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Abstract

Retrieval-Augmented Generation (RAG) tech-001
nology effectively addresses the issues of002
knowledge update lag and hallucinations in003
large language models (LLMs) by integrat-004
ing internal and external knowledge. Existing005
query augmentation methods improve RAG’s006
performance in handling complex queries but007
face two key challenges: (1) the separation of008
query augmentation and encoding tasks, which009
hinders information sharing and introduces cu-010
mulative errors, and (2) the difficulty of se-011
lecting the optimal augmentation strategy for012
different scenarios. In this work, we propose013
UniRAG, a unified framework for query under-014
standing in RAG. UniRAG employs a decoder-015
only LLM to jointly perform query augmenta-016
tion and encoding, eliminating task separation.017
To facilitate adaptive query augmentation, we018
categorize existing techniques into query para-019
phrasing, query expansion, and query abstrac-020
tion. Our model learns to select the optimal aug-021
mentation strategy based on user queries, lever-022
aging retrieval and generation outputs as feed-023
back. Experimental results show that UniRAG024
significantly outperforms traditional query aug-025
mentation methods in five knowledge-intensive026
benchmark tasks in both closed and open do-027
main question answering1.028

1 Introduction029

In recent years, Large Language Models (LLMs)030

have become fundamental components of various031

Natural Language Processing (NLP) tasks due to032

their remarkable ability to comprehend and gen-033

erate human-like text (Dubey et al., 2024; Brown034

et al., 2020; Hurst et al., 2024). Despite accumulat-035

ing vast knowledge during pretraining, these mod-036

els face inherent challenges such as outdated knowl-037

edge and the generation of inaccurate or mislead-038

ing information. Recently, Retrieval-Augmented039

1Our code is available at https://anonymous.4open.
science/r/UniRAG-8260

Generation (RAG) (Lewis et al., 2020; Asai et al., 040

2024) has emerged as a standard approach to ad- 041

dress these issues by integrating parametric and 042

non-parametric knowledge through the retrieval of 043

relevant passages. 044

Given the complexity of understanding user 045

queries, many studies have explored query aug- 046

mentation techniques using LLMs. For instance, 047

(Ma et al., 2023) employs LLM feedback to train a 048

query rewriter, while HyDE (Gao et al., 2023a) gen- 049

erates hypothetical documents to expand queries. 050

Although these techniques have significantly im- 051

proved RAG system performance, existing research 052

still faces two key challenges: (1) Separation of 053

Query Augmentation and Encoding Tasks: As 054

shown on the left side of Figure 1, current ap- 055

proaches typically treat query augmentation and 056

encoding as independent models or stages, limiting 057

the effective sharing of information and potentially 058

leading to cumulative errors. (2) Lack of Adaptive 059

Augmentation Strategy Selection: Preliminary 060

experiments in Section 7.1 indicate that different 061

query augmentation techniques exhibit varying per- 062

formance across different scenarios. Therefore, 063

determining the optimal augmentation strategy for 064

specific contexts or even specific user queries re- 065

mains a significant challenge. 066

To address these challenges, this work introduces 067

UniRAG. As shown on the right side of Figure 1, 068

we achieve unified execution of query augmenta- 069

tion and query encoding by training a decoder-only 070

LLM. To adaptively augment a given query, we 071

categorize existing query augmentation techniques 072

into three types: (1) query paraphrasing, (2) query 073

expansion, and (3) query abstraction, and select 074

a representative method for each of these three 075

augmentation techniques. Using a diverse set of 076

knowledge-intensive question-answering and re- 077

trieval datasets, we synthesize augmented query 078

data by applying these augmentation techniques. 079

Additionally, we leverage feedback scores from 080
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Figure 1: Overview of UniRAG. UniRAG unifies the query augmentation phase and the query encoding phase, and
adaptively selects augmentation strategies for the given query during the augmentation phase.

