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ABSTRACT

Many works have developed no-regret algorithms for contextual bandits with
function approximation, where the mean rewards over context-action pairs be-
long to a function class F. Although there are many approaches to this prob-
lem, algorithms based on the principle of optimism, such as optimistic least
squares have gained in importance. The regret of optimistic least squares

scales as O (\/ deluder (F) log(F )T) where dejuder (F) is a statistical measure

of the complexity of the function class F known as eluder dimension. Un-
fortunately, even if the variance of the measurement noise of the rewards at
time ¢ equals o2 and these are close to zero, the optimistic least squares al-
gorithm’s regret scales with /7. 1In this work we are the first to develop
algorithms that satisfy regret bounds for contextual bandits with function ap-

proximation of the form O (U\/log(]-')cleluder (F)T + detuder (F) -log(\]-'|))

when the variances are unknown and satisfy o7 = o for all ¢ and

9] <de111der(f)w/10g(]:) Zle 0?2 + detuder (F) - 10g(|.7-"|)> when the variances

change at every time-step. These bounds generalize existing techniques for deriving
second order bounds in contextual linear problems.

1 INTRODUCTION

Modern decision-making algorithms have achieved impressive success in many important problem
domains, including robotics |[Kober et al.|(2013); |Lillicrap et al.| (2015), games Mnih et al.| (2015);
Silver et al.| (2016)), dialogue systems [Li et al.| (2016), and online personalization |Agarwal et al.
(2016); [Tewari & Murphy|(2017). Problems in these domains are characterized by the interactive
nature of the data collection process. For example, to train a robotic agent to perform a desired
behavior in an unseen environment, the agent is required to interact with the environment in a way
that empowers it to learn about the world, while at the same time learning how to best achieve its
objectives. Many models of sequential interaction have been proposed in the literature to capture
scenarios such as this. Perhaps the most basic one is the multi-armed bandit model Thompson| (1933));
Lai & Robbins|(1985); |Auer et al.|(2002a)); |[Lattimore & Szepesvari| (2020), where it is assumed a
learner has access to K € N arms (actions), such that when playing any of these results in a random
reward. Typically, the learner’s objective is to select actions, and observe rewards in order to learn
which arm produces the highest mean reward value. Algorithms for the multi-armed bandit model
can be used to solve problems such as selecting a treatment that in expectation over the population
achieves the best expected success.

Deploying an algorithm designed for the multi-armed bandit setting may be suboptimal for applica-
tions where personalized policies are desirable, for example, when we would like to design a treatment
regime that maximizes the expected success rate conditioned on an individual’s characteristics. This
situation arises in many different scenarios, from medical trials |Villar et al.| (2015);|Aziz et al.| (2021)),
to education [Erraqabi et al.|(2016), and recommendation systems Li et al.| (2010) . In many of these
decision-making scenarios, it is often advantageous to consider contextual information when making
decisions. This recognition has sparked a growing interest in studying adaptive learning algorithms
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in the setting of contextual bandits |Langford & Zhang|(2007); [Li et al.| (2010); |Agrawal & Goyal
(2013)) and reinforcement learning (RL) Sutton|(1992)).

In the contextual bandit model, a learner interacts with the world in a sequential manner. At the start of
round ¢ € N the learner receives a context x; € X, for example in the form of user or patient features.
The learner then selects an action to play a; € A, representing for example a medical treatment, and
then observes a reward r; € R that depends on the context x4, the action a; and may be random. For
example r, may be the random binary outcome of a medical treatment a, on a specific patient ;. The
study of contextual bandit scenarios has produced a rich literature. Many aspects of the contextual
bandit model have been explored, such as regret bounds under adversarial rewards Auer et al.|(2002b);
Lattimore & Szepesvari| (2020); Neu & Olkhovskayal (2020), learning with offline data|[Dudik et al.
(2012), the development of statistical complexity measures that characterize learnability in this
model Russo & Van Roy|(2013); |[Foster et al.| (2021)) and others.

The focus of many works, including this one is to flesh out the consequences of different modeling
assumptions governing the relationship between the context, the action and the reward For example
by developing algorithms for scenarios where the reward is a linear function of a linear function of
an embedding of the context and action pair |Auer (2002); Rusmevichientong & Tsitsiklis| (2010);
Chu et al.[(2011); |Abbasi- Yadkori et al.[|(2011). This has lead to algorithms such as OFUL that can
be used to derive bounds for contextual bandit problems with linear rewards [Abbasi- Yadkori et al.
(2011). Other works have considered scenarios that go beyond the linear case, where it is assumed
the reward function over context action pair x;, a; is realized by an unknown function f, belonging
to a known function class F (which can be more complex than linear). Various adaptive learning
procedures compatible with generic function approximation have been proposed for contextual
bandit problems. Among these, we highlight two significant methods relevant to our discussion;
the Optimistic Least Squares algorithm introduced by Russo & Van Roy|(2013)) and the SquareCB
algorithm introduced by |[Foster & Rakhlin| (2020). Both of these methods offer guarantees for
cumulative regret. Specifically, the cumulative regret of Optimistic Least Squares scales with factors

O(+/detuder (F) log(]F|)), while the cumulative regret of Square CB scales as O («/ | Al log(|]-"|)> ,

where A is the set of actions. The eluder dimensio (deluder) 1s a statistical complexity measure
introduced by [Russo & Van Roy| (2013)), that enables deriving guarantees for adaptive learning
algorithms based on the principle of optimism in contextual bandits and reinforcement learning |L1
et al.[(2022);Jin et al.|(2021)); (Osband & Van Roy|(2014); Chan et al.|(2021}).

The design of algorithms that can handle rich function approximation scenarios represents a great
leap towards making the assumptions governing contextual bandit models more realistic and the
algorithms more practical. The concerns addressed by this line of research are focused on the nature
of the mean reward function. Nonetheless, they have left open the study of the dependence on the
noise & = r; — fi(x4,a). Intuitively, as the conditional variance of &; decreases, the value of 7,
contains more information about the reward function f,. Algorithms that leverage the scale of the
variance to achieve sharp regret bounds are said to satisfy a variance aware or second order bound.

Different works have considered this research direction and developed variance-dependent bounds for
linear and contextual linear bandits [Kirschner & Krause|(2018);[Zhou et al.|(2021)); Kim et al.| (2022));
Zhao et al.| (2023); Xu et al.|(2024). In summary, the sharpest bounds for contextual linear bandits
are achieved by the SAVE Algorithm in|[Zhao et al|(2023) and scale (up to logarithmic factors) as

@) (d« / ZtT=1 af) where o7 is the conditional variance of &, the time ¢ measurement noise.

In the context of function approximation, second order bounds for contextual bandits have been
developed in|Zhao et al.|(2022) under the assumption that the value of the conditional variances o
is observed. This restrictive assumption has been lifted in more recent work [Wang et al.|(2024b;a)
under a stronger distributional realizability assumption. InWang et al.|(2024bjal), the authors assume
realizability of the noise distribution, that is, the existence of a function class that fits not only
the mean rewards as a function of context-action pairs, but also the measurement noise. This is a
somewhat restrictive assumption since it effectively reduces the set of problems that can be solved to
parametric scenarios where the distributional class of the noise is known; something that in practical
settings typically means simple scenarios such as gaussian or bernoulli noise.

'We formally introduce this quantity in Section Here we use a simpler notation to avoid confusion.
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A recent work Jia et al.| (2024)), published while our paper was under review, removes the assumptions
made in|Wang et al.|(2024bja). Here a summary of their results. When the variances o; are revealed
with the contexts, they show that for some function classes, any algorithm must incur a regret of

Q (\/min(|A|, detuder) A + min(deuder, v/ |.A|T)) where A = Zthl o2, They also propose an
algorithm with an upper bound of O («/ |A|Alog(|F|) + deluder 10g(|]—'|)). In this setting, our

techniques from Section [3|yield a refined bound of O («/ dotuder N0g (| F|) + dotuder log(|F |)) (see

Theorem [3.5] for the special case where all variances are equal). For the setting where variances
are not revealed with z; and may depend on the action a;, Jia et al.|(2024)) derives the lower bound

Q (min (\/deluderA + deluders v/ AT )) For the unknown fixed-variance case, our bounds match
their lower bound (see Theorem[4.6). They also present an algorithm achieving an upper bound of
O (deludem/A log(|F|) + detuder log(|F |)), which matches our result in Theorem 4.10

Contributions. In this work we present second order bounds for contextual bandit problems under
a mean reward realizability assumption. The techniques we develop are inspired by previous works on
variance aware linear bandits such as|Zhao et al.|(2023)), and rely on an uncertainty filtered multi-scale
least squares procedure. We are able to make the connection to general function approximation
by refining existing techniques to prove eluder dimension regret bounds such as those presented
in Russo & Van Roy|(2013)); |Chan et al.|(2021)); Pacchiano et al.| (2024)). These techniques should
be easily extended to the setting of reinforcement learning and beyond, thus unlocking an important
area of research. The sharpest bounds we develop in this work (satisfied by the same algorithm) have

the form O <de1uderq /log(|F]) Z?:l 0?2 + detuder - log(|F |)> when we allow different conditional

variances during all time-steps, and O (m /detuder 10g(|JF)T + deluder - 1og(|F |)) when o; = o for

all ¢. Although it is likely our bounds are not the sharpest in the case of different variances, since
eluder dimension bounds as in|Russo & Van Roy| (2013)) suggest the dominating term in the optimal

bound should scale as O (\/ detuder log(|F|) Zle Uf) , we believe a sharper analysis based on our

ideas might be sufficient to prove such a result.

