling 6.4K entries for each
of the five types (person, entity, location,
numeric, description); for Dolly15k, we only
selected data where the category is closed_qga.
Next, we conducted data synthesis and gathered
feedback signals as well as data filtering based on
the method outlined in section 1. Ultimately, we
collected 263,185 data points for instruction tuning,
including 105,096 valid feedback signals. Detailed
statistical results are shown in Table 3. Addition-
ally, we present the statistics of the data related to
different augmentation methods in Table 4.

Table 3: Statistics of query augmentation data obtained
from different seed datasets.

Dataset Train  Feedback
Natural Questions 78,071 31,788
MS MARCO Passages 85,350 32,000
BoolQ 24,013 9,397
NarrativeQA 32,484 14,375
Dolly15k 4,931 1,759
SQuAD 38,336 15,777

A.2 Query Encoding Dataset Collection.

We have detailed the process of creating the re-
trieval dataset in Section 4.3.1, and we will explain
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Table 4: Statistics on the number of data for different
augmentation methods.

Ori  Expansion Abstract Para

Nums 5,123 82,052 87,247 88,763

in detail how to perform hard negative sample min-
ing for each dataset. For MS MARCO Passages
and Natural Questions, we used 30 difficult neg-
ative samples pre-mined from the Tevatron (Gao
et al., 2022). For other datasets, we retrieved the
top 30 passages from Wikipedia passages as diffi-
cult negative samples using the BM25 (Robertson
and Walker, 1994). The statistical results of the
final dataset are shown in Table 5.

Table 5: Statistics of query encoding data obtained from
different seed datasets.

Dataset Training Samples
Natural Questions 154,615

MS MARCO Passages 585,108
BoolQ 37,708
NarrativeQA 79,941
Dolly15k 7,064
SQuAD 135,340

B Training and Inference Algorithm

The training pipeline of UniRAG is elaborated in
Section 4 with its formalized procedure summa-
rized in Algorithm 1, while the inference mecha-
nism is systematically described in Section 5 and
algorithmically instantiated in Algorithm 2.

C Implementation Details

C.1 Training Details.

During the data collection process, we utilize the
Contriever-MSMARCAO retriever to gather retrieval
feedback, while the Llama-3-8B-Instruct model is
employed to collect generator feedback.

For training, we adopt the Llama-3.1-8B model
as the base model and perform instruction tuning
and contrastive learning. The training is conducted
using four NVIDIA A100 GPUs, each with 80GB
of memory. In the instruction tuning phase, the
model is trained for 3 epochs with a batch size of
256, a peak learning rate of 2e-5, and a linear decay
schedule following a 3% warmup step. The maxi-
mum token length is set to 512. We leverage Deep-
Speed ZeRO-3 (Rajbhandari et al., 2020) to enable



Algorithm 1 UniRAG Training

1. Input Generator GG, Retriever R, Augmentation Strategies M
2: Initialize UniRAG with pre-trained language model 6,
3: Construct seed dataset Dg,.q from QA & retrieval corpora > Data Synthesis (Section 4.2.1)
4: for g € Dyeeq do
5: for m € M do > Apply augmentation strategies
6: Generate augmented query ¢, = E,,,(¢) via GPT-40-mini
7: end for
8: Retrieve docs {d;} for ¢ and {G,,} using R > Feedback collection
9: Compute Syet, Sgen Using R and G
10: if 3 m where Sret(q~m) < Sret(Q) or Sgen(ij) < Sgen(Q) then > Data filtering
11: Discard underperforming g,
12: end if
13: Store (g, M, Gm, Srets Sgen) i Depp,
14: end for
15: for (g, Gm, S) € Depp, do > Query Augmentation Training (Section 4.2)
16: Map 8;.t, Sgen to the corresponding action token positions in V > Strategy selection
17: Compute L, via KL-divergence (Eq. 5)
18: Compute Lge, via next token prediction (Eq. 6) > Query generation
19: Update 0 using Lepp, = Lser + Lgen
20: end for
21: for (q;qst, d") € Dretrievar do > Query Encoding Training (Section 4.3)
22: Extract embeddings h o hg+, and compute InfoNCE loss L,..; (Eq. 7) > Contrastive learning
23: Update 6 using L, "
24: end for