both the retriever and generator as signals for se-081

lecting the appropriate augmentation strategy. To082

control the model’s selection of different augmenta-083

tion strategies, inspired by previous research (Asai084

et al., 2024; Schick et al., 2023), we supervise the085

model to generate action tokens and subsequently086

generate augmented queries corresponding to those087

actions, while also allowing the model not to per-088

form query augmentation. To complete query en-089

coding, we expand the dataset to fit the representa-090

tion task, adding an extra [EOS] token to the input091

to obtain embeddings, and train the model’s encod-092

ing ability using contrastive learning.093

Compared to the previous query augmentation094

paradigm, UniRAG offers the following advan-095

tages: (1) End-to-End Query Understanding: A096

single model performs both query augmentation097

and encoding, reducing fragmentation in the pro-098

cess. (2) Adaptive Strategy Selection: UniRAG099

autonomously determines and applies the most ap-100

propriate query augmentation strategy based on the101

query. (3) Plug-and-Play Compatibility: Uni-102

RAG can be integrated with different LLMs, miti-103

gating retrieval noise caused by insufficient query104

understanding. Furthermore, it supports customiz-105

able decoding algorithms, allowing for flexible106

query augmentation frequencies tailored to differ-107

ent downstream applications.108

The experimental results show that UniRAG109

consistently outperforms independent query aug-110

mentation methods across five different benchmark111

datasets in both closed and open domains. Fur-112

thermore, our findings validate the significant ad- 113

vantages of integrating query augmentation and 114

encoding within a unified framework. 115

2 Related Work 116

2.1 Retrieval-Augmented Generation 117

Retrieval-Augmented Generation (RAG) (Guu 118

et al., 2020a; Gao et al., 2023b; Borgeaud et al., 119

2022; Asai et al., 2020, 2023) has become a key 120

paradigm for large language models (LLMs), alle- 121

viating the hallucination problem of current LLMs 122

by incorporating external knowledge, and achiev- 123

ing advantages in several downstream tasks such as 124

code generation (Parvez et al., 2021; Lu et al., 2022; 125

Wang et al., 2024c) and knowledge-based question 126

answering (Yu et al., 2022; He et al., 2024). 127

Recently, more and more research (Zhu et al., 128

2024; Wang et al., 2024b; Xu et al., 2023) has 129

focused on enhancing the performance of RAG 130

systems from various aspects, such as improving 131

decoding efficiency (Kim et al., 2024; Wang et al., 132

2024b), exploring long-context retrieval (Luo et al., 133

2024; Li et al., 2024c), and compressing prompts 134

(Jiang et al., 2023; Xu et al., 2023). Despite the 135

advantages of these RAG systems, they inevitably 136

face potential noise issues in the retrieval content 137

due to imperfect retrievers. 138

To address this problem, researchers have pri- 139

marily explored three categories of techniques for 140

augmentation: (1) Adaptive Retrieval: Self-RAG 141

(Asai et al., 2024) and ReAct (Yao et al., 2023) in- 142

troduce reflection techniques to determine whether 143
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the retrieval can assist in answering. (2) Document144

Filtering: Xu et al. (2024) proposed incorporating145

reranking to reorder the final retrieval results; Kong146

et al. (2024) used prompts for LLMs to judge the147

relevance of documents. (3) Query Augmentation:148

Techniques such as paraphrasing (Ma et al., 2023),149

query expansion (Gao et al., 2023a; Lavrenko and150

Croft, 2017; Mao et al., 2023), and query abstrac-151

tion (Zheng et al., 2023) are used to enhance the152

original query to handle diverse user queries.153

2.2 LLM-based Embedding Models154

Recently, techniques that utilize only decoder155

LLMs as embedding models have begun to emerge,156

showing significant improvements in accuracy and157

generalization capability within the domain. These158

studies treat LLMs as query and information en-159

coders and optimize through contrastive learning.160

During this process, e5-mistral (Wang et al., 2024a)161

and Gecko (Lee et al., 2024b) incorporate syn-162

thetic datasets, and Gecko attempts to distill a163

smaller bidirectional embedding model from a164

decoder-only LLM. LLM2Vec (BehnamGhader165

et al., 2024) seeks to construct embedding mod-166

els from LLMs using only publicly available data.167

SFR-Embedding-Mistral (Rui Meng, 2024) fur-168

ther fine-tunes on a mix of non-retrieval and re-169

trieval datasets to enhance accuracy for both tasks.170

Llama2Vec (Li et al., 2024a) adapts LLMs to re-171

trieval tasks by proposing autoencoding and autore-172

gressive pre-training tasks. GritLM (Muennighoff173

et al., 2024) employs instruction fine-tuning tech-174

niques to enable LLMs to handle both generation175

and retrieval tasks. NV-Embed (Lee et al., 2024a)176

enhances pooling embeddings by adding latent at-177

tention and improves performance on retrieval and178

non-retrieval tasks through a two-stage instruction179

fine-tuning technique. bge-en-icl (Li et al., 2024b)180

generates high-quality text embeddings by incorpo-181

rating few-shot examples.182

3 Preliminary183

We aim to produce an accurate response r from a184

user query q and external documents in a corpus185

D. The traditional Retrieval-Augmented Gener-186

ation (RAG) pipeline has three components: an187

augmenter E, a retriever R, and a generator G.188

Query Augmentation. The augmenter E trans-189

forms the original query q into q̃. This process may190

add context or synonymous rewrites to improve the191

likelihood of retrieving relevant documents. 192

q̃ = E(q). (1) 193

Document Retrieval. The retriever R encodes q̃ 194

and each document d ∈ D into a shared represen- 195

tation space. A similarity score (e.g., dot product) 196

ranks how relevant d is to q̃. We select the top-k 197

documents with the highest similarity. 198

{d1, . . . , dk} = top-k
d∈D

sim
(
q̃, d

)
. (2) 199

Response Generation. We concatenate q̃ and the 200

retrieved documents d1, . . . , dk into C, then pass it 201

to the generator G to produce the response r: 202

r = G
(
C
)
. (3) 203

4 UniRAG Training 204

4.1 Overview 205

UniRAG can automatically select appropriate aug- 206

mentation strategies for the raw query given by the 207

user and encode the augmented query to achieve 208

unified modeling of augmentation and encoding. 209

As shown in Figure 2, UniRAG consists of two 210

training stages: (1) Query augmentation training: 211

Train the model using synthetic augmented queries 212

and feedback data from the augmentation strate- 213

gies. (2) Query encoding training: Augmented 214

queries are added to the original retrieval dataset, 215

and use contrastive learning to train the model. We 216

summarize the training process in Algorithm 1. 217

4.2 Query Augmentation Training 218

4.2.1 Data Collection 219

Seed Dataset Collection. To augment the 220

model’s capability in handling diverse user queries, 221

we propose a novel data annotation process to gen- 222

erate data for instruction tuning. We sample from 223

knowledge-intensive QA and retrieval datasets, in- 224

cluding Natural Questions (Kwiatkowski et al., 225

2019), MS MARCO Passages (Nguyen et al., 226

2016), BoolQ (Clark et al., 2019), Narra- 227

tiveQA (Kočiskỳ et al., 2018), Dolly15k (Conover 228

et al., 2023), and SQuAD (Rajpurkar, 2016), to con- 229

struct a seed dataset for data synthesis. Detailed 230

statistics are provided in Appendix A.1. 231

Data Synthesis. To obtain augmented queries, 232

we select a representative method from each cate- 233

gory of augmentation techniques. Specifically, for 234

query paraphrasing, we adopt (Ma et al., 2023) to 235
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Figure 2: The two-stage training process of UniRAG: first, query augmentation training is conducted based on the
augmented queries and feedback signals, followed by query encoding training using contrastive learning.