2 PROBLEM DEFINITION

In this section we consider the scenario of contextual bandits, where at time ¢ the learner receives a
context x; € X belonging to a context set X', decides to take an action a; € A and observes a reward
of the form r; such that E;[r;] = f.(2¢, a;) where it is assumed that f, € F for F a known class of
functions with domain X x A (see Assumption [2.1)). Throughout this section we use the notation
re = fo(t, ar) + & so that the conditional expectation of &; satisfies E.[£;] = 0. Throughout this
work we will use the notation o2 = Var,(&;) to denote the time ¢ conditional variance of the noise.
We’ll assume the random variables r; are bounded by a known parameter B > 0 with probability
one.

The objetive of this work is to design algorithms with sublinear regret. Regret is a measure of
performance defined in the realizable contextual scenario studied in this work as the cumulative
difference between the best expected reward the learner may have achieved at each of the contexts it
interacted with and the expected reward of the actions played.

T
Regret(T) = Z max felx,a) — fulae, ap)
t=1

The objective is to design algorithms with regret scaling sublinearly with the time horizon T'.
Assumption 2.1 (Realizability). There exists a (known) function class F : X x A — R such that
Ei[ri] = fo(zs,a) forallt € N.

Assumption 2.2 (Boundedness). There exists a (known) constant B > 0 such that |r¢|, |&| < B
and maxgex aed | f(2,a)| < B and maxyex aea |f(2,a) — f'(x,a)| < B forall f, f' € F and all
feN
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The sample complexity analysis of our algorithms will rely on a combinatorial notion of statistical
complexity of a scalar function class known as Eluder Dimension Russo & Van Roy| (2013). We
reproduce the necessary definitions here for completeness.

Definition 2.1. (e—dependence) Let G be a scalar function class with domain Z and € > 0. An

element z € Z is e—dependent on {z1,--- ,z,} € Z w.rt. G if any pair of functions g,q' € G
satisfying /> (9(z:) — ¢'(2:))% < € also satisfies g(2) — ¢'(z) < €. Furthermore, z € Z is
e—independent of {z1,- - - , zn} w.rt. G if it is not e—dependent on {zy,- - , z,}.

Definition 2.2. (e-eluder) The e—non monotone eluder dimension deyder (G, €) of G is the length of
the longest sequence of elements in Z such that every element is e—independent of its predecessors.
Moreover, we define the e—eluder dimension dejuger (G, €) as deluder (G, €) = maxe >, deluder (G, €)-

In order to introduce our methods we require some notation. The uncertainty radius function is a
mapping w : X X X x P(F) — Ris defined as,
w(z,a,G) = max f(z,a) — f'(z,a
(2,0,6) = max f(@.0) = f'(x.0)
forz € X,a € A G < F. The quantity w(z, a,G) equals the maximum fluctuations in value for
the function class G when evaluated in context « € X and action a € A. Throughout this work we
will use the notation (A, B, - -+ , C) to denote the sigma algebra generated by the random variables

AB,---,C.

In this work we design the first algorithm for contextual bandits with function approximation that
satisfies a variance dependent regret bound. In this work we extend the optimistic least squares
algorithm for contextual bandits with function approximation Russo & Van Roy|(2013). Our main
result (simplified) states that,

Theorem 2.1 (Simplified). Let § € (0,1). There exists an algorithm that achieves a regret rate of,

N B ) B
Regret(T) < O | deluder (.7-", T> <Z 0?) log (|F|/0) + Bdeluder <.7, T> log(|F|/9)

t=1

for all T € N with probability at least 1 — §. Where (5( -) hides logarithmic dependencies.

3 SECOND ORDER OPTIMISTIC LEAST SQUARES WITH KNOWN VARIANCE

In this section we introduce an algorithm that satisfies second order regret bounds. Algorithm [T]takes
as input a variance upper bound o such that o7 < 02, and achieves a regret bound of order

Regret(T) < O (a\/dcludcr(}', B/T)T log(T|F|/8) + detuder - log(T|F| /5)) .

This is a warm-up example that will be sharpened in section f.2]to the case where the variance is
unknown where we can achieve regret bounds of the same order. This algorithm is based on an
uncertainty filtered least squares procedure that satisfies sharper bounds than the unfiltered ordinary
least squares guarantees. For a complete discussion of estimation bounds for least squares, and
their use in the optimistic least squares algorithm from |[Russo & Van Roy| (2013) see Appendix
Since 02 < B this bound could be much smaller than the regret bound for Optimistic Least Squares
(Algorithm [3]) described in Theorem that scale as O(0\/detuder (F, B/T)T log(T|F|/5)). In
this section we work under the following assumption that we relax in section 4.2

Assumption 3.1 (Known Variance Upper Bound). There exists a (known) constant o > 0 such that
o, < o’forallteN.

Given a data stream {(x¢, ag, r¢) }sen Where ry = fi(zp, a¢) + & for f, € F such that & is condi-
tionally zero mean, a sequence of subsets of G; < --- Gy © G; = F such that G; is a function of
{(xp, ag, ’/‘e)}z;i), and f, € G, for all t € N. Given 7 > 0 we define an uncertainty filtered least
squares objective that takes a filtering parameter 7 > 0 and defines a least squares regression function
computed only over datapoints whose uncertainty radius is smaller than 7,

t—1

f7 = argmin Y (f(ze,ar) = re)*L(w(we, ae, Go) < 7) M

feGi—1 p—4
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The uncertainty filtering procedure will allow us to prove a least squares guarantee with dependence
on the variance and also on a vanishing low order term that scales with 7 B. We’ll use the notation

Bi(7,0,52) = (4min(rB, B?) + 1652) log(t|F|/5)

to denote the confidence radius function, in this case a function of 7, 5 and 52. Algorithm shows
the pseudo-code for our Second Order Optimistic Algorithm.

Algorithm 1 Second Order Optimistic Least Squares

1: Input: function class F, variance upper bound o

2: Set the initial confidence set Gy = F .

3: for t=1,2,--- do

4:  Compute regression function for each threshold level 7; = g for i € {0} U [g:] where
g = [log(t)]

f7# = argmin 2 (f (@, a0) = 70)*1(w(e, ar, Go) < 72)

5:  Compute threshold confidence sets for all i € {0} U [q¢],
Ge(1i) =
2

{f eF: 2 (f (@0, a0) — f(ze,a0))? Lw(ze, a, Go) < 1) < B (Ti,6i7‘72)} N Ge—1(73)
=1

6:  where §; = ﬁ.
7:  Compute G; = Gi—1 N (N{_yGe(3))
8:  Receive context x;.

9:  Compute U;(z,a) = maxyeg, f(z;,a) forall a € A.

10:  play a; = argmax,e 4 Us(x¢, a) and receive 7, = fi(zy, ar) + &
11: end for

Notice that by definition in Algorithmthe confidence sets satisfy G, < Gy for all £ > ¢'. In order
to state our results we’ll define a sequence of events {&,};2 ; such that & corresponds to the event
that f, € G,_1 and therefore f, € Gy for all '/ < ¢ — 1. The following proposition characterizes the
error of the filtered least squares estimator f; when & holds.

Proposition 3.1. [Variance Dependent Least Squares] Lett € N, 7 = 0 and & > 0. If o7 < &2 for
all ¢ <t — 1 and &; holds then

t—1
P (Z (] (@esar) = fulwe, a0))? 1w (e, ar, Go) < 7) < Bi(7,8,57), a) >P(E)—5. ()
{=1

The proof of Proposition [3.1]can be found in Appendix [C] It follows the structure of the least squares
result from Proposition For a given 7 > 0, estimator f; achieves a sharper bound than the
ordinary least squares estimator because the low order term in the portion of the analysis that requires
the use of Freedman’s inequality (see Lemma[A.T)) that has a magnitude scaling with the error of f;
on historial points can be upper bounded by 7 instead of scaling with B. This results in a second

order term scaling with min( B, B2) instead of B2 as is reflected by the definition of (7, 8, 52).

In contrast with the results of Lemma [B.T|the confidence radius of the T-uncertainty filtered least
squares estimator depends on a variance upper bound whereas the uncertainty radius in Lemma|B.T]
doesn’t. Proposition [3.1] provides us with a variance aware least squares guarantee. If the uncer-
tainty threshold 7 is small, the historical least squares error captured by equation [3] scales with
o2 log(t|.F|/8) and does not depend on the scale of B. Algorithm [1| leverages these confidence
sets to design a variance aware second order optimistic least squares algorithm. The basis of the
regret analysis for Algorithm [I]is the validity of the confidence sets G, and therefore the estimators
U (x4, a;) being optimistic.
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Lemma 3.2. The confidence intervals are valid so that f. € Gy for all t € N and optimism holds,
maxged fx(xt,a) < Up(xy, ar) with probability at least 1 — § for all t € N.

The proof of Proposition [3.2]can be found in Appendix [C| From now on we denote by £ the event
described in Lemma [3.2] where all the confidence intervals are valid. In order to relate the regret to
the eluder dimension of F, we develop a sharpened version of Lemma to bound the sum of the
uncertainty widths over the context-action pairs played by Algorithm [I] Lemma [B.3['s guarantees
are insufficient to yield the desired result because this result is unable to leverage any dependence
on the scale of the widths in the definition of the confidence sets. This is sufficient to show a regret
bound as it is evident by following the same logic as in the analysis of the optimistic least squares
(Theorem @]) In order to prove this result, we need to first bound the number of context-action
pairs with large uncertainty radius.

