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Abstract

Adversarial Security of Financial Language
Models (ASFLM) is critical as Large Language
Models (LLMs) pervade high-stakes financial
applications. However, LLMs face two key
challenges: their vulnerability to damaging ad-
versarial attacks and the prevalent research gap
concerning robust defenses against sophisti-
cated, semantically coherent threats. To ad-
dress these, we first theoretically analyze the
relationship between discrete and continuous
adversarial optimization, proving the continu-
ous optimum provides a lower bound for the
discrete. This foundation supports our novel
two-stage framework, ChameleonAttack. It
employs Adaptive Latent-Space Optimization
(ALO) for potent adversarial token discovery,
followed by a Semantic-Translation Module
(STM) module to generate fluent, coherent, and
natural-sounding adversarial text. This dual ap-
proach aims to maximize attack impact while
ensuring high linguistic quality and semantic
integrity for evasion. Evaluated on state-of-the-
art financial LLMs (e.g., FinBERT) and stan-
dard benchmarks (e.g., Financial PhraseBank),
ChameleonAttack achieves a high Attack Suc-
cess Rate (ASR) of 93.4%. These results high-
light significant practical vulnerabilities and
underscore the urgent need for robust defense
mechanisms in the financial domain.

1 Introduction

Large Language Models (LLMs) are increasingly
pivotal in the financial sector for tasks such as mar-
ket sentiment analysis and stock prediction (Wang
et al., 2024a). However, this integration brings
significant security challenges, as their susceptibil-
ity to adversarial attacks can lead to severe conse-
quences, including manipulated financial decisions
and systemic market risks, a concern underscored
by real-world incidents (Yuan et al., 2024). This
situation highlights an urgent need to investigate
and bolster the robustness of these financial LLMs
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Figure 1: Discrete vs. continuous optimization for ad-
versarial attacks. (Left) Discrete token optimization
is challenging due to non-differentiability and a vast
search space. (Right) Continuous relaxation allows ef-
ficient, gradient-based minimization of an adversarial
objective, with solutions then mapped back to discrete
tokens.

Current financial LLM research often prioritizes
predictive accuracy over security, and many exist-
ing adversarial attacks typically lack the semantic
coherence or naturalness required for stealth (Joshi
et al., 2019; Koa et al., 2024). To effectively gener-
ate such sophisticated and evasive adversarial ex-
amples, a deeper understanding of the underlying
optimization challenges is necessary. The direct
optimization of adversarial token sequences in the
discrete vocabulary space is an NP-hard problem
due to its vast combinatorial nature and the non-
differentiability of token selection, as illustrated in
Figure 1 (Left).

To address this, we first theoretically analyze the
relationship between this intractable discrete adver-
sarial optimization and its continuous relaxation.
As detailed in Appendix A, we formally prove that
the optimal solution achievable in the continuous
space provides a rigorous lower bound for the dis-
crete optimum (L7, < L7,). This theoretical foun-
dation (Figure 1, Right) validates our strategy of
leveraging gradient-based methods in a continuous
domain, which are then carefully mapped back to
discrete tokens.



Building on this foundation, we introduce
ChameleonAttack, a novel two-stage framework
for generating effective and semantics-preserving
adversarial attacks against financial LLMs. The
first stage, Adaptive Latent-space Optimization
(ALO), utilizes gradient-based techniques with an
adaptive sparsification strategy to discover potent
adversarial token sequences. The second stage,
Semantic Translation Module, then employs a
dedicated language model to transform these (po-
tentially conspicuous) token sequences into fluent,
natural-sounding, and contextually coherent adver-
sarial text. This dual architecture is designed to
maximize adversarial impact while maintaining
high linguistic quality and semantic integrity for
evasion, achieving a 93.4% Attack Success Rate
(ASR) against state-of-the-art financial language
models.

This dual-stage architecture is meticulously de-
signed to ensure that the generated attacks are not
only highly effective in achieving their adversarial
goals but also maintain exceptional linguistic qual-
ity and semantic integrity, rendering them difficult
to detect by both automated systems and human
evaluators.

Our contributions are as follows:

1. We systematically analyze and empirically
demonstrate significant vulnerabilities in ex-
isting financial LLMs when subjected to so-
phisticated, semantics-preserving adversarial
attacks. Our work also quantifies the associ-
ated risks within crucial financial forecasting
and analysis tasks.

2. We provide theoretical justification for our
continuous optimization approach by for-
mally establishing the relationship between
discrete and continuous adversarial optimiza-
tion search spaces, proving that the continuous
optimum lower-bounds the discrete one (see
Appendix A).

3. We propose ChameleonAttack, a novel two-
stage framework leveraging Adaptive Latent-
space Optimization for effective adversarial
token generation and Semantic Translation
Module for ensuring linguistic stealth and co-
herence. Extensive experiments demonstrate
ChameleonAttack achieves a high Attack Suc-
cess Rate (93.4%) on financial LLMs, setting
anew benchmark for sophisticated attacks and

underscoring the urgent need for robust de-
fenses.