rephrase queries by resolving ambiguity and vague-236

ness; for query expansion, we employ HyDE (Gao237

et al., 2023a) to generate hypothetical documents;238

and for query abstraction, we utilize Step-Back239

Prompting (Zheng et al., 2023) to abstract the orig-240

inal query. We then apply these augmentation241

techniques to the seed dataset using the GPT-4o-242

mini (Hurst et al., 2024). For a given query q and243

a selected augmentation strategy m from the set244

of all strategiesM, we generate the corresponding245

augmented query q̃m = Em(q), where Em denotes246

the augmenter instantiated with strategy m.247

Feedback Signal Collection. To evaluate the248

quality of an augmented query q̃m, we collect two249

types of feedback signals:250

• Retriever Feedback: Retriever feedback cap-251

tures how well a query x (either q or q̃m) re-252

trieves relevant documents. We calculate the re-253

ciprocal ranking as the retrieval feedback score:254

sret(x) = 1
rankx

, where rankx is the position255

of the first relevant document in the ranking list256

retrieved by the retriever R for x.257

• Generator Feedback: For a given query x, we258

retrieve candidate documents {d1, . . . , dk}, con-259

catenate them into the input context and feed260

them into generator G to generate an answer r:261

C(x) =
[
x, d1, . . . , dk

]
,

pG(r | C(x)) =
T∏
t=1

pG
(
rt | r1:t−1, C(x)

)
.

(4)262

where rt is the token at step t in the generated263

answer, and T is the number of tokens in r. The264

generator score is: sgen(x) = log pG(r | C(x)).265

For each original query q, we obtain feedback266

scores for q as well as for each augmented query q̃m267

produced using an augmentation strategy m. We 268

then aggregate these scores into two collections: 269

sret =
{
sret(x)

∣∣x ∈ {q} ∪ {q̃m : m ∈M}
}
, 270

271

sgen =
{
sgen(x)

∣∣x ∈ {q} ∪ {q̃m : m ∈M}
}
. 272

Data Filtering. Not all queries are suitable for 273

every augmentation technique. To ensure reason- 274

able application of augmentation methods and min- 275

imize noise in the synthetic dataset, we perform 276

data filtering using the following criteria: 277

• We use Retriever R to retrieve documents for 278

query q and discard any instances where the 279

true document is not among the top k′ results. 280

• If any feedback signal score for an augmented 281

query q̃ is lower than that of the original query 282

q, we discard the augmented instance. 283

To address the case where no augmentation is 284

needed, we add the original query to the dataset 285

when the original query has the highest feedback 286

score, at which point q̃m is the empty string. The 287

final dataset consists of instances of the format 288

(q,m, q̃m, sret, sgen). We ended up collecting 289

263K data points for instruction tuning, including 290

105K valid feedback signals. See the Appendix 291

A.1 for more details and analysis. 292

4.2.2 Training Objective 293

To train the model to both select the appropriate 294

augmentation strategy m for a given query q and 295

generate a corresponding augmented query q̃m, we 296

design a joint training objective. For each training 297

instance, we first construct the input by applying an 298

instruction template Igen (details in Appendix D) 299

to q and then define the expected output based on 300

the augmentation strategy m and the corresponding 301

augmented query q̃m. 302
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• Augmentation Strategy Selection Loss Lsel:303

To align the model selection strategy probabili-304

ties with feedback scores, we map sret and sgen305

to a vocabulary V of action tokens and apply a306

softmax function with a temperature of 0.1. This307

yields p∗ret(v) and p∗gen(v). At the designated308

action token position, the model predicts a prob-309

ability distribution p̂(v | q), and we compute the310

KL-divergence between this predicted distribu-311

tion and feedback score probability:312

Lsel = KL
(
p∗ret(v)

∥∥∥ p̂(v | q))
+KL

(
p∗gen(v)