Lemma 3.3. IfAlgorithmis run with input variance upper bound o > 0, & is satisfied and {G:}3 ,
is the sequence of confidence sets produced by Algorithmthen forallTeNand = 14,
64Blog(T|F|/8) = 6402 log(T|F|/5)

. + 5 +1

T
Z 1(w(mt,at,gt) > T) <3- deluder(faT) (
t=1

Lemma [3.3]can be used to show the following sharpened version of LemmaB.3]

Lemma 3.4. If £ holds, then for all T € N the uncertainty widths of context-action pairs from
Algorithm[l)satisfy,

T
> w(wra,G) < O (03/detuder (F, B/T) 10g(TIFI/8)T + Bdetaer (F, B/T) log(T) log(T|F|/3)) .

The proof of this result is based on an integration argument that leverages the inequality in Lemma|[3.3]

Algorithm [T] satisfies the following regret bound,
Theorem 3.5. If 0 € (0, 1) is the input to Algorithmsatisﬁes,

Regret(T) < O (O’\/deluder(f, B/T)1og(T|F|/6)T + B - detuder (F, B/T) log(T) log(T|]-'|/5)> .
for all T € N with probability at least 1 — 6.

The proof of this Theorem can be found in Appendix [D]

4 CONTEXTUAL BANDITS WITH UNKNOWN VARIANCE

In the case where the variance is not known our contextual bandit algorithms work by estimating the
cumulative variance up to constant multiplicative accuracy and use this estimator to build confidence
sets as in Algorithms [3|and [T} In section[d.T] we describe how to successfully estimate the cumulative
variance in contextual bandit problems, in section[4.2] we show how to adapt a version of Algorithm|[T]
to the case of a single unknown variance and finally in section 4.3 we introduce Algorithm [2] that

satisfies a regret guarantee whose dominating term scales with dejydert/log(|F]) ZtT= L 02, and the

low order term with dejyder - log(|F|).

4.1 VARIANCE ESTIMATION IN CONTEXTUAL BANDIT PROBLEMS

In this section we discuss methods for estimating the variance in contextual bandit problems. Our
estimator is the cumulative least squares error of a sequence of (biased) estimators. Given context-

. . . . t—1 . _ t—1 .
action pairs and reward information {(z¢, a¢,7¢)},_; and a filtering process by = {by},_; of bernoulli
random variables b, € {0,1} such that by is X(z1,a1,b1,71,+ , Te—1,00-1,b0—1,T0—1,T¢, Qp)-
measurable. Let ftb" be the “filtered” least squares estimator:

t—1
f’f = argmin Z be - (f(zg,a0) — 7"@)2 )
fer 21

A filtered least squares estimator satisfies a least squares bound similar to Lemma|B.1]
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Lemmad.1l. Letd € (0,1), t € N, {zy, ar}.Z} be a sequence of context-action pairs and and {r;}'_}
be a sequence of values satisfying ry = f+(xg,a0) + & where f, € F and the & are conditionally
zero mean. Let {b,}\_} be a filtering process of Bernoulli random variables by € {0, 1} such that by is

b . t—1
Y(z1,a1,b1,71,+ , Tp—1,a0—1,bp—1,T0—-1,%¢, ag)-measurable. Let f* = argmin ;. » Di—1be-
(f(xe,ap) — rg)2 be the “filtered” least squares estimator. If Assumptionholds then,

< 6B%log(2|F|/d).

t—1
Db (f*(l‘é,ae) - f,}’f(xe,ag))
=1

and

t—1
b (£ Gersae)  fulae, ) < 8B log(2|FI/5)
{=1

with probability at least 1 — 0.

Based on the definitions above we will consider the following cumulative variance estimator for a
filtered context, action, reward process:

t—1
WPt =Y b (re — [P (w0, a0))” “4)
=1

We now prove this estimator achieves a small error.

Lemma 4.2. Let b € (0,1) be a probability parameter. If Assumption|2.2| holds,
2 ~ — -
3 WPt — 1182 log(4|F|/8) < WP* < 2WP* + 48B* log(4|F|/9)
with probability at least 1 — 6 where Wtbt = 2: by - o7,

Using the union bound (by setting 6= 2‘?—; in Lernma we can write an anytime guarantee for the
variance estimators I/Vtb ).

Corollary 4.3. Let ¢’ € (0,1), {z¢, ap, 7¢}72, be a sequence of context-action and rewards triplets

such that g = fi(x¢,ap) + & where f, € F and the & are conditionally zero mean. Let {bg}é;{be
a filtering process of Bernoulli random variables by € {0, 1} such that by is X(x1,a1,b1,71, -+,

b . t—1 2
To_1,a0-1,be—1,70-1,T¢, ag)-measurable and f* = argmin gz >, be- (f(we, ar) — 10)" be the
“filtered” least squares estimator. If Assumption[2.2 holds there exists a universal constant C' > 0 such
that the cumulative variance estimator WPt = Z;i be - (re — [Pt (w0, ar))? satisfies,

2

5 WPt —C - B log(tF|/8') < WP < 2Wp* + C - B log(t|F/4)

with probability at least 1 — &' for all t € N.

The proof of Corollary 3| can be found in Appendix [E-]

4.2 UNKNOWN-VARIANCE GUARANTEES FOR ALGORITHM 1]

Although Algorithm [T was formulated under the assumption of a known variance upper bound o, in
this section we show it is possible to combine the variance estimation procedure we propose here
with Algorithm|[I] A simple and immediate consequence of Corollary .3]is,

Corollary 4.4. Let §' € (0,1). Under the assumptions of Corollary{.3| If o = o for all t € N and
b t—1
we define Nt = ) ,_ ] by then,
owpt - B2log(t|F|/8") oo 2w P N C - B%log(t|F|/é")
- X0 X
3NY! NY! NY! NY!

with probability at least 1 — ¢’ for all t € N. Where C > 0 is the same universal constant as in

Corollary
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2

Let {b;};en be the trivial filtering process defined by setting by = 1 for £ < ¢ — 1 so that
NLP* = t — 1 and define the variance upper-bound estimator sequence 67 = B? and 57 =

by ’
min (8?,1, 2V C-B” log(£17]/0 )) forall ¢ > 2. Corollaryimplies that

b, . R2 / .2 ,
o? <5, < 2tWt1 LoB 2lfog(itlﬂ/ﬁ <3024 30 B tlog(1t|]—'\/5)

for all t € N with probability at least 1 — ¢'.

&)

We’ll analyze a version of Algorithm where the confidence sets G;(7;) are computed using confi-

dence radii equal to 3; (Ti, ﬁ, 83) in equation [2| With these parameter choices, we can show a

result equivalent to Lemma

Corollary 4.5. Let § € (0,1). If §/2 is the input to Algorithmand 6% estimators are computed by
setting &' = §/2, then the confidence intervals are valid so that f, € G for all t € N and optimism
holds, maxge 4 f(2t,a) < U(xy, ar) with probability at least 1 — 0 for all t € N.

The proof of this result follows by a simple union bound between the result of Lemma[3.2]and the
inequality > < 57. Let € denote the event described in Corollary [4.5] This version of Algorithm ]
satisfies the following guarantees,

Theorem 4.6. Let 6 € (0,1). If 6/2 is the input to Algorithmand G2 estimators are computed by
setting 0' = 0/2. If oy = o for all t € N the regret of Algorithmwith modified confidence set sizes
satisfies,

Regret(T) < O (o+/detuer(F, B/T) log(TIF|/8)T + Bdewwaer (F, B/T) 1og?(T) log(T|.F|/3) ) .
for all T' € N with probability at least 1 — 6.

The proof of Theorem §.6|can be found in Appendix

4.3 UNKNOWN-VARIANCE DEPENDENT LEAST SQUARES REGRESSION

We borrow the setting of Sectionwith a few modifications. Given a data stream {(z¢, ag, 7¢) } ren
where 7 = f.(z¢,ar) + & for f, € F such that & is conditionally zero mean, a sequence of subsets
of G, € -Gy < G| = F such that G/ is a function of {(z¢,as,7,)}.Z1), and f. € G, forall t € N.
Given 7 > 0 we define an uncertainty-filtered least squares objective,

727 = argmin Y (f (e, a0) — 7)1 (w(2e, a0, G)) € (,27]) . ©

in the following, for any 7 we’ll use the notation b} to denote the filtering random variables b] =
1(w(xe, ae, G)) € (1,27]). Similarly, we denote by b] = (b7,--- ,b]_;).