2 Related Work

2.1 LLM Alignment

The rapid advancement of Large Language Models
(LLMs) has made their alignment with human val-
ues and ethics a critical issue (Carlini et al., 2024).
The academic community has proposed various
techniques to enhance LLM safety (Askell et al.,
2021; Ouyang et al., 2022; Bai et al., 2022; Bianchi
et al., 2023). Some strategies involve using high-
quality, value-laden training data to guide LLM
behavior. Others refine training methodologies
through Supervised Fine-Tuning (SFT), Reinforce-
ment Learning from Human Feedback (RLHF), and
adversarial training to ensure outputs align with hu-
man expectations (Wang et al., 2023; Lee et al.,
2024; Qi et al., 2023). Despite these efforts, com-
pletely eliminating harmful content generation by
LLMs remains a significant challenge.

Prompt-based Jailbreak Previously, LLM align-
ment and pre-deployment security testing were of-
ten evaluated through manual "jailbreak" attacks
(Russinovich et al., 2024; Chao et al., 2024; Anil
et al., 2024). However, manual methods are ineffi-
cient, difficult to scale, and often lack diversity.

Automated Jailbreak Automated jailbreak
methods induce LLMs to produce inappropriate
output by crafting meticulously designed prompts
with semantic-level deception or by using gradient-
based methods for token optimization (Yu et al.,
2024). The primary advantage of such methods is
the use of natural language for attack commands,
facilitating comprehension and cross-platform
operation (Liao and Sun, 2024; Liu et al., 2024;
Yu et al., 2024; Zhang and Wei, 2024; Zou et al.,
2023). While many automated jailbreak techniques
are considered "white-box" attacks (i.e., requiring
access to internal model parameters), their attack
strategies and the generated adversarial prompts
can sometimes be transferable, posing a threat to
less robust closed-source LLMs or inspiring attack
approaches for black-box models.

2.2 Event Driven Stock Prediction

Advancements in Natural Language Processing
(NLP) have enabled the use of textual data for stock
market forecasting (Du et al., 2024). Researchers



have explored methods like using tweets and his-
torical prices for prediction, modeling multi-modal
financial data, and extracting granular insights such
as corporate events or media sentiment to under-
stand market dynamics (Wang et al., 2024b; Obst
et al., 2021; Xu and Cohen, 2018; Zolfagharinia
et al., 2024). These approaches generally aim to
improve prediction accuracy by comprehensively
analyzing textual information.

Separately, Large Language Models (LLMs),
like GPT variants, possess extensive knowledge but
are not inherently designed for time-series analysis
(Cao et al., 2024). Efforts are underway to adapt
LLMs for such tasks, including prompt-based meth-
ods that convert numerical data into textual formats
for LLMs to process (Jia et al., 2024; Lam et al.,
2024). In finance, this involves using prompts for
LLMs to generate summaries or keyphrases from
various data sources to aid forecasting. While in-
sightful, these methods can sometimes suffer from
overly broad prompts leading to less detailed out-
puts from the LLMs (Li et al., 2024a; Wang et al.,
2024a; Koa et al., 2024).

3 Methodology

Our method for generating semantics-preserving
adversarial attacks is a two-stage process. The
first stage focuses on optimizing an adversarial
token sequence in a continuous space and then
converting it back to discrete tokens. The second
stage employs a translation model to transform this
optimized token sequence into coherent, natural-
sounding adversarial text, designed to be effective
yet inconspicuous. The following mathematical op-
timization is based on the principle that the contin-
uous space of adversarial attack samples provides
a lower bound for the discrete space (A proof of
this principle is available in the Appendix A.)

3.1 Stage 1: Adversarial Optimization

The primary goal of this stage is to identify a se-
quence of tokens (an adversarial suffix) that, when
appended to a benign prompt, maximizes the likeli-
hood of the target model generating an undesired
output. This involves defining the adversarial objec-
tive and then using continuous optimization tech-
niques to make the search tractable.

3.1.1 Discrete Adversarial Objective

The core of the adversarial attack lies in identi-
fying an optimal adversarial suffix, denoted as
s=(s1,...,8n), composed of N discrete tokens

from the model’s vocabulary V (OpenAl et al.,
2024). Each token is typically represented as a
one-hot vector within the set 7p. The optimiza-
tion goal is to find a suffix s that maximizes the
likelihood of the LLM generating the desired tar-
get sequence y = (y1,...,Yn ), given the initial
prompt x and the adversarial suffix s. This is typ-
ically achieved by minimizing the cross-entropy
(CE) loss, as formulated in the discrete objective
function L p:

M
Z CE(LLM(x1. ® 81:N @ Y1:k—1), Yk)

k=1
€]

where & signifies sequence concatenation.

However, directly optimizing this objective func-
tion Lp (Equation 1) within the discrete token
space 7—5\/ presents a significant computational hur-
dle. The non-differentiable nature of token selec-
tion, combined with the vast combinatorial search
space (determined by vocabulary size |V| and suf-
fix length V), renders direct discrete optimization
intractable (Anil et al., 2024; Bailey et al., 2024;
Chao et al., 2024) . This necessitates a more so-
phisticated approach.