∥∥∥ p̂(v | q)). (5)313

• Augmented Query Generation Loss Lgen:314

Once the augmentation strategy is selected, the315

model generates the corresponding augmented316

query q̃m. At each time step t, the model predicts317

the next token in q̃m. The generation process318

follows the standard next token loss:319

Lgen = −
T∑
t=1

log pG
(
q̃m,t | q̃m,1:t−1, q,m

)
,

(6)320

where T is the total number of tokens in q̃m. We321

do not supervise the predictions of action tokens.322

The overall training objective combines the two323

losses: Lenh = Lsel + Lgen.324

4.3 Query Encoding Training325

4.3.1 Data Collection326

During the query augmentation stage, our collected327

dataset includes relevant document annotations,328

making it suitable for training the encoder. Specifi-329

cally, we combine the original query q, augmenta-330

tion strategy m, and the augmented query q̃m with331

a preset instruction template Ienc (details in Ap-332

pendix D) to generate a new query qinst, which is333

paired with annotated positive documents.334

To achieve scalable expansion of the retrieval335

dataset, we further include other data instances336

from the original dataset that have not been aug-337

mented into the retrieval dataset. Since these addi-338

tional data instances do not contain annotations339

for the augmented query, we uniformly add an340

<Original> token to them and apply the instruc-341

tion template to generate the corresponding qinst.342

Additionally, we mined hard negative samples for343

each query to improve retrieval performance. For344

detailed information on the collection of the re-345

trieval dataset, see Appendix A.2.346

4.3.2 Training Objective 347

Given a relevant query-document pair (q+inst, d
+), 348

we append an <EOS> token to both the query and 349

the document. These are then fed into the model to 350

extract their respective embeddings from the final 351

layer <EOS> vector, denoted as hq+inst
and hd+ . 352

To optimize the embedding model, we employ 353

the InfoNCE loss Lret, which ensures that positive 354

query-document pairs are assigned higher similar- 355

ity scores compared to negative samples: 356

Lret = − log
ϕ(q+inst, d

+)

ϕ(q+inst, d
+) +

∑
d−∈N

ϕ(q+inst, d
−)

,

(7) 357

where N represents the set of all negative sam- 358

ples. The function ϕ(q, d) = exp (sim(hq, hd)/τ), 359

where τ is the temperature hyperparameter. 360

5 UniRAG Inference 361

In the query augmentation phase, UniRAG defaults 362

to using constraint decoding to generate action to- 363

kens. After generating the action token, UniRAG 364

applies the corresponding augmentation strategy 365

and employs a greedy search to produce the aug- 366

mented query. To adapt different task scenarios and 367

flexibly control the augmentation frequency, we ad- 368

ditionally designed two decoding strategies and 369

summarized the inference process in Algorithm 2. 370

Threshold-based Decoding. This strategy dy- 371

namically determines whether to adopt an aug- 372

mentation method by calculating the ratio of 373

the generation probability of the <Original> 374

token to the maximum generation probability 375

among the action tokens corresponding to var- 376

ious augmentation methods. Formally, let 377

P (<Original>) and maxm∈M P (m) denote 378

the generation probability of the <Original> to- 379

ken and the maximum generation probability of the 380

action tokens, respectively. We define a threshold γ. 381

When the following conditions are met, UniRAG 382

will select the action token with the highest gener- 383

ation probability and generate the corresponding 384

augmented query: 385

P (<Original>)

P (<Original>) + maxm∈M P (m)
< γ, (8) 386

This decoding strategy achieves a balance between 387

augmented accuracy and computational cost by 388

controlling the threshold γ. 389
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Tree-based Decoding. For scenarios with a390