We develop a result equivalent to Lemma [B-T] and Proposition [3.I] to characterize the confidence
sets. Just like in Section [3| we write our result in terms of a sequence of events {;}7° ; such that &;
corresponds to the event that f, € G;_, and therefore f, € G}, forall ¢/ < ¢ — 1 so that &, < &, for
all ¢ = ¢,

Proposition 4.7. Let 6 € (0,1) and 7 > 0. Let {gé}f;l be a sequence of events such that & 2 &} - --

and £ E]. Let ft(T’ZT] be result of solving the uncertainty-filtered least-squares objective from equa-
tion|6| Additionally let VV;Dt be the filtered estimator of the cumulative variances defined by equation
when setting b = 1 (w(z¢,ae,Gy) € (1,27]) and Wy = SO o2 1 (w(we, an, G)) € (7,27]).
There exist universal constants C, C' > 0 such that the events Wy(7) defined for any t as

t—1
Z (ftT’QT] (xe, GZ) — f*(xe, az))z l(w(xg, Qy, gg) € (T, 27‘])
=1

< C/T\/Wtth log <t|]-'|/5) + C'TBlog (t|]-'\/5)
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Algorithm 2 Unknown-Variance Second Order Optimistic Least Squares

1: Input: probability parameter § € (0, 1), function class F.

2: Set the initial confidence set G|, = F.

3: for t=1,2,--- do

4:  Compute regression function for each threshold level 7; = £ for i € [g,] where ¢, = [log(¢)]

t—1

= argmin Z(f(xe, ag) — 1¢)*1 (w(ze, ar, Gy) € (14, 7i-1])
fegi_1 =1

ft(Tz‘,Ti—l]

5:  Estimate the sum of the filtered variances for all threshold levels 7; for i € [¢:].

-1
Wtb‘ = Z 1 (w(;vlg,ag,gz) € (Ti,Ti,l]) - (re — t(Ti’T""l](x&ag))Q.
=1

6:  Compute threshold confidence sets for all i € [¢;],

-1 =
Gi(i) = {f eF: Z (ff (ze,ae) — f(Ie,ag))Q 1(w(xe,ae,Ge) < 15) < C'Ti\/Wtbt log (22| .F|/0)
=1

+C'7;:Blog (2i°t|F|/5) } NG (m)

where C’ > 0 is the constant from Proposition[4.7]
7 Compute G; = G;_; ~ (n_,Gi(r))
8:  Receive context x;.
9:  Compute U;(z¢,a) = maxyeg, f(z¢,a) forall a € A.
10:  play a; = argmax,. 4 U(2¢,a) and receive 1y = fu(zy, ar) + &
11: end for

and

C'14 /Wtb*T' log (t|}"|/5) + C'tBlog <t|.7-"|/5> <C'ry /Wtb'T' log (t|}"|/5) +C"rBlog (t|}"|/5)

satisfy the bound P(E] n (W, (1))°) < 52

2t2°

The proof of Proposition 4.7 can be found in Appendix [E.3] Similar to Corollary [B.2]and Proposi-
tion we derive the following anytime guarantee for the confidence sets, and show that optimism
holds

Lemma 4.8. Let 6 € (0,1). When the confidence sets G;  F are defined as in Algorithm[Z] then
fx € Gf 50 that max,e 4 fu(7t,a) < Ug(xy, az) (optimism holds), and for all i € [q4],

t—1

Gi(m) {fe]—'s.t. D ( 027 (1, 0,) ff(xg,ag)>21(w(xg,ag,gg) e (11,2m]) <

=1

c”m/ WP log (2(i + 1)2t|F|/8) + O r; Blog (2i%t| F|/6) }
@)

with probability at least 1 — 6 for all t € N. Where C" > 0 is the same universal constant as in

Proposition

The proof of Lemma4.8|can be found in Appendix Define £’ as the event outlined in Lemma4.g]
such that f, € G, optimism holds, and inequality [7| holds for all ¢ € [¢:] and all ¢ € N. This
event satisfies P (£/) > 1 — §. The proof of the regret guarantees of Algorithm [2| will follow a
similar template as in the previous sections; establishing optimism and then bounding the sum of
the uncertainty widths over the context-action pairs played by the algorithm. In order to execute
this proof strategy we need a way to relate the sum of the uncertainty widths to the definition of



Published as a conference paper at ICLR 2025

the confidence sets and by doing so with the true cumulative sum of variances. We do this via the
following Lemma.

Lemma 4.9. [f {G;}? | is the sequence of confidence sets produced by Algorithm there exists a
universal constant C > 0 such that when &' is satisfied,

T
Z w(we, ar,Gy) € (13, 27]) <

t=1

M\/W;Tl log (ZT‘]:|/5) + ¢-B- deluder(]"7 Ti)

T Ti

log (iT|F|/8) + C - detuder (F, 73)
forall T e Nand i€ [qr].

The proof of Lemma[4.9|can be found in Appendix [ Finally, we can combine the result above with
an optimism argument to prove the following regret bound for Algorithm 2]

Theorem 4.10. Let T € N, § € (0,1) and q = log(T). The regret ofAlgorithmsatisﬁes,
Regret(T)

<0 (dcmm (f, ?) $ (Z a?) log(T) log (T'|F|/6) + Bdetuder (f, g) log(T) log(T| F| /5))

simultaneously for all T' € N with probability at least 1 — 6.

Proof Sketch. The proof of Theorem relies on observation that when £’ holds, optimism implies

Regret(T Z w(@, at, Gy).
t=1

The sum of widths can be upper bounded as,

= T-B ¢ =
Z w(xt,at,gg) § T =+ 2;7’1' . (Z 1 (W(th,at,gg) € (7’,‘,27}])) .

t=1

Finally Lemma[.9|can be used to finish the proof. O

5 CONCLUSION

In this work we have introduced second order bounds for contextual bandits with function approxima-
tion. These bounds improve on existing results such as|Wang et al.|(2024b) because they only require
a realizability assumption on the mean reward values of each context-action pair. We introduce two
types of algorithm, one that achieves what we believe is sharp dependence on the complexity of the
underlying reward class measured by the eluder dimension when all the measurement noise variances
are the same and unknown, and a second one that in the case of changing noise variances achieves a
bound that scales with the square root of the sum of these variances but scales linearly in the eluder
dimension. In a future version of this writeup we will strive to update our results to achieve a sharper
dependence on the eluder dimension scaling with its square root. We hope the techniques we have
developed in this manuscript can be easily used to develop second order algorithms with function
approximation in other related learning models such as reinforcement learning. These techniques
distill, simplify and present in a didactic manner many of the ideas developed for the variance aware
literature in linear contextual bandit problems in works such as [Kirschner & Krause| (2018); [Zhou
et al.[(2021); Kim et al.| (2022)); Zhao et al.|(2023); |Xu et al.|(2024) and transports them to the setting
of function approximation. Although we did not cover this in our work, an interesting avenue of
future research remains to understand when can we design second order bounds for algorithms based
on the inverse gap weighting technique that forms the basis of the SquareCB algorithm from |[Foster|
& Rakhlin| (2020).

10
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A SUPPORTING RESULTS

Our results relies on the following variant of Bernstein inequality for martingales, or Freedman’s
inequality (1975), as stated in e.g.,/Agarwal et al| (2014); Beygelzimer et al.| (2011).
Lemma A.1 (Simplified Freedman’s inequality). Let Z1, ..., Z1 be a bounded martingale difference
sequence with |Zy| < R. Forany ¢’ € (0, 1), and n € (0, 1/R), with probability at least 1 — &',

d d log(1/5"
ZZ@QUZE@[Z?]—FM. 3
=1

Ui

where By[-] is the conditional expectatiorEl induced by conditioning on Z1,- - - , Zy_1.

Lemma A.2 (Anytime Freedman). Let {Z;};°, be a bounded martingale difference sequence with
|Zi| < Rforallt e N. Forany ¢’ € (0,1), andn € (0,1/R), there exists a universal constant C > 0
such that for all t € N simultaneously with probability at least 1 — &/,

Clog(t/d
Zzi nZIE (23] + gn(/ ) ©
where By[-] is the conditional expectation induced by conditioning on Zy,- -+ , Zy_1.

2We will use this notation to denote conditional expectations throughout this work.

14
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Proof. This result follows from Lemma Fix a time-index t and define §; = 12 t2 Lemma
implies that with probability at least 1 — 0y,

t t
log(1/6.
ZZ@<UZE@[Z§]+M.
=1 =1 n
A union bound implies that with probability at least 1 — Zz 10 =1-14,

t 2 /51
=1 77

@) C’log(t/5’)
2] 2

holds for all ¢ € N. Inequality (7) holds because log(12t2/6") = O (log(td")).

O

Lemma A.3 (Uniform empirical Bernstein bound). In the terminology of\[Howard et al.|(2021), let
Sy = 25:1 Y; be a sub-yp process with parameter ¢ > 0 and variance process W,. Then with

probability at least 1 — 6~f0r allte N

Sy < 1.44\/maX(Wt,m) <1.4lnln (2 (max (Vvt, 1>)> +1In ?)
m
+ 0.41c (1.4111111 <2 <max <VVt, 1>>> +1In il 2)
m ]

where m > 0 is arbitrary but fixed.

As a corollary of Lemma[A.3| we can show the following,
Lemma A.4 (Freedman). Suppose {X:}{° is an adapted process with |X;| < b. Let V; =
Zzzl Vary where Vary = E¢[X7?] — EZ[X,]. For any ¢ € (0, 1), with probability at least 1 — 4,

t

121n 2t 121n 2t
3 Xy~ B[ Xe] < 44 [Viln 2 4+ 6bln ——o .
=1 5 )

for all t € N simultaneously.

Proof. We are ready to use Lemma(with c=0b). LetS; = 22:1 X;and W, = 22:1 Vary(Xy).
Let’s set m = b2. It follows that with probability 1 — § for all t € N

St<1.44\/maX(thbQ) (1 4lnln< (max(VbV ))>+1 ?)
oo oo () )
<2\/max(wt,b2> (21n1n (2 <max< >)>+ln )
oo () -3

=2 max(\/ Wt, b)At + bA?
< 20/ Wi Ay + 2bA; + bA?