Algorithm 2 UniRAG Inference

1: Input Original query ¢, UniRAG 6, Retriever R, decoding strategy &, threshold «y, beam size B
2: Generate action token probabilities P(v|q) using 0
3: if & = Default then > Default decoding
4 Select m* = arg max,,e s P(m|q)
5: Generate augmented query ¢,,,» via greedy search
6: else if ¢ = Threshold then > Threshold-based decoding
7 Compute ratio p = LP(original>)
maxmem P(m)
8 if p < then
9: m* < arg max,,epm P(m|q)
10: Generate ¢, via greedy search
11: else
12: Set G+ to an empty string
13: end if
14: else > Tree-based decoding
15: Collect valid actions M’ = {m|P(m) > P(<Original>)}
16: Initialize beam candidates C < {q}
17: for m € M’ do > Multi-strategy exploration
18: Generate augmented queries g,, with beam search (size B)
19: Add to candidates C <— C U {Gm }
20: end for
21: end if

22: return augmented result (G, or C)
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multi-GPU distributed training with BFloat16 pre-
cision. Additionally, FlashAttention2 (Dao, 2024)
is integrated to enhance the efficiency of long-
context training.

During the contrastive learning phase, the model
undergoes 1 epoch of fine-tuning, with the maxi-
mum token length for queries and documents set to
256, and the temperature parameter 7 set to 0.01.
To optimize GPU memory usage, we employ LoRA
(Hu et al., 2022) with a rank of 16, gradient check-
pointing, and DeepSpeed ZeRO-3, with BFloat16
precision enabled.

C.2 Inference Details.

In the action token generation process, constrained
decoding is applied, while greedy search is used
when generating augmented queries. In the re-
trieval step, following Asai et al. (2024), we use
Wikipedia data as the external retrieval corpus for
the five benchmarks used in this study, where each
document is an independent text block extracted
from Wikipedia articles containing up to 100 words.
For each query, we retrieve the top 5 paragraphs
from this corpus. During the generation process,
we use vLLM (Kwon et al., 2023) for accelerated
inference of the model. When using the tree-based
decoding algorithm, we set the beam width to 4. In
the baseline generation step, we call GPT-40-mini
via the official OpenAl API. The generator uses the
default temperature and sampling algorithm.

D Prompt Details

During the training phase, we prompt GPT-40-mini
to generate augmented queries for a given query
to synthesize data. We provide the prompts used
for generating augmented queries with different
augmentation strategies in Table 8. In the training
process of the query augmentation phase, the input
and output prompt templates used for construct-
ing instruction fine-tuning data can be referred to
in Table 6; in the training of the query encoding
phase, the query templates used for constructing
contrastive learning data can be referred to in Table
7. For the document, we directly add the prefix
"Document:" at the front.

In the experiment, to ensure a fair comparison,
we used the same prompt as in the synthetic data
phase for the baseline of the independent use of
query augmentation method, as shown in Table 8.
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Task Instruction

For the given user query, please choose
an appropriate query augmentation method
(generating hypothetical documents: <Ex-
pand>, query paraphrase: <Paraphrase>,
step back to generate abstract queries: <Ab-
stract> or do not augment: <Original>), and
provide the augmented query afterwards.

Prompt Template for Input (Zey,)

Instruction: {task_instruction}
Input:
Query: {query}

| r

Output Template (No Augmentation)

Response:
Choiced method: <Original>, No augmen-
tation needed.

Output Template (Apply Augmentation)

| r

Response:
Choiced method: {augmentation_strategy }
Augmented query: {augmented_query }

Table 6: Input and output template used for constructing
query augmentation instruction data.

E Benchmark Dataset Details

We comprehensively validated the effectiveness
of UniRAG on closed-set tasks and open-
domain question answering tasks, covering five
knowledge-intensive benchmark datasets.