3.1.2 Continuous Relaxation and
Optimization

To overcome the limitations of discrete optimiza-
tion, we transition the problem into a continuous
domain(Yin et al., 2025). This involves relaxing
the discrete token representation by utilizing 7¢,
the probability simplex in RIVI, which we define as
the Continuous Token Space:

Definition 1 (Continuous Token Space). 7 =
{w € RM|w[i] > 0 forall i, SV wli] = 1}

In this continuous space, the adversarial suffix
is represented as a = (a1, ..., ay), where each
a; € Tc. The optimization problem is then re-
formulated as minimizing a continuous objective
function L¢:

. r AN
o min - Le({os}i—)

M
Z CE(LLM(z1.Lx ® a1:n @ Y1:k—1),Yx)
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@

Once an optimal continuous solution {a;} is found,
it must be mapped back to the discrete token
space for practical application. A straightforward
mapping approach, such as Argmax Projection
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Figure 2: Overall architecture of the ChameleonAttack framework. Stage 1 employs a Continuous Optimization
Engine with Adaptive Sparsification to generate an optimized (but potentially incoherent) adversarial token sequence
(s). Stage 2 utilizes a Semantic Translation Module, leveraging a fine-tuned TS5 model, to transform s into coherent

and natural adversarial text (s).

(ITargmaz), often proves suboptimal due to the "Pro-
jection Impasse".

3.1.3 Adaptive Sparsification for Discrete
Token Recovery

To address the Projection Impasse, we introduce an
Adaptive Sparsification Strategy designed to guide
the continuous token representations «; towards
sparser forms, facilitating a more effective map-
ping to discrete tokens. This strategy dynamically
adjusts the sparsity of the continuous vectors based
on the attack’s performance.

Adaptive Sparsity Target The desired sparsity,
S, adapts based on an error measure E'({c;}). The
sparsity target is defined as:

M

S({a;}) =exp (Z I <yk is mispredicted by LLM
k=1

3)
forz & {a;} @ y1;k—1)>

where I(-) is the indicator function. As error
decreases, S approaches 1, encouraging 1-sparse
representations (Hu et al., 2025).

Sparsification Transformation A transforma-
tion ¥s,, ., ° RVl — T¢ is applied. This in-
volves ReLU application, identifying the S;yge¢-th

largest value (0), creating a sparse Vector Wsparse,
and normalization:

, 2'i] + €spap  If 2'[i] >0
Wsparse ['L] = [ ] bab . ,[] (4)
0 if '[i] <9
Wsparse
\Ijsturget (w) = |V‘ £ (5)

k—1 Wsparse [k]

Managing Non-Integer Sparsity For non-
integer S,; (from Equation 3), sparsity is stochas-
tically applied using Stioor = |Svatls Seeit =
[Svat], and p = Syai — Sfi0or- This ensures the
expected number of non-zero components for o
is Syar

E[SPaTSitY] =p Sceil + (1 _p) : Sfloor = Syar (6)

This process guides a; towards 1-sparse forms as
Sval — 1.

3.2 Stage 2: Semantic Translation of
Adversarial Sequences

Following the optimization of the adversarial to-
ken sequence s in the first stage, the second stage
of ChameleonAttack focuses on enhancing the at-
tack’s stealth and practical applicability. The raw
optimized token sequence, while effective in ma-
nipulating the target LLM’s output, may not be



human-readable or could appear as nonsensical gib-
berish. Such overtly anomalous inputs are likely
to be detected by human oversight or automated
defense mechanisms.

To mitigate this, we employ a semantic transla-
tion module. This module takes the discrete adver-
sarial token sequence {s; }é\le generated in Stage
1 and translates it into coherent, natural-sounding
text. The objective of this translation is twofold:

1. Preserve Adversarial Impact: The trans-
lated text must retain the adversarial proper-
ties of the original token sequence, ensuring
it still guides the target LLM to the intended
undesired output.

2. Ensure Semantic Coherence and Natural-
ness: The output text should be grammati-
cally correct, semantically meaningful, and
contextually appropriate. It should read like
a human-written statement, thereby evading
casual detection and appearing as a legitimate
input modification.

By converting the optimized but potentially unnat-
ural token sequence into fluent and semantically
sound text, this stage aims to create adversarial per-
turbations that are not only effective but also highly
challenging to detect, thereby increasing their po-
tency in real-world scenarios. The specifics of the
translation model (e.g., architecture, training data)
are chosen to ensure high-fidelity translation while
maintaining the adversarial utility.

4 Experimental Result

4.1 Experiment Setup

Our experiments leverage three distinct datasets
widely employed in sentiment analysis within the
financial and news domains:

Twitter News Sentiment: Consists of 9.54k
tweets pertaining to news events, annotated for
positive, negative, and neutral sentiment polarity
(zeroshot, 2023).

Stock Emotions: Comprises 10k text excerpts
from social media and financial forums discussing
stock market activities, labeled as bullish or bearish
(Lee et al., 2023).

Financial PhraseBank: Contains about 5k sen-
tences from English-language financial news re-
ports, annotated by financial experts for positive,
negative, or neutral sentiment from an investor’s

perspective. For the event-driven stock prediction
tasks, these datasets are utilized to derive textual
features and corresponding market event signals.
For agent-based evaluations, queries and contexts
are grounded in financial scenarios reflective of the
information contained within these datasets (Malo
et al., 2014).