Y o WA, + 3bA2
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where A; = \/2 Inln (2 (max (%2,1))) + ln% Inequality (i) follows because A; > 1. By
identifying V; = W, we conclude that for any 4 € (0,1) and ¢t € N

t
P <Z Xo > 2/ VA, + 3bA§> <4
=1
v

Vi
st

And therefore 21n1n (2 max(%, 1)) < 2Inln 2t implying,

At < 21n 12flwnt
0
Thus
t
12In2 12In2 ~
P X >4 [V 222 A oo 222} <5
=1 0 5
Since V; < S, the result follows. O

Proposition A.5. Let &' € (0,1), B € (0,1] and {Z,}°., be an adapted sequence satisfying
0< Z; < Bforalll € N. It follows that,

—B)Z]Ee[ze]—wb?l/y)é ZZ¢<(1+5)Z]EZ[ZZ]+QBIO?1/5/)
=1 = =

with probability at least 1 — 24’

Proof. Consider the martingale difference sequence X; = Z; — ;[ Z;]. Notice that | X,;| < B. Using
the inequality of Lemma|A.1|we obtain for all € (0,1/B?).

- 2 1og(1/5’)
;1 ngE (X2 ;

@ log(1/4"
< 2B’ 2 Ei[Ze] + Og(n/ )
(=1

with probability at least 1 — &’. Inequality (i) holds because E;[X?] < B2E[| X;|] < 2B?E;[Z;] for
all t € N. Setting ) = 2§2 and substituting Zkl X, = Zé:l Zo — K[ Ze),

B

with probability at least 1 — (5’ Now consider the martingale difference sequence X; = E[Z;] — Z;
and notice that | X;| < B2. Using the inequality of LemmalA.1|we obtain for all ) € (0, 1/B?),

: X : X)) Lo 1/8'
24 ; g(1/9")

=1 n
1+ log(1/0")

t 2 !
Z <(1+58) ZEEZK M (10)

< 2nB? Z E/[Z
=1

Settingn = % and substituting 22:1 X, = Zzzl E[Z¢] — Z; we have,

16



Published as a conference paper at ICLR 2025

(1—5)i]E[ZZ] < zt]zH?BQlos(l/&)
£=1 =1

with probability at least 1 — ¢’. Combining Equations|10jand |1 1{and using a union bound yields the
desired result.

(11

O

B OPTIMISTIC LEAST SQUARES

The algorithms we propose in this work are based on the optimism principle. This simple yet
powerful algorithmic idea is the basis of a celebrated algorithm for contextual bandits with function
approximation known as Optimistic Least Squares. Algorithm [3| presents the pseudo-code of the
Optimistic Least Squares algorithm.

Algorithm 3 Optimistic Least Squares

1: Input: Function class F, confidence radius functions {3; : [0,1] — R} ;.
2: for t=1,2,--- do
3:  Compute least squares regression

t—1
f+ = argmin 2 (fxe,a0) — ). (12)

feF 3

4. Compute confidence sef’]
t—1
G = {f € F: ) (felwe,ar) — flae,ar)’ < Bt(f;)}
=1

Receive context x;.

Compute Uy (x¢, a) = maxyeg, f(x¢,a) foralla € A.

play a; = argmax,. 4 U(z¢, a) and receive 1y = fu(x¢, ar) + &
end for

@R

To derive a bound for the optimistic least squares algorithm, we require guarantees for the confidence
sets. This is captured by the following Lemma.

Lemma B.1. [LS guarantee] Let § € (0,1), {x¢, a1 }72, be a sequence of context-action pairs and
and {r} | be a sequence of reward values satisfying v+ = f«(x¢,at) + & where f. € F and &

is conditionally zero mean. Let f; = argminger Zz;i (f(ze,ap) — 7"@)2 be the least squares fit. If
Assumption [2.2) holds then there is a constant C > 0 such that,

t—1
D (fel@e,ar) = fulme, a0))® < Bi(0)
(=1

with probability at least 1 — § for all t € N where 3,(5) = 4C B? log(t - | F|/3).

The proof of Lemma[B.T|can be found in Section[C] This result allows provides us with the tools to
justify the choice of confidence sets in Algorithm |3} A simple corollary is,

Corollary B.2. Let § € (0,1) and B,(6) = 4CB?log(t - | F|/5) as defined in LemmaB.1} The
confidence sets G; satisfy f. € G for all t € N simultaneously with probability at least 1 — 4.
Moreover, this property holds, U(x,a;) = maxgea f(zt,a) forallt € N,

The proof of this result can be found in Appendix [C} In order to relate the scale of these confidence sets
with the algorithm’s regret we need to tie these values to the statistical capacity of the function class
F. This can be captured by its eluder dimension (see Definition [2.2). This is done via Lemma[B.3] a
standard result that is crucial in showing an upper bound for the optimistic least squares algorithm
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regret. This result is a version of Lemma 3 from (Chan et al. [2021)) presented as Lemma 4.3
in (Pacchiano et al.,|2024) which we reproduce here for readability.

Lemma B.3. Let F be a function class satisfying Assumption 2.2 and with e-eluder dlmenswn
detuder (F, €) . Forall T € N and any dataset sequence {D;}{° | for D1 = & and Dy = {(zy, a/)}g 1
of context-action pairs, the following inequality on the sum of the uncertainty radii holds,

T
Yl w(@s,a, D) <O (mln (BT \/ Bi(8)  detwder(F, B/T) - T + Bderuaer (F, B/T)))

Lemmas [B.T]and[B.3|can be used to prove Algorithm 3]satisfies the following regret guarantee,

Theorem B.4. The regret of the Optimistic Least Squares (Algorlthml) 3 with input values 6 € (0,1)
and 3;(8) = 4C B2 log(t|.F|/d) satisfies,

Regret(T) < O (By/detwaer (F, B/T) - T -1og(TIF|/0) + Bdewwaer(F, B/T))
with probability at least 1 — § for all T € N simultaneously.

The proof of this result can be found in Appendix|C] Thus the dominating term of the regret bound (the
term growing at a /T rate) for optimistic least squares scales with the square root of the uncertaint
radius, in this case given by the function 7 (0) = 4CB?log(T|F|/d) defined in Lemma
Unfortunately, this introduces an unavoidable dependence on B. Thus, the dominating term of our
regret bound has a scale controlled by B instead of the variances {O’%}%;l. This dependence comes
up because the proof of Lemma [B.T]relies on Freedman’s inequality (LemmalA.T]in Appendix [A)
that exhibits an unavoidable dependence on the scale of the random variables in the low order terms.
In the following section we show a way to bypass this issue by introducing a multi-bucket regression
approach that has a vanishing dependence on the low order terms.

C PROOFS OF SECTION

Lemma B.1. [LS guarantee] Let § € (0, 1), {xt, a:};2, be a sequence of context-action pairs and
and {r:} , be a sequence of reward values satisfying rv = f.(x¢,at) + & where f. € F and &

is conditionally zero mean. Let f; = argmin e r 22: (f(xg,a0) — 7“@)2 be the least squares fit. If
Assumption[2.2) holds then there is a constant C' > 0 such that,

Z (fi(we,ae) = fulwe ar))* < Bi(9)
with probability at least 1 — § for all t € N where 3;(6) = 4CB?log(t - | F|/9).

Proof. Substituting 7y = f.(2¢, ag) + & into the definition of f; we obtain the following inequalities,

- _ t—1
Z fe(we, ae) —re)? Z felme,a) —re)® = > &
Pt i1 =1

substituting again the definition of 7, on the left hand side of the inequality above and rearranging
terms yields,

t—1

Y (Felwe, ar) = fulwe, ar))? 22@ (fu(@e,a0) = felwe, ar)) (13)

{=1

We now focus on bounding the RHS of equation For any f € F let Zlf = & -
(f+(zp,a0) — f(xp,a¢)). The sequence Z; forms a martingale difference sequence such that

2
E, [(Zg) ] = o7 (f(ze,a0) — fo(z0,00))* and Assumptionimplies |Zéf\ < B? for all
feN.
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We can use Freedman inequality (see for example Lemma[A.2]in Appendix[A]) to bound this term
and show that with probability at least 1 — ¢’ for all ¢ € N,

Z o+ (f(ze,a0) = fulme,an)) < (2 o? - (f(xe, ap) — f*(xe,ae))2> + C’log;(t/é’)
(=1
i) 1'% , , /
< 7 2 (@, a0) = fu(we,ar))” + 4CB? log(t/d").
(=1

Where mequahty (@) follows from setting 7 = 3 132 and noting that o, < B? for all /. Finally, setting

0 = 7 f‘ and considering a union bound over all f € F we conclude that,

t—1 —
Do (fulwe ar) — filwe,ap)) 2 (fi(xe,a0) — folme, an))? + 4C B2 log(t - | F|/5).
=1 é 1

Plugging this inequality into equation [[3]and rearranging terms yields,
t—1

3 (e ar) = fulwe ar))® < ACB2 log(t - | F|/6).
=1

O

Corollary B.2. Let § € (0,1) and 3;(5) = 4CB?log(t - | F|/5) as defined in Lemma The
confidence sets G; satisfy f. € G for all t € N simultaneously with probability at least 1 — 4.
Moreover, this property holds, U(x,a;) = maxaea f(zt,a) forallt € N,

Proof. Lemma[B.I]implies that f, € G, for all t € N simultaneously with probability at least 1 — 4.
When this occurs, the following sequence of inequalities is satisfied,

fe(wg,a) < rfneagxf(xt,a) = Ui(w1,a) < Ug(z, ar).

for all a € A. Thus it holds that maxge 4 fi (x4, a) < Up(ay, ay). O

Theorem B.4. The regret of the Optimistic Least Squares (Algorlthml) with input values § € (0, 1)
and f3:(8) = 4CB?log(t|F|/d) satisfies,

Regret(T) < O (B\/deluder(}', B/T) - T -log(T|F|/0) + Bdeluder (F, B/T))

with probability at least 1 — § for all T € N simultaneously.