higher inference budget, multiple query augmen-391

tation methods can be combined to further im-392

prove performance. In this strategy, UniRAG gen-393

erates all action tokens whose generation proba-394

bilities are no lower than that of the <Original>395

token. Then, during the augmented query genera-396

tion, beam search is applied with a global beam397

size B to explore all possible combinations of398

augmentation methods. In this way, we can ul-399

timately generate a set of B augmented queries400

QB = {q̃1, q̃2, . . . , q̃B} and their corresponding401

embedding. In the retrieval phase, we apply Recip-402

rocal Rank Fusion (RRF) (Cormack et al., 2009)403

to merge the retrieval results obtained from the dif-404

ferent query embeddings, thereby improving the405

accuracy and recall of query matching.406

6 Experimental Setups407

6.1 Datasets408

We comprehensively validated the effectiveness of409

UniRAG on closed-set tasks and open-domain410

question answering tasks.411

Closed-set QA Tasks. The closed-set QA tasks412

include: (1) PubHealth (Zhang et al., 2023): a fact413

verification dataset for the public health domain.414

(2) ARC-Challenge (Clark et al., 2018): a multiple-415

choice reasoning dataset constructed from science416

exam questions.417

Open-domain QA Tasks. The open-domain QA418

tasks cover the following datasets: PopQA (Mallen419

et al., 2022), TriviaQA-unfiltered (Joshi et al.,420

2017), and TimeQA (Chen et al., 2021). In the421

PopQA, the system needs to answer open questions422

involving factual knowledge. We employed the423

long-tail subset for evaluation containing queries424

involving rare entities. For TriviaQA-unfiltered,425

we followed the validation and test set division426

method of previous research (Asai et al., 2024;427

Guu et al., 2020b) to evaluate model performance.428

In the TimeQA, the model needs to answer queries429

involving complex time-sensitive knowledge.430

We followed the experimental setup of previous431

research (Asai et al., 2024; Zheng et al., 2023),432

using accuracy as the evaluation metric. Our evalu-433

ation approach does not rely on strict text matching,434

but rather is based on whether the model-generated435

results contain the gold standard answers. Statis-436

tical details of these datasets are provided in the437

Appendix E.438

6.2 Baselines 439

To comprehensively evaluate UniRAG’s perfor- 440

mance, we compare it with existing query aug- 441

mentation methods. Specifically, we examine the 442

following augmentation methods: (1) Paraphrase, 443

which involves abbreviation replacement and ambi- 444

guity elimination of the original query, referencing 445

the specific implementation in (Ma et al., 2023); 446

(2) HyDE (Gao et al., 2023a), which generates hy- 447

pothetical documents based on the query to expand 448

the original query; (3) Step-back Prompting (Zheng 449

et al., 2023), by abstracting higher-level concepts 450

from the original query, generates abstract query. 451

To ensure fair comparisons, we uniformly 452

use Llama-3-8B-Instruct (Dubey et al., 2024) 453

as the base model and select Contriever-MS 454

MARCO (Izacard et al., 2021) as the dense re- 455

triever to retrieve relevant passages. Furthermore, 456

we report two reference baselines: (1) zero-shot 457

prompting without retrieval as the no-retrieval base- 458

line; (2) using the original query for retrieval as the 459

standard retrieval baseline, in order to more clearly 460

measure the improvements of UniRAG under dif- 461

ferent settings. 462

To verify the model independence of Uni- 463

RAG, we used Llama-3-8B-Instruct, Llama-3-70B- 464

Instruct and GPT-4o-mini (Hurst et al., 2024) as 465

generators to evaluate its cross-model generaliza- 466

tion ability. For the implementation details of the 467

experiment, including the training and inference 468

processes, please see Appendix C. 469

7 Results and Analysis 470

7.1 Main Results 471

Comparison of Individual Query Augmentation 472

Methods. Table 1 presents the overall experi- 473

mental results, showing that the performance im- 474

pact of different query augmentation techniques 475

varies across benchmark datasets. In most cases, 476

applying query paraphrasing leads to consistent 477

performance improvements. Additionally, using 478

the HyDE method to generate hypothetical docu- 479

ments for query expansion yields the best results 480

on TriviaQA and PubHealth. It is worth mention- 481

ing that in the PopQA, using the original query 482

without any augmentations achieves the highest 483

performance. Additionally, we observe that this 484

variation in performance remains consistent across 485

different generator. This finding underscores the 486

importance of selecting the most suitable augmen- 487

tation method for each query, as different datasets 488
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Table 1: The overall performance of UniRAG and the baseline model in five knowledge-intensive tests was evaluated,
and we conducted performance tests on three LLMs. The results of the optimal augmentation method are highlighted
in bold, and the best results obtained by using the augmentation method alone are underlined.

Model Method PopQA TriviaQA PubHealth ARC-Challenge TimeQA

Llama-3-8B-Instruct

Zero-shot Prompting 22.8 68.5 70.5 85.1 50.7
Original Query 44.2 69.4 70.6 85.3 55.8

Query Paraphrase 43.5 69.7 71.3 86.1 56.7
HyDE 40.5 73.0 74.5 85.8 55.7

Step-Back Prompting 42.0 63.7 70.2 85.2 56.9
UniRAG 49.2 76.8 77.5 90.4 60.5

Llama-3-70B-Instruct

Zero-shot Prompting 28.9 69.2 60.5 86.3 51.4
Original Query 40.8 71.1 58.2 89.7 56.1

Query Paraphrase 39.5 71.2 58.3 90.1 56.3
HyDE 32.1 74.4 59.0 89.7 55.1

Step-Back Prompting 37.7 67.1 55.5 89.6 57.0
UniRAG 47.5 77.1 62.4 92.3 61.2

GPT-4o-mini

Zero-shot Prompting 14.3 69.9 72.3 86.4 46.6
Original Query 41.0 71.1 59.2 87.8 50.1

Query Paraphrase 39.1 71.1 58.8 89.0 50.4
HyDE 38.0 73.5 60.9 88.7 50.3

Step-Back Prompting 40.8 68.8 58.4 90.3 51.9
UniRAG 47.6 78.0 63.6 92.5 58.3

benefit from different augmentation strategies.489

Comparison Between UniRAG and Baselines.490

Across all tasks, our proposed UniRAG consis-491

tently outperforms individual query augmentation492

methods. Moreover, UniRAG demonstrates robust493

improvements across all three generation models494

used in our experiments. These results highlight495

the advantages of integrating query augmentation496

and encoding into a unified framework while adap-497

tively applying augmentation strategies. Notably,498

when individual query augmentation methods yield499

substantial performance gains, UniRAG exhibits500

even greater improvements. This observation fur-501

ther reinforces the effectiveness of our approach in502

dynamically selecting the most appropriate strat-503

egy, leading to superior overall performance.504

7.2 Ablation Study505

In order to identify which factors play a key role,506

we conducted a series of ablation experiments507

on our framework during the query augmentation508

phase and the query encoding respectively. We509

used Llama-3-8B-Instruct as the generator and pre-510

sented the ablation results in Table 2.511

7.2.1 Ablation Study on Query Augmentation512

During the query generation phase, we try the fol-513

lowing three model variants: (1) Using only re-514

triever feedback (2) Using only generator feedback515

(3) Using a rejection sampling strategy to train the516

model to select the augmentation strategy with the517

highest retriever score. We see that all components518

Table 2: Results of ablation study on different modules.

PopQA Pub ARC

UniRAG 49.2 77.5 90.4
Query Augmentation Phase
Retrieval Feedback 47.9 74.8 88.5
Generator Feedback 48.5 75.5 89.2
Rejection Sampling 46.3 73.2 85.7
Query Encoding Phase
Contriever 46.8 75.2 87.9
w/o Lenh 47.9 76.3 89.4

– w/o Extra Data 47.3 75.9 88.7

play an important role, and the feedback from the 519

generator is more important than the feedback from 520

the retriever for the model’s query augmentation 521

strategy selection. Using the rejection sampling 522

strategy resulted in the worst performance, indicat- 523

ing that it is crucial to design a refined loss function 524

based on the feedback from the retriever and gener- 525

ator for selecting augmentation strategies. 526

7.2.2 Ablation Study on Query Encoding 527

During the query encoding phase, we tried different 528

model variants: (1) Using Contriever-MSMARCO 529

for retrieval (2) Skipping the training of the query 530

augmentation phase (denoted as "w/o Lenh") (3) 531

Based on 2, only using the original retrieval data 532

without adding augmented query data. We ob- 533

served that using Contriever as the retriever re- 534

sulted in the worst performance, as the decoder- 535

only LLM has better generalization capabilities. 536

Furthermore, the retriever trained with the Llama3- 537
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8b-base model still lags behind the UniRAG model538

trained in two stages, which proves that unifying539

the query augmentation stage and the query encod-540

ing stage can improve the model’s performance.541

7.3 Analysis542

7.3.1 Accurate of the Selected Strategy543

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

Paraphrase

HyDE

Step-Back

UniRAG

Win Tie Lose

Figure 4: Comparison of win rates of different augmen-
tation methods.