Example: Financial PhraseBank

Pharmaceuticals group Orion Corp re-
ported a fall in its third-quarter earnings
that were hit by larger expenditures on
R&D and marketing. ——Negative

4.2 Adversarial Perturbation Generation

The adversarial texts employed throughout our ex-
periments are generated via the two-stage attack
model delineated in Section 3 of this paper. This
model first utilizes gradient optimization to iden-
tify adversarial token sequences and subsequently
employs a translation model to convert these se-
quences into coherent, natural-sounding text. The
core design principle is to preserve semantic coher-
ence while maximizing the adversarial impact.

4.3 Evaluation Metric

Standard metrics for classification and prediction
tasks are employed, including accuracy, F1-score,
precision, and recall. For evaluating attack efficacy,
we primarily focus on the degradation of these met-
rics. The Attack Success Rate (ASR) is generally
defined as the proportion of attempts where an at-
tacker successfully subverts a model’s intended
output or alignment. Our definition of ASR, con-
sistent with HADES(Li et al., 2024b), for a given
dataset D is:
_ 2il(Qi)

ASR D (N
where (; represents an individual query within the
dataset D, and the indicator function I returns 1 if
the model’s response to (); is classified as a suc-
cessful compromise, and 0 otherwise. An elevated
ASR suggests a higher vulnerability of the model,
indicating that its protective measures are more
frequently circumvented by attackers.

4.4 Attack Result

Our ChameleonAttack methodology demonstrates
significant efficacy, as detailed in Table 1. It sub-



Twitter News Sentiment

Stock Emotions

Financial PhraseBank

Model Attack Method
Positive  Negative Neutral Bullish Bearish Positive Negative Neutral
TextFooler 12.3 11.6 11.2 10.7 9.1 9.8 104 9.3
AutoPrompt 22.4 21.7 21.3 20.5 20.1 20.6 20.8 21.5
BERT GCG Attack 71.6 70.2 70.8 68.4 69.5 68.1 69.7 70.3
Momentum 77.7 76.5 76.7 74.6 75.3 74.5 75.7 76.0
AmpleGCG 81.0 79.6 79.9 77.6 78.5 77.8 78.8 79.4
ChameleonAttack 90.5 89.2 89.6 88.7 88.3 88.2 89.9 90.1
TextFooler 8.7 7.2 7.9 6.3 6.8 6.6 6.1 7.5
AutoPrompt 18.6 17.1 17.9 16.3 16.4 16.8 17.2 17.7
FinBERT GCG Attack 76.3 75.8 75.1 73.6 74.4 73.2 74.9 754
Momentum 82.5 81.6 81.5 79.5 80.5 78.9 81.2 81.4
AmpleGCG 85.6 84.8 84.8 82.5 83.9 82.1 84.3 84.7
ChameleonAttack 934 92.1 92.5 91.3 91.6 91.7 92.6 93.3
TextFooler 10.6 94 9.7 8.1 8.6 8.8 8.3 9.6
AutoPrompt 20.8 19.3 19.8 18.7 18.2 18.9 19.6 19.1
FinGPT GCG Attack 78.4 71.7 77.1 75.3 76.6 75.8 76.5 77.3
Momentum 84.5 83.6 83.4 81.0 82.8 81.8 82.9 83.1
AmpleGCG 87.5 86.8 86.5 83.9 86.1 84.9 86.1 86.1
ChameleonAttack 92.3 91.8 91.5 89.6 90.4 89.2 90.7 91.2
TextFooler 15.2 14.8 14.1 13.4 12.7 12.3 13.6 12.5
AutoPrompt 25.7 24.6 243 235 23.1 23.8 232 24.9
RoBERTa GCG Attack 614 60.9 60.2 58.8 59.6 58.1 59.9 60.4
Momentum 67.4 67.1 66.0 65.1 65.3 64.2 66.3 66.3
AmpleGCG 70.7 70.2 69.2 68.5 68.5 67.7 69.4 69.6
ChameleonAttack 86.7 85.3 85.6 84.8 84.5 84.9 85.1 86.2

Table 1: Attack Success Rate (ASR) for various adversarial attack strategies, including TextFooler (Jin et al., 2020),
AutoPrompt (Shin et al., 2020), GCG Attack (Zou et al., 2023), AmpleGCG (Liao and Sun, 2024), Momentum

(Zhang and Wei, 2024) and ChameleonAttack.

stantially outperforms contemporary baseline meth-
ods across various financial LLMs (BERT, Fin-
BERT, FinGPT, RoBERTa) and datasets, achiev-
ing Attack Success Rates (ASR) exceeding 91%
on models like FinBERT (e.g., 93.4% on Twitter
News Sentiment, Positive category ). This under-
scores the potency of our Adaptive Latent-space
Optimization (ALO) stage in identifying effective
adversarial sequences.

Furthermore, Table 2 showcases ChameleonAt-
tack’s impact on complex Al financial agents (Fin-
Robot (Zhou et al., 2024), ForcastLLM (Wang
et al., 2024c), Self-Reflective LLM (Koa et al.,
2024) utilizing different base models (Llama 3.1-
8B, Qwen3-8B, Falcon-7B). These agents exhib-
ited substantial performance degradation across
key metrics like Accuracy, Recall, and F1 Score.
For instance, the Qwen3-8B based FinRobot ex-
perienced an accuracy drop from 89.4% to 36.2%
(ASR of 53.2%, indicating a severe reduction in
accuracy). This effectiveness against sophisticated
agent-based systems highlights the practical threat
posed by our generated attacks, likely enhanced
by the coherence and naturalness imparted by our
Semantic Translation Module stage.