Proof. Lemma 3] implies the event & where f, € G, for all ¢ € N occurs with probability at least
1 — 4. The analysis of the regret of Algorithm [3]follows the typical analysis for optimistic algorithms,

T
Regret(T) = Z max fe(@e,a) — fu(ze, ar)

Ut(l't;at) - f*(xtaat)

N
= T

o~
Il
—

ft(wt,at) - f*(xtaat)

Il
=

~+
Il
—

max f(x¢,ar) — (e, a
f,f’Egtf( ty t) f( ts t)

e
1=

ﬁ
I
-

Il
N

w(xhah gt)

~+
Il
—

—~

NS

' O (Bdwaer F, BIT) +v/Br(0) - dasae (. B/T) -7
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where f; is the function that achieves the argmax in the definition of U; over input context x;.
Inequality (7) holds because when & holds, f, € G; and f; € G, for all ¢ € N. Inequality (i7) is a
variation of Lemma 3 in (Chan et all 2021) (see a simplified version in Lemma [B.3|from Appendix [F).
Substituting B (8) = 4C B* log(T\}"|/(5) finalizes the result.

O

D PROOFS OF SECTION[3]

Proposition 3.1. [Variance Dependent Least Squares] Lett € N, 7 > 0 and 6> 0. If Ue &2 for
all ¢ <t —1and&; holds then

(Z (] (wesan) = fulwe, a0))? 1w (e, ar, Go) < 7) < Bio(7,8,57), 5t> >P(&)—0. ()

Proof. Given f € F we consider a martingale difference sequence Z, Z for £ € N defined as,
Z{ = (F(we,a0) = Fulwe,a0)) - Lw(we, a0, ) < 7) - 1(f € Go) - &
First let’s see that
\Zf| < min(7B,B?) VleN.
To see this we recognize two cases, first when f ¢ G, in which case Z7 = 0. When f € G, we

also recognize two cases. When 1(w(x¢, ar,Ge) < 7) = 0 the random variable Zef = 0. When
f € Gy, and w(xg, ag,Ge) < 7, it follows that | f(z¢, ar) — fu(2¢, ap)| < 7. Finally since |{,| < B
we conclude | Z] | < min(7 B, B2).

The conditional variance of the martingale difference sequence{Z, lf }¢ can be upper bounded as

Vary(Z]) = Ee[(2])*]
= 02 (f(xe,ar) — fulze, a0))?1(w(ze, ar,Ge) < 7) - 1(f € Go)
L5 (Flaear) — fulwrae)?Lw(zrae, Gr) < 7) - 1(f € Go)

where inequality (i) follows because of o7 < 52.
We now invoke Lemmam applied to the martlngale difference sequence {Z] .y },—1- In this case

R = 7B and we’ll set n= m RS Thus

t—1

t—1 1 N
;Zg < HliIl(TB,Bz) + 402 ;10.200(17@7@6) - f*(zé>a€))21(w(xéva€vg€) <7)-1(feG)+

(min(r B, B?) + 45°) log(|F|/9)

q>>—l

t—1
- Z (20, ag) — folze, a0))*Uw(xe, ap, Go) < 7) - 1(f € Go) + (min(7B, B?) + 452) log (| F|/5)
- (14)

with probability at least 1 — %. A union bound implies the same inequality holds for all f € F

simultaneously with probability at least 1 — 5. Let’s call this event B. We have just shown that

P(B) = 1 — 6. In particular when B holds, inequalityis also satisfied for f = f;. When &, holds
f7 €Gi1then1(f] € G;) = 1 for alff|¢ < ¢ — 1 and therefore,

t—1 t—1
Mzl = 3 (7 (e a0) — fulae.ar) - & Lw(we ag, Ge) < 7). (15)
(=1 =1

“This is where the definition of G+—1 as an intersection of all previous confidence sets is important. The
intersection ensures that for any 7 the minimizer of the filtered least squares is achieved at an f; for which the
inidicator 1(f € G;) = listrue forall £ < ¢ — 1.
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We proceed by subtituting the definition of ry = f,(z¢, as) + & in equationand noting that when
& holds f, € G;_1, so that f], the minimizer of the uncertainty filtered least squares loss satisfies,

2 (7 (e, a0) — ful@e, a) — &)* Lw(zg, a0, Ge) < Zf@ w(we, ar,Ge) < 7)

expanding the left hand side of the inequality above and rearranging terms yields,

t

|
-

t—1

(Ff (e, a0) = ful@e, a0)” Lw(zg, ae,Ge) < 7) <2 (7 (we, a0) — fulwe, ar)) - & - L(w(ze, ae, Ge) < 7)

L

~
Il
_
Il

it

(16)

To bound the right hand side of the inequality above we plug inequality [T4] and equality [T3] into
equation[T6 we conclude that when B n &; holds,

t—1 —
DT @ea0) = fulwe, ar))® L(w(we, ap, Gr) < Z (f{ (we, ae) = fu(@e, ar)) - & - LVw(@p, ap,Ge) < 7) <
=1 Pt

2 (7 (@erae) — Fulwe,00)® Lt 0, Ge) < 7) + (2min(rB, B) + 85%) log(|F|/3)

N)\»—A

rearranging terms we conclude that when B n &; is satisfied,

t—1

(f{ (xg,a0) — fo(ze, ag))2 1(w(xg, ap,Ge) < 7) < (4min(7B, B?) + 165%) log(\]—'|/5)
1

y4

with probability at least P(B ~ &) = P(&;) — 0. This finalizes the result.

Proposition D.1 (Intersection Result). Let A, B, C be three sets such that,
P(AnB)>=P(A) -6, PAnNC)=PA) —d

thenP(An B C) =P(A) — 61 — 0o
Proof. Notice that P(A n B) > P(A) — 4, is equivalent to P(A\B) < 6;. Similarly P(A n C) >
P(A) — 45 is equivalent to P(A\C) < d5. Therefore,

P(A\[B n C]) < P(A\B) + P(A\C) < ;1 + 2.
Finally, this is equivalent to the statement P(A n B n C) = P(A) — §; — 0.

O

Lemma 3.2. The confidence intervals are valid so that f. € G; for all t € N and optimism holds,
maxXge A [+ (2, a) < Ug(xy, ar) with probability at least 1 — § for all t € N.

Proof. Applying the results of Proposmon setting 5=
and & = o we conclude that when &; holds,

T)ztz’ T=T; fori € {1, T, |—10g(t)-|}

t—1
fre {f € F: ), (fT (we,a0) = flwe, a0)® Uw(ze, ar, Ge) < 73) < By (Ti, .5)2]52,02)}
=1

with probability at least P(E;) — Recall that

z+1)2t2

- )
Gi(mi) = feF: fi @, a0) — f(@e, ae 21wx‘,a‘,g <) < B 7'1';.722702 }ﬁgt—l Ti
=) {e ;((6/) (or.00))* Lo a0, ) < 7)< i (7 g e o° ) fGiea ()

Thus, we conclude that f, € G;(7;) with probability at least P(£;) — W. Propositionand
a union bound over all ¢ € {0} U [¢g:] we conclude that f, € G; for all ¢ € N with probability at
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least P(&;)

- Qi And therefore P(&;41) = P(&;) — t2. Finally, since P(£1) = 1 we conclude that

Optimism is an immediate Consequence of the previous result. When f, € G, it follows that
fe(ze,a) < maxyeg, aea f(ze,a") = U2y, at) for any a € A. And therefore maxqe 4 fy(2¢,a) <
Ut (th, a't)

O
Theorem 3.5. If§ € (0, 1) is the input to Algorithm|[]satisfies,

Regret(T) < O (a\/deluder(]-', B/T)1og(T|F|/8)T + B - deruaer(F, B/T) log(T) log(T | F| /5)) .

for all T € N with probability at least 1 — 6.