Based on the data collection process in Sec-544

tion 4.2.1, we additionally constructed a validation545

set of 2.1K entries and compared the predictive546

performance of the augmented strategy applied by547

UniRAG with that of using the original query for548

each question. We counted the wins and losses ac-549

cording to the ranking of the actual documents and550

added the comparative results of other augmenta-551

tion methods, as shown in Figure 4. We found that552

UniRAG’s augmentation strategy improves perfor-553

mance in over 90% of cases and has a better win554

rate compared to other augmentation methods.555

7.3.2 Comparison of Inference Methods556

We conducted an analysis of UniRAG’s perfor-557

mance and latency under different inference meth-558

ods. Specifically, we used Llama-3-8B-Instruct as559

the generator on the PopQA dataset, and the exper-560

imental results are shown in Figure 3a. We found561

that tree-based methods perform best in terms of562

performance, but their computational latency is563

also the highest. In addition, threshold-based infer- 564

ence methods show a trend of gradually improving 565

performance with increasing threshold γ, while la- 566

tency also increases correspondingly. These results 567

indicate that the various decoding strategies we 568

provide can adapt to different application needs. 569

7.3.3 Effects of Synthetic Data Size 570

We analyzed the impact of synthetic data scale on 571

model performance. Specifically, we randomly 572

sampled 5k, 10k, 20k, 50k, and 100k instances 573

from the original 263k training instances and per- 574

formed two-phase fine-tuning on these subsets. 575

Subsequently, we compared the performance of 576

these models on the PopQA and PubHealth bench- 577

mark datasets with that of models trained on the 578

complete training dataset. The experimental results 579

are shown in Figure 3b. Based on the results, an 580

increase in training data typically accompanies an 581

improvement in model performance. This trend 582

suggests that further expanding the training dataset 583

may yield additional performance gains. 584

8 Conclusion 585

In this work, we propose UniRAG, a unified query 586

understanding framework for retrieval-augmented 587

generation. By integrating query augmentation and 588

encoding within a single model, UniRAG improves 589

information sharing and reduces cumulative errors. 590

Through adaptive selection of augmentation strate- 591

gies and contrastive learning, our approach signif- 592

icantly boosts retrieval performance. Experimen- 593

tal results demonstrate UniRAG’s effectiveness in 594

improving both query understanding and retrieval 595

accuracy, making it a robust and adaptable solu- 596

tion for RAG-based applications. Future research 597

can combine UniRAG with broader augmentation 598

strategies and explore improving query understand- 599

ing capabilities by scaling testing time. 600
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Limitations601

Despite its advantages, UniRAG still has certain602

limitations. First, our approach relies on predefined603

augmentation strategies, which may not generalize604

well across all domains or user intents. Future work605

could explore more dynamic and broader scenarios606

for augmentation strategies. Secondly, although607

our model enhances retrieval accuracy, its perfor-608

mance is still affected by the quality of retrieved609

documents. In low-resource or highly specialized610

fields, this dependency can introduce noise that611

negatively impacts overall effectiveness.612
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A Training Dataset Collection929

We collected a training dataset from multiple930

knowledge-intensive question-and-answer and re-931

trieval datasets for query augmentation and query932

encoding training. We will introduce the collection933

process of this dataset and the statistical results of934

the final collected dataset.935

A.1 Query Augmentation Dataset collection.936

We create a seed dataset for data synthesis by937

sampling from various knowledge-intensive QA938

and retrieval datasets, including Natural Ques-939

tions (Kwiatkowski et al., 2019), MS MARCO940

Passages (Nguyen et al., 2016), BoolQ (Clark941

et al., 2019), NarrativeQA (Kočiskỳ et al., 2018),942

Dolly15k (Conover et al., 2023), and SQuAD (Ra-943

jpurkar, 2016). In order to obtain a diverse seed944

dataset, we extracted 32K pieces of data from945

the Natural Questions and MS MARCO datasets,946

and 16K from other datasets. For datasets with947

fewer than 32K pieces of data, we included the948

complete dataset. For the MS Marco dataset, we949

performed stratified sampling based on the given950

query_type field, sampling 6.4K entries for each951

of the five types (person, entity, location,952

numeric, description); for Dolly15k, we only953

selected data where the category is closed_qa.954

Next, we conducted data synthesis and gathered955

feedback signals as well as data filtering based on956

the method outlined in section 1. Ultimately, we957

collected 263,185 data points for instruction tuning,958

including 105,096 valid feedback signals. Detailed959

statistical results are shown in Table 3. Addition-960

ally, we present the statistics of the data related to961

different augmentation methods in Table 4.962

Table 3: Statistics of query augmentation data obtained
from different seed datasets.