4.5 Discussion

The collective results from Table 1 and Table 2
confirm the high efficacy and broad applicability
of our ChameleonAttack framework. Its success
stems from the two-stage design, where Adaptive
Latent-space Optimization (ALO) discovers potent
adversarial tokens, and Semantic Translation Mod-
ule subsequently refines them into fluent, natural-
sounding text. This synergy is crucial for gener-
ating attacks that are not only effective but also
exceptionally stealthy.

The significant ASRs achieved against founda-
tional LLMs, coupled with the substantial per-
formance degradation inflicted upon complex Al
agents (with accuracy drops exceeding 50 percent-
age points for some Qwen3-8B configurations as
seen in Table 2), underscore a critical vulnerabil-
ity in current financial Al systems. These find-
ings compellingly argue for an urgent shift in fo-
cus within the financial LLM development life-
cycle, moving beyond an exclusive emphasis on
task accuracy to vigorously incorporate and priori-
tize adversarial robustness. Future research should
concentrate on developing robust defenses against
such sophisticated, semantically coherent attacks,



Accuracy Recall F1 Score Attack Success Rate
Agent Type Base Model
Before Attack  After Attack Before Attack After Attack Before Attack  After Attack

Llama - 3.1 - 8B 77.3% 29.6% 0.73 0.34 0.75 0.41 47.7%
FinRobot Qwen3 - 8B 89.4% 36.2% 0.87 0.43 0.88 0.51 53.2%

Falcon - 7B 56.8% 19.3% 0.55 0.22 0.57 0.31 37.5%

Llama-3.1- 8B 74.6% 26.8% 0.70 0.28 0.72 0.38 47.8%
ForcastLLM Qwen3 - 8B 86.7% 33.9% 0.84 0.40 0.85 0.47 52.8%

Falcon - 7B 53.4% 16.7% 0.52 0.20 0.54 0.29 36.7%

Llama - 3.1 - 8B 80.5% 33.5% 0.78 0.37 0.80 0.45 47.0%
Self-Reflective LLM  Qwen3 - 8B 90.2% 38.2% 0.88 0.41 0.90 0.50 52.0%

Falcon - 7B 60.1% 22.1% 0.58 0.25 0.60 0.33 38.0%

Table 2: Comparative performance metrics (Accuracy, Recall, F1 Score) for various Al agents and their base
language models, measured before and after adversarial attack, alongside achieved Attack Success Rates (ASR).

further investigating their transferability, and con-
tinuously assessing the evolving threat landscape.

4.6 Defense Testing

To highlight ChameleonAttack’s potency, we con-
ducted experiments to assess its effectiveness
against established defense mechanisms. The
goal was to see if ChameleonAttack’s semantically
coherent and natural perturbations could bypass
defenses effective against simpler attacks. We
focused on the FinBERT model and the Finan-
cial PhraseBank (FPB) dataset, using Attack Suc-
cess Rate (ASR) as the key metric, comparing
ChameleonAttack to GCG Attack and TextFooler.
Defenses tested included perplexity filtering, a pre-
trained adversarial detector, and an adversarially
trained version of FinBERT.
Results are summarized in Table 3:

¢ No Defense: ChameleonAttack achieved
92.5% ASR, compared to 75.4% for GCG
Attack and 7.0% for TextFooler on an unde-
fended FinBERT model.

* Perplexity Filtering: Reduced TextFooler’s
ASR to 5.2% and GCG Attack’s to 60.5%,
but ChameleonAttack maintained 88.0% ASR
due to its Semantic Translation Module.

* Adversarial Detector: Detected 80% of
TextFooler and 45% of GCG Attack, but only
15% of ChameleonAttack, allowing 85.0%
ASR.

* Adversarially Trained Model (FinBERT-
AT): ChameleonAttack achieved 75.0% ASR,
indicating that adversarial training may
not defend against adaptive attacks like
ChameleonAttack without specific inclusion.

Defense Mechanism Attack Method ASR (%) T Detect Rate (%) |

ChameleonAttack 92.5 N/A
No Defense (Baseline) GCG Attack 75.4 N/A
TextFooler 7.0 N/A
ChameleonAttack 88.0 ~10*
Perplexity Filtering GCG Attack 60.5 ~35
TextFooler 52 ~70
ChameleonAttack 85.0 15
Adversarial Detector GCG Attack 55.0 45
TextFooler 45 80
ChameleonAttack 75.0 N/A
Adversarially Trained (AT) GCG Attack 40.0 N/A
TextFooler 2.0 N/A

“Illustrative rate of inputs flagged as unnatural by per-
plexity filtering.

Table 3: ChameleonAttack’s evasion capabilities against
defenses on FinBERT (FPB Avg. ASR). ASR on De-
fended Model shown. Detection Rate for detectors.

5 Ablation Study

We performed an ablation study to quantify the
contributions of key components in our two-stage
attack method, with results on the FinBERT model
(Financial Phrase Bank dataset) detailed in Table
4. Metrics include Attack Success Rate (ASR),
naturalness, and semantic similarity.