Proof. The analysis of the regret of Algorithm [T]follows the typical analysis for optimistic algorithms.
When £ holds,

i

Regret(T) <

—

Mvﬂ

w(xta [ gt)
t

do (0V/detwaer(F. B/T) 0g(TIF|/O)T + B - detwaer(F, B/T) log(T) log(T| /)

Il
—

—

Where inequality () is a consequence of conditioning on £ and Lemma where optimism holds
and follows the same logic as in the proof of Theorem [B.4] The last inequality (i¢) follows from
Lemma[3.4] We finish the proof by noting that P(€) > 1 — 4. O

E PROOFS OF SECTION 4]

In this section we list the proofs of Section[d] These are split in two subsections. In Section [E.T| we
present the proofs of Section[d.1] In Section [E.3|we present the proofs of Section[d.3]

E.1 PROOFS OF SECTION[.T]

Lemma4.1. Leté € (0,1), t € N, {z, ar}iZ1 be a sequence of context-action pairs and and {r;}i_;
be a sequence of values satisfying ro = fi(xp,a¢) + & where f. € F and the & are conditionally
zero mean. Let {bg}f;:be a filtering process of Bernoulli random variables by € {0, 1} such that by is
Y(x1,a1,b1,7m1, ¢, Tog—1,G0—1,bp—1,70—1, T¢, arg)-measurable. Let f:)t = argmin. Z;;i be
(f(xp,a0) — 7‘5)2 be the “filtered” least squares estimator. If Assumptionholds then,

fo’ be- (fu(we,a0) = P (we,ar) )| < 6B 10g(21F/5).

and

2 .
Z be- (1P (ze,a0) = folwesar)) < 8B%10g(21F]/3)
with probability at least 1 — 6.

Proof. Substituting yy = f+(x¢, ag) + & into the definition of f; we obtain the following inequalities,

Ebe (P! (e, ar) Z (fu(@e, ap) Zbe &

substituting again the definition of y, on the left hand side of the inequality above and rearranging
terms yields,

t—1
S b - (P (e ag) — fulae, ar) 22& be- (fulwea0) = [ (@ a)) (D)
(=1
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We now focus on bounding the RHS of equation For any f € F let Z,f =& b
(f+(xg,a0) — f(xp,a0)). The sequence Z; forms a martingale difference sequence such that

2
E, [(Zg) ] = 07 by (f(ze,a0) — fu(we,a0))* and Assumptionimplies |z]| < B? for
all e N.

We can use a two sided version of Freedman inequality (see for example Lemma[A-T]in Appendix [A)
to bound this term and show that with probability at least 1 — ¢”,

log(2/4")
1

t—1
Diebe- (f(zea0) = fulwe, ar))
=1

( of by xe,az)—f*(xe,az))2>+

() 1
< 7 2 b (f(ae.ae) = fular,ar))” + 4B log(2/0).
=1
Where mequahty (7) follows from setting ) = 2 and noting that o, < B? for all /. Finally, setting
0 = ﬁ and considering a union bound over all f € F we conclude that,

“bg - (f* (T, a0) — ftbt(vaaf))

t—1
< 3 Db (£ (arar) — Falwear)) 4B log(21F1/9).
{=1

Plugging this inequality into equation [[3]and rearranging terms yields, 4
Z be - < t(xg,ap) — f*(l‘g,ag))2 < 8B%log(2|F|/). (19)
Moreover, combinmg equations [T8]and [T9}
“by - (f* zo,a0) — fP (24, a4)> < 6B%log(2|F|/d).
O

Lemma 4.2. Let b € (0,1) be a probability parameter. If Assumption|2.2|holds,

2 . -
3 WPt — 11B%log(4|F|/8) < WPt < 2WP* + 48 B log(4|F|/d)
with probability at least 1 — & where Wtbt = Z: by - O'g.

Proof. This result follows the same template of the proof of Lemma [B.T| which we reproduce here.
Substituting 7, = fi(x¢, ag) + & in the definition of Wtbt R

t—1
WP =" be - (fulwe,an) + & — fP (w0, 1))’
=1
t—1 t—1 t—1
= be - (fulme ae) — P (e, a0))* +2 D e - & (Fulwe,ae) — [P (zea0) + D e &
=1 =1 =1
Applying Lemma&.T|we conclude that,
WPt —12B%log(4]F|/d) < Z by - €2 < WPt + 20B2 log(4|F|/9). (20)
with probability at least 1 — ) /2. Using Propositionsetting B =1/2and B=B?and Z; = b, €2,

t 1

t_
D be - o} — 4B log(2/6) < Z be- €2 < 2 b - o7 + 4B%log(2/d) 1)
/=1

DO =
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with probability at least 1 — ) /2. Combining equationsandwith a union bound we conclude,
- Wtbf 8B2 log(4|F| /5)—7 -B%log(2/4) < Z be-o? < 2WPt+40B% log(4]F|/8)+8B%log(2/0)
with probability at least 1 — 4. Thus,

g WPt —11B2log(4|F|/é) < Z be - 0?2 < 2WPt + 48B%log(4]F|/5)

with probability at least 1 — 5.
O

Corollary 4.3. Let ¢’ € (0,1), {x¢, ag,7¢})2, be a sequence of context-action and rewards triplets
such that vy = fi(x¢,ap) + & where f, € F and the & are conditionally zero mean. Let {bg}fv,:be
a filtering process of Bernoulli random variables by € {0,1} such that be is X(x1, a1, by, rl, e

Xp_1,a0—1,bo—1,70—1, %, ag)-measurable and ft = argmlnfef Zz 100 (f(xe,a0) — ’I"g) be the
“filtered” least squares estimator. IfAssumptlon@holds there exists a universal constant C' > 0 such
that the cumulative variance estimator W = 3", _1 Ybp - (re — fPt (w0, ar))? satisfies,

2

3 WPt — C - B%log(t|F|/6") < WPt < 2WPt + C - B%log(t|.F|/d")

with probability at least 1 — &' for all t € N.

Proof. Applying Lemmam with § = 257/2 and applying a union bound over all ¢t € N yields the
inequality,

- WPt — 11B2 log(8t2|F|/6') < WPt < 2WPt + 48B? log(8t%|F|/0)

Wl o

finally, 48 log(8t2|F|/8") = © (t|.F|/d’) yields the desired result. O

—~

E.2 PROOFS OF SECTION [£.2]

Theorem 4.6. Let 6 € (0,1). If /2 is the input to Algorlthmand G2 estimators are computed by
setting 0' = 0/2. If oy = o for all t € N the regret ofAlgorlthmI with modified confidence set sizes
satisfies,

Regret(T) < O (a\/deluder(]-', B/T)1og(T|F|/8)T + Bdewaer(F, B/T) log?(T) log(T| F| /5)) .

for all T' € N with probability at least 1 — 6.

Proof. The analysis of the regret of Algorithm |I|follows the typical analysis for optimistic algorithms.
When & holds optimism implies,

T
Regret Z $t7 Qt, gt

In order to bound the right hand side of the inequality above, we split it in [log(T")] epochs 7; such
that 7, = 2771 + 1, ,min(27,T)].

T [log(T)]
Z xt>atagt Z Z xtyatygt
t=1 j=1 teT;
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We proceed to bound the sums Zteﬂ w(wy, ag, Gy) for all epochs T;. When & holds, and ¢ € T; for
some j € [log(T)], it follows that if f, ' € G then for each threshold level i € {0} U [q/],

(f(xe,ae) = f'(xe, ae))2 L(w(ze, ae, Ge) < Z (ze,a0) — f'(z, ae))2 L(w(we, ae, Ge) < 71)

LeTjn[t—1] =1

0 52
< 1:7 »77
o <T 2(i + 1)2 )
J ~2
< B (Tz‘v W70min(73)>
= (4min(; B, B?) + 1657%,,,, (7)) log(¢| F1/3)
B2 log(t|F|/9) - 1og<t|f|/5>>

@ (min(n—B, B?) + 0% + .

where the last inequality follows from noting that equation implies aninm)
2 B2log(t|F|/6) '
O (o + Elestz)
Thus the same argument as in the proof of Lemmaimplies that when & holds, for 7 > Tmax(T;)s

(demder(f, " (Blog(Tfl/é) | o*log(T|F|/6)  Blog™(T|F|/5) 1)) |

T T2 72 max(7;)

3 Lw(@r,ae,Ge) > 7) < O
teT;

in particular, for each ¢t € T,

- Blog(T|F|/6) o*log(T|F|/s) — B>log*(T|F|/s)
e_mg(rj) 1(W($@, aéagf) > T) < @ <deluder(]:; T) ( i + 2 + T2(t — Inin(ﬂ) T 1)>>
(22)

For the remainder of the argument we will mimic the proof of Lemma[3.4] We’ll use the notation
d = dejuder (F, 2 7) and wy = w(x¢, ar, G ). We will first order the sequence {w;}1_, in descending
order, as w;,, - -+ , W;,. We have,

max(T;) max(7;) max(7;) B maxT) B
Z wy = Z wi, = Z w;, 1(w;, > T> + Z w;, 1(w;, < f)
t=min(7;) t=min(7;) $=min(75) t=min(T;)
max(7;)
B|T; & B
< |ZZZ| + Z wi, L(w;, > ?)
t=min(7;)

Applying inequality setting 7 = w;, > % we have that,

t
t —min(7;) + Z 1(w(ze, ae, Ge) > wi,)
€=min(7’j)
Blog(T|F|/6) o%log(T|F|/5) B2log*(T|F|/8) ))
< O | dejuger(F, T + + -
( tuder (77, 7) ( Wi, w? w?t —min(7;) + 1)

Therefore,

E

o B
2'27 \V4 eluder(f B/T)Wz,

B
Wi
B 2
wi, | W,

t—min(7;)+1<0 (deluder(]:, B/T)log(T|F|/9) - max (
o <

deluder(f» B/T) log(T‘de) - max
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Thus, for all ¢ € 7; it follows that,

w;i, <O <deluder(]:7 B/T) log(T‘]—'Vd) . U\/deluder(f, B/T) 10g(T.F|/5)>

t —min(7;) +1

mm( i)+

Finally, we can use this formula to sum over all ¢ € 7; for any given j,

33 1 < O ( Bl 7, B/T) g T 08(TIF1/5) + 03 dataar (5. BTV (T F /5T )
teT;

finally, summing over all j € [log(7")] we conclude,

T [log(T)]
Mwr<O| Y. Bdewde:(F, B/T)log(|T;]) log(T|F|/5) + a\/deluder F,B/T)log(T|F|/8)|T;]
t=1 j=1