Dataset Train Feedback

Natural Questions 78,071 31,788
MS MARCO Passages 85,350 32,000
BoolQ 24,013 9,397
NarrativeQA 32,484 14,375
Dolly15k 4,931 1,759
SQuAD 38,336 15,777

A.2 Query Encoding Dataset Collection.963

We have detailed the process of creating the re-964

trieval dataset in Section 4.3.1, and we will explain965

Table 4: Statistics on the number of data for different
augmentation methods.

Ori Expansion Abstract Para

Nums 5,123 82,052 87,247 88,763

in detail how to perform hard negative sample min- 966

ing for each dataset. For MS MARCO Passages 967

and Natural Questions, we used 30 difficult neg- 968

ative samples pre-mined from the Tevatron (Gao 969

et al., 2022). For other datasets, we retrieved the 970

top 30 passages from Wikipedia passages as diffi- 971

cult negative samples using the BM25 (Robertson 972

and Walker, 1994). The statistical results of the 973

final dataset are shown in Table 5.

Table 5: Statistics of query encoding data obtained from
different seed datasets.

Dataset Training Samples

Natural Questions 154,615
MS MARCO Passages 585,108
BoolQ 37,708
NarrativeQA 79,941
Dolly15k 7,064
SQuAD 135,340

974

B Training and Inference Algorithm 975

The training pipeline of UniRAG is elaborated in 976

Section 4 with its formalized procedure summa- 977

rized in Algorithm 1, while the inference mecha- 978

nism is systematically described in Section 5 and 979

algorithmically instantiated in Algorithm 2. 980

C Implementation Details 981

C.1 Training Details. 982

During the data collection process, we utilize the 983

Contriever-MSMARCO retriever to gather retrieval 984

feedback, while the Llama-3-8B-Instruct model is 985

employed to collect generator feedback. 986

For training, we adopt the Llama-3.1-8B model 987

as the base model and perform instruction tuning 988

and contrastive learning. The training is conducted 989

using four NVIDIA A100 GPUs, each with 80GB 990

of memory. In the instruction tuning phase, the 991

model is trained for 3 epochs with a batch size of 992

256, a peak learning rate of 2e-5, and a linear decay 993

schedule following a 3% warmup step. The maxi- 994

mum token length is set to 512. We leverage Deep- 995

Speed ZeRO-3 (Rajbhandari et al., 2020) to enable 996
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Algorithm 1 UniRAG Training

1: Input Generator G, Retriever R, Augmentation StrategiesM
2: Initialize UniRAG with pre-trained language model θ0
3: Construct seed dataset Dseed from QA & retrieval corpora ▷ Data Synthesis (Section 4.2.1)
4: for q ∈ Dseed do
5: for m ∈M do ▷ Apply augmentation strategies
6: Generate augmented query q̃m = Em(q) via GPT-4o-mini
7: end for
8: Retrieve docs {di} for q and {q̃m} using R ▷ Feedback collection
9: Compute sret, sgen using R and G

10: if ∃m where sret(q̃m) < sret(q) or sgen(q̃m) < sgen(q) then ▷ Data filtering
11: Discard underperforming q̃m
12: end if
13: Store (q,m, q̃m, sret, sgen) in Denh

14: end for
15: for (q, q̃m, s) ∈ Denh do ▷ Query Augmentation Training (Section 4.2)
16: Map sret, sgen to the corresponding action token positions in V ▷ Strategy selection
17: Compute Lsel via KL-divergence (Eq. 5)
18: Compute Lgen via next token prediction (Eq. 6) ▷ Query generation
19: Update θ using Lenh = Lsel + Lgen
20: end for
21: for (q+inst, d

+) ∈ Dretrieval do ▷ Query Encoding Training (Section 4.3)
22: Extract embeddings hq+inst

, hd+ , and compute InfoNCE loss Lret (Eq. 7) ▷ Contrastive learning
23: Update θ using Lret
24: end for

Algorithm 2 UniRAG Inference
1: Input Original query q, UniRAG θ, Retriever R, decoding strategy ξ, threshold γ, beam size B
2: Generate action token probabilities P (v|q) using θ
3: if ξ = Default then ▷ Default decoding
4: Select m∗ = argmaxm∈M P (m|q)
5: Generate augmented query q̃m∗ via greedy search
6: else if ξ = Threshold then ▷ Threshold-based decoding
7: Compute ratio ρ = P (<Original>)

maxm∈M P (m)
8: if ρ < γ then
9: m∗ ← argmaxm∈M P (m|q)

10: Generate q̃m∗ via greedy search
11: else
12: Set q̃m∗ to an empty string
13: end if
14: else ▷ Tree-based decoding
15: Collect valid actionsM′ = {m|P (m) ≥ P (<Original>)}
16: Initialize beam candidates C ← {q}
17: for m ∈M′ do ▷ Multi-strategy exploration
18: Generate augmented queries q̃m with beam search (size B)
19: Add to candidates C ← C ∪ {q̃m}
20: end for
21: end if
22: return augmented result (q̃m∗ or C)
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multi-GPU distributed training with BFloat16 pre-997