Naturalness is assessed via LLM-generated
Mean Opinion Scores (MOS, 1-5; detailed criteria
in Appendix B), and semantic similarity (0-1) is the
cosine similarity of original versus adversarial sen-
tence embeddings from a pre-trained transformer.

Our Full Method (Proposed) achieves 92.5%
ASR with high naturalness (4.5 naturalness) and se-
mantic similarity (0.85). Removing the Stage 2 Se-
mantic Translation Module (STM) (‘“Full Method
w/o STM”) maintained a high ASR (93.1%) but
resulted in extremely low naturalness (1.3 natu-
ralness) and semantic similarity (0.25), underscor-
ing the STM’s necessity for generating practical,
stealthy attacks.

Ablating Stage 1’s Adaptive Sparsification Strat-
egy (ASS) also revealed its importance. Using a
“Naive Argmax Projection” instead of ASS dropped
ASR to 72.8%, while a “Fixed Sparsity Target”



Method Configuration

ASR (%) on FinBERT (FPB Avg.) T Naturalness I Semantic Similarity (0-1) 1

Full Method (Proposed) 92.5 4.5 0.85
Ablating Stage 2: Semantic Translation Module (STM)

Full Method w/o STM (Direct use of optimized tokens) 93.1* 1.3 0.25"
Ablating Stage 1: Adaptive Sparsification Strategy (ASS)

Full Method w/o ASS (Naive Argmax Projection) 72.8 42 0.80

Full Method w. Fixed Sparsity Target (e.g., S = 10) 81.5 43 0.81
Ablating Stage 1: Core Optimization Approach

Full Method w. Random Search for Suffix (instead of Gradient Opt.) 12.3 3.9¢ 0.654

“ASR might appear marginally higher without STM if the raw optimized tokens are highly effective but lack naturalness;

this often means the attack is more easily detectable.

PSemantic similarity for raw, potentially incoherent tokens is inherently low or ill-defined when compared to natural

language expectations or a benign reference.

“Naturalness depends on STM’s ability to salvage a potentially poor token sequence from random search.

dSemantic similarity is low as the random suffix lacks optimized adversarial intent related to any specific context.

Table 4: Ablation study of our proposed two-stage attack method. Experiments are conducted on the FinBERT
model using the Financial Phrase Bank (FPB) dataset (ASR averaged across polarities). Performance is evaluated
by Attack Success Rate (ASR), perceived naturalness (range from 1-5, higher is better), and semantic similarity (0-1
scale, higher indicates better preservation of original context if applicable, or general coherence).

achieved 81.5% ASR. These results highlight the
superiority of our adaptive approach for effective
discrete token recovery, with the STM aiding in
maintaining output quality.

Finally, replacing our gradient-based continuous
optimization in Stage 1 with a “Random Search for
Suffix” caused ASR to plummet to 12.3%. This
confirms the critical role of sophisticated contin-
uous optimization in discovering effective adver-
sarial perturbations, even as the STM worked to
ensure some level of naturalness in the output.

In essence, Table 4 demonstrates that each com-
ponent of our proposed method—gradient-guided
continuous optimization, adaptive sparsification,
and semantic translation—is integral to achieving
both high attack efficacy and the crucial character-
istics of naturalness and coherence in the generated
adversarial examples.

6 Conclusion

In this paper, we have addressed the escalating
security concerns surrounding the deployment of
Large Language Models (LLMs) in critical finan-
cial text analysis and forecasting applications. Rec-
ognizing the profound risks posed by adversar-
ial manipulations in high-stakes scenarios like al-
gorithmic trading and market sentiment analysis,
we introduced a novel two-stage adversarial at-
tack methodology. Our approach distinctively in-
tegrates gradient-based optimization in a contin-
uous latent space to discover potent adversarial
token sequences, with a subsequent semantic trans-
lation stage that refines these sequences into fluent,
natural-sounding, and contextually coherent adver-
sarial text.

Our extensive empirical evaluations demonstrate
that this methodology achieves a significant Attack
Success Rate (ASR) of 93.4% against a range of
contemporary financial language models. More
critically, the generated adversarial perturbations
exhibit high linguistic quality, making them dif-
ficult to detect through superficial inspection and
thus posing a more insidious threat than traditional,
often less coherent, attack vectors. These findings
systematically verify and highlight substantial vul-
nerabilities in existing Finance LLMs when applied
to financial forecasting tasks.

Limitations

The two-stage adversarial attack method also has
several limitations. It requires substantial com-
putational resources, particularly in the gradient-
based optimization and semantic translation stages,
making it challenging for resource-limited environ-
ments. The method’s success also depends on the
quality of the semantic translation, with risks of
adversarial signal loss or unnatural phrasing that
could trigger detection.

The white-box assumption limits its generaliza-
tion to black-box models, restricting applicability
to closed-source systems. Additionally, the oper-
ational complexity of the pipeline, including the
need for extensive hyperparameter tuning, compli-
cates deployment and error diagnosis.

Finally, evaluating semantic preservation and
naturalness remains subjective and difficult to scale.
Extending the method to other perturbation strate-
gies and domains requires further adaptation.