The closed-set tasks include two datasets: (1)
PubHealth (Zhang et al., 2023): a fact verification
dataset for the public health domain. (2) ARC-
Challenge (Clark et al., 2018): a multiple-choice
reasoning dataset constructed from science exam
questions. We followed the experimental setup of
previous research, using accuracy as the evaluation
metric and reporting on the test set.

The open-domain question answering tasks
cover three datasets: PopQA (Mallen et al.,
2022), TriviaQA-unfiltered (Joshi et al., 2017), and
TimeQA (Chen et al., 2021). In the PopQA task,
the system needs to answer open questions involv-
ing factual knowledge. We employed the long-tail
subset for evaluation, which contains 1,399 queries



Query Template (No Augmentation)

Instruction: {task_instruction}

Input:

Query: {query}

Response:

Choiced method: <Original>, No augmen-
tation needed.

| r

Query Template (Apply Augmentation)

Instruction: {task_instruction}

Input:

Query: {query}

Response:

Choiced method: {augmentation_strategy }
Augmented query: {augmented_query }

Table 7: Query template (Z,..;) used for constructing
contrastive learning data.

involving rare entities, all of which have fewer than
100 monthly views on Wikipedia. For TriviaQA-
unfiltered, since its open test set is not publicly
available, we followed the validation and test set
division method of previous research (Asai et al.,
2024; Guu et al., 2020b) to evaluate model perfor-
mance on 11,313 test queries. Notably, our evalua-
tion method does not require strict text matching,
but rather is based on whether the model-generated
results contain the gold standard answers. In the
TimeQA task, the system needs to answer chal-
lenging queries involving complex time-sensitive
knowledge. We evaluated on 5,226 test queries to
assess the model’s ability to handle time-dependent
issues. We summarized the types of benchmark
datasets used in the experiment and the statistics
on the number of test questions in Table 9.
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Prompts for Query Paraphrase

Please optimize the search engine query by
removing irrelevant words and vague ex-
pressions, replacing abbreviations, and re-
taining important concepts to ensure accu-
rate and smooth responses.

Query: {query}

Rewrite Query:

Prompts for the HyDE

Please write a passage to answer the ques-
tion.

Question: {query}

Passage:

Prompts for the Step-Back Prompting

Your task is to step back and paraphrase a
question to a more generic step-back ques-
tion, which is easier to answer.

Here are a few examples:

Query: Who was the spouse of Anna Karina
from 1968 to 19747

Step Back Query: Who were the spouses of
Anna Karina?

Query: Estella Leopold went to which
school between Aug 1954 and Nov 19547
Step Back Query: What was Estella
Leopold’s education history?

Query: {query}

Step Back Query:

Table 8: We refer to the prompt templates from the
official implementation for various query augmentation
methods.

Table 9: Benchmark Dataset Statistics.

Dataset Type Questions
PopQA Open-domain 1,399
TriviaQA Open-domain 11,313
PubHealth Closed-set 3,610
ARC-Challenge  Closed-set 948
TimeQA Open-domain 12,576




	Introduction
	Related Work
	Retrieval-Augmented Generation
	LLM-based Embedding Models

	Preliminary
	UniRAG Training
	Overview
	Query Augmentation Training
	Data Collection
	Training Objective

	Query Encoding Training
	Data Collection
	Training Objective


	UniRAG Inference
	Experimental Setups
	Datasets
	Baselines

	Results and Analysis
	Main Results
	Ablation Study
	Ablation Study on Query Augmentation
	Ablation Study on Query Encoding

	Analysis
	Accurate of the Selected Strategy
	Comparison of Inference Methods
	Effects of Synthetic Data Size


	Conclusion
	Training Dataset Collection
	Query Augmentation Dataset collection.
	Query Encoding Dataset Collection.

	Training and Inference Algorithm
	Implementation Details
	Training Details.
	Inference Details.

	Prompt Details
	Benchmark Dataset Details