cision. Additionally, FlashAttention2 (Dao, 2024)998

is integrated to enhance the efficiency of long-999

context training.1000

During the contrastive learning phase, the model1001

undergoes 1 epoch of fine-tuning, with the maxi-1002

mum token length for queries and documents set to1003

256, and the temperature parameter τ set to 0.01.1004

To optimize GPU memory usage, we employ LoRA1005

(Hu et al., 2022) with a rank of 16, gradient check-1006

pointing, and DeepSpeed ZeRO-3, with BFloat161007

precision enabled.1008

C.2 Inference Details.1009

In the action token generation process, constrained1010

decoding is applied, while greedy search is used1011

when generating augmented queries. In the re-1012

trieval step, following Asai et al. (2024), we use1013

Wikipedia data as the external retrieval corpus for1014

the five benchmarks used in this study, where each1015

document is an independent text block extracted1016

from Wikipedia articles containing up to 100 words.1017

For each query, we retrieve the top 5 paragraphs1018

from this corpus. During the generation process,1019

we use vLLM (Kwon et al., 2023) for accelerated1020

inference of the model. When using the tree-based1021

decoding algorithm, we set the beam width to 4. In1022

the baseline generation step, we call GPT-4o-mini1023

via the official OpenAI API. The generator uses the1024

default temperature and sampling algorithm.1025

D Prompt Details1026

During the training phase, we prompt GPT-4o-mini1027

to generate augmented queries for a given query1028

to synthesize data. We provide the prompts used1029

for generating augmented queries with different1030

augmentation strategies in Table 8. In the training1031

process of the query augmentation phase, the input1032

and output prompt templates used for construct-1033

ing instruction fine-tuning data can be referred to1034

in Table 6; in the training of the query encoding1035

phase, the query templates used for constructing1036

contrastive learning data can be referred to in Table1037

7. For the document, we directly add the prefix1038

"Document:" at the front.1039

In the experiment, to ensure a fair comparison,1040

we used the same prompt as in the synthetic data1041

phase for the baseline of the independent use of1042

query augmentation method, as shown in Table 8.1043

Task Instruction

For the given user query, please choose
an appropriate query augmentation method
(generating hypothetical documents: <Ex-
pand>, query paraphrase: <Paraphrase>,
step back to generate abstract queries: <Ab-
stract> or do not augment: <Original>), and
provide the augmented query afterwards.

Prompt Template for Input (Igen)

Instruction: {task_instruction}
Input:
Query: {query}

Output Template (No Augmentation)

Response:
Choiced method: <Original>, No augmen-
tation needed.

Output Template (Apply Augmentation)

Response:
Choiced method: {augmentation_strategy}
Augmented query: {augmented_query}

Table 6: Input and output template used for constructing
query augmentation instruction data.

E Benchmark Dataset Details 1044

We comprehensively validated the effectiveness 1045

of UniRAG on closed-set tasks and open- 1046

domain question answering tasks, covering five 1047

knowledge-intensive benchmark datasets. 1048

The closed-set tasks include two datasets: (1) 1049

PubHealth (Zhang et al., 2023): a fact verification 1050

dataset for the public health domain. (2) ARC- 1051

Challenge (Clark et al., 2018): a multiple-choice 1052

reasoning dataset constructed from science exam 1053

questions. We followed the experimental setup of 1054

previous research, using accuracy as the evaluation 1055

metric and reporting on the test set. 1056

The open-domain question answering tasks 1057

cover three datasets: PopQA (Mallen et al., 1058

2022), TriviaQA-unfiltered (Joshi et al., 2017), and 1059

TimeQA (Chen et al., 2021). In the PopQA task, 1060

the system needs to answer open questions involv- 1061

ing factual knowledge. We employed the long-tail 1062

subset for evaluation, which contains 1,399 queries 1063
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Query Template (No Augmentation)

Instruction: {task_instruction}
Input:
Query: {query}
Response:
Choiced method: <Original>, No augmen-
tation needed.

Query Template (Apply Augmentation)

Instruction: {task_instruction}
Input:
Query: {query}
Response:
Choiced method: {augmentation_strategy}
Augmented query: {augmented_query}

Table 7: Query template (Iret) used for constructing
contrastive learning data.

involving rare entities, all of which have fewer than1064

100 monthly views on Wikipedia. For TriviaQA-1065

unfiltered, since its open test set is not publicly1066

available, we followed the validation and test set1067

division method of previous research (Asai et al.,1068

2024; Guu et al., 2020b) to evaluate model perfor-1069

mance on 11,313 test queries. Notably, our evalua-1070

tion method does not require strict text matching,1071

but rather is based on whether the model-generated1072

results contain the gold standard answers. In the1073

TimeQA task, the system needs to answer chal-1074

lenging queries involving complex time-sensitive1075

knowledge. We evaluated on 5,226 test queries to1076

assess the model’s ability to handle time-dependent1077

issues. We summarized the types of benchmark1078

datasets used in the experiment and the statistics1079

on the number of test questions in Table 9.1080

Prompts for Query Paraphrase

Please optimize the search engine query by
removing irrelevant words and vague ex-
pressions, replacing abbreviations, and re-
taining important concepts to ensure accu-
rate and smooth responses.
Query: {query}
Rewrite Query:

Prompts for the HyDE

Please write a passage to answer the ques-
tion.
Question: {query}
Passage:

Prompts for the Step-Back Prompting

Your task is to step back and paraphrase a
question to a more generic step-back ques-
tion, which is easier to answer.
Here are a few examples:
Query: Who was the spouse of Anna Karina
from 1968 to 1974?
Step Back Query: Who were the spouses of
Anna Karina?
Query: Estella Leopold went to which
school between Aug 1954 and Nov 1954?
Step Back Query: What was Estella
Leopold’s education history?
Query: {query}
Step Back Query:

Table 8: We refer to the prompt templates from the
official implementation for various query augmentation
methods.

Table 9: Benchmark Dataset Statistics.

Dataset Type Questions

PopQA Open-domain 1,399
TriviaQA Open-domain 11,313
PubHealth Closed-set 3,610
ARC-Challenge Closed-set 948
TimeQA Open-domain 12,576
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