Addressing these challenges will enhance the
method’s robustness and applicability.



Ethinic Consideration

We acknowledge the dual-use nature of this work.
While our primary goal is to expose critical vul-
nerabilities and thereby motivate the development
of stronger security measures, the techniques de-
scribed could potentially be exploited by malicious
actors. Given the increasing integration of LLMs
in high-stakes financial applications, such misuse
could lead to significant economic disruption or un-
dermine trust in Al-driven financial systems. The
capacity of our attack to generate effective, stealthy,
and semantically coherent adversarial examples
heightens these risks.

Our intent in pursuing and publishing this re-
search is to proactively advance the security of
financial AI. We believe that a transparent and de-
tailed understanding of sophisticated attack vectors
is essential for the creation of robust and adap-
tive defenses. By demonstrating the capabilities
of advanced attacks that mimic legitimate human
language, we aim to provide the community with
clear insights into the threats that modern financial
LLMs face, urging a shift beyond mere predictive
accuracy to a strong emphasis on adversarial ro-
bustness.
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A Theoretical Relationship Between
Discrete and Continuous Optimization
Spaces in Adversarial Suffix
Generation

This appendix provides a more formal mathemati-
cal exposition on the relationship between the opti-
mal solution achievable in the discrete token space
versus its continuous relaxation, as utilized in Stage
1 of our proposed methodology for adversarial suf-
fix generation.

A.1 Formal Problem Definitions

Let V be the vocabulary of the target Large Lan-
guage Model (LLM), with V' = |V| denoting its
size. An adversarial suffix is a sequence of N to-
kens, S = (t1,t2,...,ty). The initial user prompt
is denoted by X = (z1,...,2, ) and the desired
target output sequence (which the attack aims to
elicit)y is Y = (y1,...,ynm)-

Definition 1 (Discrete Token Space Tp). The dis-
crete token space Tp is the set of all possible one-
hot vectors in RY. Each s € Tp corresponds to
a unique token in V. The space of all possible
discrete N-token suffixes is 'Tlév .

Definition 2 (Continuous Token Space 7¢). The
continuous token space T¢ is the probability sim-
plex inRY :

\%

7oz acry | 22oll=1 ®)

i=1

ali] > 0foralli=1,...,V

The space of all possible continuous N -token suf-
fixes is T3

It is evident that 7p C 7T¢, as any one-hot vector
is a valid point in the probability simplex. Conse-
quently, 7" c T2.

Let E € RV*? be the LLM’s token embedding
matrix, where d is the embedding dimension. For
a discrete one-hot token s € Tp, its embedding is
es = ET's. For a continuous token representation
a € Tg, its effective embedding is e, = ETa,
representing the expected embedding over the vo-
cabulary distribution defined by a.. Note that if «
is a one-hot vector s, then e, = ¢;.

The LLM, denoted frrs, takes a sequence
of embeddings corresponding to the prompt X,
the suffix Siokens, and the already generated tar-
get prefix Y7.,_1, and outputs a probability dis-
tribution over V for the next token y,. Let
Emb(X), Emb(Stokens), Emb(Y1.x_1) denote

the sequences of embeddings. The loss function for
a given suffix (either discrete {s;} or continuous
{a;}) is typically the negative log-likelihood (or
sum of cross-entropies) for generating the target
sequence Y:

For a discrete suffix Sp = (s1,...,sn) € TH':

M

Lp(Sp) =) CE (fLLM(Emb(X% {E"s;}7,

)
Emb(lekfl)), yk)

The optimal discrete loss is D =
ming,, cy-x Lp(Sp).
For a continuous suffix S¢ = (o, . ..

TéV:

,CYN) S

M
Lc(Se) = ZCE <fLLM (Emb(X), {ETOzj};V:h

=t (10)
Emb(Yi:k-1)), yk)
The optimal continuous loss is

Ly =

A.2 Relationship Between Optimal Losses

We seek to formally establish the relationship be-
tween L7, and LF,. The core principle of relaxation
suggests that optimizing over a larger (continuous)
space should yield a solution at least as good as, or
better than, optimizing over a restricted (discrete)
subspace.

Theorem 1. The minimum loss achievable in the
continuous token space, L'E, provides a lower

bound for the minimum loss achievable in the dis-
crete token space, EE. That is:

Lo <Lp

Proof. Let S}, = (s],s5,...,s%) be an opti-
mal sequence of discrete tokens in T[])V such that
Lp(Sp) = L. Bach s is a one-hot vector.

As established, 7p C 7T¢, which implies that
every one-hot vector s7 is also a valid point in the
probability simplex 7¢. Therefore, the optimal
discrete sequence ST, is also an element of the
continuous suffix space Tév .

Consider the evaluation of the continuous loss
function L at this specific point S3 € T2'. The
embeddings for each token s} in ST, when consid-
ered as a continuous representation are ETsj.. This
is identical to the discrete embedding for s7. Thus,
the computation of the LLM’s output probabilities



and subsequently the cross-entropy loss will be
identical for ST, whether it is evaluated under £p
or Lc:

M
Lo(Sp) =) CE ( froa (Emb(X),
k=1
{BE"s7}0,

(11)
Emb(Y1:k—1)) » Yk

= Lp(Sp)

So, we have Lo (ST)) = L7},

The optimal continuous loss L7, is defined as
the global minimum of £<(S¢) over all possible
sequences Sc € TA'. Since S} is one such se-
quence in 7., the minimum value L, attained by

optimizing over the entire space ’TCN must be less
than or equal to the value of Lo at any specific
point within that space, including S7,. Therefore,

L& < Le(Sh)

Substituting L (S})) = L7},, we arrive at the con-
clusion:
Lo <Lp

This proves that the optimal loss in the continuous
relaxation is indeed a lower bound for the opti-
mal loss in the original discrete problem. Phrased
differently, the value of the optimal discrete solu-
tion (L7,) is lower-bounded by any specific discrete
solution’s loss and lower-bounded by the optimal
continuous solution’s loss (L¢). ]

A.3 Implications for the Optimization
Strategy

Theorem 1 provides the theoretical justification for
employing continuous relaxation. By expanding
the search space, we can leverage gradient-based
optimization techniques, which are generally in-
tractable in purely discrete, non-differentiable do-
mains of enormous combinatorial complexity. The
solution S&* = (af*, ..., ay) that achieves L, is
found in 2.

However, S{ is not guaranteed to be in 7'5\7 (i.e.,
the ;" may not be one-hot). To obtain an action-
able discrete adversarial suffix, a projection or map-
ping operation IT : 72 — T}’ is required, such
as the adaptive sparsification strategy detailed in
Section 3 of the main paper. Let S%% = TI(SE).

It is crucial to recognize that the projection step
can introduce a gap between the continuous opti-
mum and the achieved discrete loss. That is, while

Lco(SE) = L < L, it typically holds that:
Lo(SE) < Lp(Sp™)

The term Lp (ST °/) may or may not be equal
to L7,. The objective of sophisticated projection
and sparsification techniques is to minimize the
increase in loss incurred during this transition from
the continuous solution back to a high-performing
discrete solution, ideally approaching L7, or at
least a competitively low discrete loss. The ef-
fectiveness of the overall adversarial attack hinges
on how well this "continuous-to-discrete gap" is
managed. Our adaptive sparsification strategy is
designed precisely to guide the continuous opti-
mization towards solutions that are not only low in
continuous loss but are also amenable to effective,
low-loss projection into the discrete token space.

B Prompt for Naturalness

Role:

You are an expert linguist and language model eval-
uator. Your task is to assess the naturalness of the
given sentence or paragraph by applying principles
of linguistics, fluency, and native-like expression.
You will act as a language evaluator, similar to
how a human reviewer would rate the naturalness
of a passage based on everyday speech or written
communication.

Workflow:

1. Understanding the Context: Read the pro-
vided text and comprehend the content. Pay
attention to the intended meaning, tone, and
structure of the sentence.

2. Evaluation Criteria: After understanding
the content, assess the sentence’s naturalness
based on the following criteria:

* Grammar and Syntax: Is the sentence
grammatically correct? Does the struc-
ture follow common linguistic rules?

* Fluency and Flow: Does the sentence
flow smoothly? Are there any awkward
pauses or choppy phrasing?

* Tone and Style: Does the tone of the
sentence match the context? Is the style
appropriate for the intended audience or
situation?

» Naturalness: Does the sentence feel like
something a native speaker would typi-
cally say or write? Does it sound authen-
tic in the given language context?



3. Final Rating: Based on your evaluation, pro-
vide a rating on a scale of 1 to 5. The rat-
ing should reflect how natural the sentence or
paragraph sounds, where:

* 1: Very unnatural or awkward, with ma-
jor grammar or fluency issues.

* 2: Unnatural with noticeable awkward
phrasing or minor grammatical errors.

¢ 3: Neutral, with acceptable naturalness
but not exceptionally fluent or smooth.

* 4: Natural with minor issues that do not
significantly detract from the overall flu-
ency.

* 5: Highly natural, native-like expression,
no issues with grammar, flow, or tone.

Rules:

* Focus on the naturalness of language; avoid
focusing on the factual accuracy or meaning
of the content unless it directly impacts flu-
ency.

* Provide your rating with a brief explanation
highlighting the strengths and weaknesses of
the sentence, based on the criteria mentioned
above.

* If the sentence contains multiple clauses or
parts, evaluate the overall cohesiveness and
integration of those parts into a fluent whole.

* Avoid any bias based on content or personal
opinion; only evaluate based on linguistic fac-
tors.

* Ensure that the evaluation is fair, impartial,
and thorough.

C Potential Risk

The research of the ChameleonAttack, while in-
tended to highlight critical vulnerabilities in finan-
cial Large Language Models (LLMs) and spur the
development of robust defenses, inherently carries
potential risks. The detailed exposition of our two-
stage attack framework, which combines Adaptive
Latent-space Optimization (ALO) for potent adver-
sarial token discovery with a Semantic-Translation
Module (STM) to ensure linguistic stealth and co-
herence, could inadvertently equip malicious actors.
Given ChameleonAttack’s demonstrated high At-
tack Success Rate (ASR) of up to 93.4% against
models like FinBERT and its ability to degrade

the performance of complex Al financial agents
significantly, its misuse could lead to tangible eco-
nomic damage, manipulated financial decisions, or
systemic market risks.
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