< O (Bdawaer (F, B/T)10g*(T) 1og(T\F|/6) + 0/ deaer (F, B/T) loa(TIFI/5)T)

E.3 PROOFS OF SECTION [£.3]

Proposition 4.7. Let 6 € (0,1) and 7 > 0. Let {gé 721 be a sequence of events such that E 8.
and £ < E[. Let ft(T’zT] be result of solving the uncertainty-filtered least-squares objective from equa-
tion|6| Additionally let Wtb‘ be the filtered estimator of the cumulative variances defined by equation

when setting b] = 1 (w(z¢,ae, G)) € (1,27]) and Wtb: =S 1% -1 (w(ze, ae, G)) € (1,27]).
There exist universal constants C, C' > 0 such that the events Wy(7) defined for any t as

2 ( i 27— mé,aé) *f*(mg,ag))21(W(mg,ag,g€) € (T7 27—])

’r\/Wtth log <t|.7:|/5) + C'TBlog (ﬂf‘/g)

and

C'1y /Wtbtr log (t|}'|/5) + C'TBlog (t|}'|/5) <Oy /Wtbtf log (t|}'|/5> +C"'rB log (t|}'|/5)

satisfy the bound ]P’(g'{ A W) < 52

2t2°

Proof. Given f € F we consider a martingale difference sequence Z zf for / € N defined as,
Z] = (f(we,a0) = fulwe, a0)) - Ww(@e, a0, G)) € (7,27]) - 1(f € G)) - &
First let’s see that
|Z]| < min(27B, B?) VleN.

To see this we recognize two cases, first when f ¢ gé in which case Z] = 0. When f e g[, we

also recognize two cases. When 1(w(x¢, ar, G)) € (7,27]) = 0 the random variable Z; / — 0. When
f e G, andw(xy, ag,G)) < 27, it follows that | f (¢, ar) — f«(x¢, ar)| < 27. Finally since |&| < B

we conclude | Z{ | < min(27B, B?).
The conditional variance of the martingale difference sequence {Z g }¢ is upper bounded as
Vare(Z{) = Bo[(2])°]
= a-l?(f(xfa (Zg) - f*(xfa af))z : 1(&}("[g, Gy, gé) € (Tv 27—]) : 1(f € gé)

(2 472021 (w(2y, ap, Gy) € (1,27]) - 1(f € G))
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where inequality (7) holds because (f(ze, ar) — fo(@e,a0))? - L(w(we,ae,G)) € (1,27]) - 1(f €
ge) RS 47’ . Let 6t 4t2
{Z g }. We conclude that,

We now invoke Lemma|A.4] applied to the martingale difference sequence

t'—1

12|F| In 2¢ 12|F|1In 2¢'
>zl < Z 02 - 1(w(xe,ar,G)) € [1,27)) - 1(f € G)) 22y, 12 2
=1 t
(23)
with probability at least 1 — “;“ for all # € N. A union bound implies the same inequality holds

for t' = ¢ and for all f € J simultaneously with probability at least 1 — gt. Let’s call this event
B; so that P (B;) = 1 — §. We have just shown that P(B;) > 1 — §;. In particular when B; holds,

inequalityis also satisfied fort' = t and f = ft(T’QT]. When &/ holds we have f, (r27] ¢ G;_, then
1(f* e gy) =1 for al£ < t — 1 and therefore,

t—1 ffFT’ZT] t—1 r2r] .
3207 = Y (0 w00 — fuwean) & Lo an G € (r2r]). @4
{=1 =1

We proceed by subtituting the definition of ry = f,(x¢, as) + & in equationand noting that when

gt’ holds f, € G;_, so that ft(T’QT], the minimizer of the uncertainty-filtered empirical least squares
loss satisfies,

t—1 9
>, (ft(T,QT](xeaaé) — fel@e, ar) —§e> L(w(ze, ar, Gp) € (7,27]) Zfzg w(we, ar,Gy) € (7,27])
=1
expanding the left hand side of the inequality above and rearranging terms yields,

< (r, 27' 2 /

2 (£7* @e a) = fulwear)) Lew(ae,ar, G)) € (7,27))

2 ( TQT 931),@12) - f*(l“e,ae)) <& L(w(we, ae,Gp) € (1,27]) (25)

To bound the right hand side of the inequality above we plug inequality [23| (setting ¢’ = t) into
equationto conclude that when B; n &; holds,

2 ( (2] xz,az) - f*(xe,ae))Q 1(w(we, ae, Go) € (1,27]) < 2 Z ( T2 (24, ag) — f*(wé:af)> & Lw(we, ar, G) € (7,27])

12|F|In 2t
167'$ Z 0?1 (w(we,ae, Gy) € (1,27]) - In %-&-
¢
12| In 2t

t

247 Bl1n

We will call Corollary setting 0’ = &, and the filtering indicator variables equal to b; =
1 (w(ze, ar, Gy) € (7,27]). Let’s call C; denote the event that

t'—1

2 T / 7 7 / N
§~Wt]f’t —C-B2log(t'|F|/6;) < Wit = Z 021 (w(xs, ar, G)) € (7,27]) < 2W,¥ +C-B2log(t'| F|/8:)
(26)

SThis is where the definition of G: as an intersection of all confidence sets becomes important. The intersection
ensures that for any 7 the minimizer of the filtered least squares is achieved at an f; for which the inidicator
1(f € Ge) =listrueforall £ <t — 1.
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for all ¢ € N (and in particular true for ¢ = t) so that P (C;) > 1 — &,. We conclude that for any
te Nwhen B; nC; n &,

12| 7| In 2t
~7+

t

i (fT (e, a) — fu(ze, ar))’ Vw(zy, ap, G)) € (1,27]) < 167\/<2Wth +C-B? log(t|]:|/5)) -In

12| 7| In 2t

t

-0 (T\/sz log (t|f|/5) +7Blog (t|f|/5t)>

—C'r \/ b7 log (tm/a) +C'rBlog (t|]-"|/5t)

247 B In

for some universal constant C’ > 0 (1ndependent of ¢). Similarly, as a consequence of the LHS of
equatlon , for all ¢ when B; n Cy N 8 holds,

C’T\/ WP log (t|]-"| /S) +C'rBlog (t|]-"| /5) < C”T\/ WP log (tm /5) +C"rBlog <t|]-'| /5)

for some universal constant C” > 0 (mdependent of t). We finalize the result by noting that
By nCi N 5t S Wi(7) n E’ and that P(B; n C; n &l 1) = (5’) — 2(5t (St) 2t2 and therefore

(r
that POV,(1) 0 &) = P(B; 0 C; 1 &}) = P(E]) — 20, = P(E]) — 5. Finally, this implies

S \\/

P(E] N (Wi(7))°) < 342 0
Lemma 4.8. Let § € (0,1). When the confidence sets G, < F are defined as in Algorithm then
f« € G} so that maxae A fu(xt,a) < Up(xs, ar) (optimism holds), and for all i € [q:],

t—1 o 9
Gi(m) < {f e Fs.t. Z ( t(T“ ﬂ](xg,ag) - f(xg,ag)) L(w(ze, ap,Ge) € (14,27]) <

=1

C”Ti\/Wtb:i log (2(i + 1)2t|F|/8) + C" 7;Blog (2i%t|F|/6) }
(N

with probability at least 1 — 0 for all t € N. Where C" > 0 is the same universal constant as in
Proposition

Proof. Applying Propositionwith S E, T = TZ and 6 = 2 we conclude that for any 7 € [g;],

the event W;(7;) satisfies P(W(73)) N &) < ;57> A union bound over all i € [g;], we conclude
that events {W;(7;) }ic[q,] satisfy,

P ((NiegqWe()) 0 &) < DT P(Welm))° n &) <

i€[qe]

22 27

Notice that when W (7;) n &/ holds, f, € G;(;) for i € [g;]. And therefore when (epq,)We(Ti)) N
&/ holds, f, € Gj. Thus, (Me[gqaWi(7)) N EF < E1,1.

Define a sequence of events V; as Vy = (2 (the whole sample space such that P(V) = 1), V; =
Nh_1 (MiefgWe(:)). Notice that by definition V; 2V, 2

Notice that f, € Gj = F so that P (£]) = 1. This combined with (Ne[q) Wi (7)) N & < &4y
implies N}_, (ﬁie[qt]WZ(Ti)) c &y sothat Vy < &, forall t.

Applying Propositionwith E =V, 7= andS =5 -9; we conclude that for any i € [q;], the
event W (7;) satisfies P(W,(7:))" n Vy—1) < " 2t2 A union bound over all i € [¢;], we conclude
that events {W;(7;) }ic[q,] satisfy,
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P ((PiefgqWe(m:)) 0 Vi) < D) P(Wi(1:)° A Vi) < 57 (28)
i€[qe]
Since V] = [(ﬁie[qt]wt(ﬁ)) ) Vt_l] v [(mie[qt]Wt(Ti))c ) Vt_l] we conclude that
c 0
P(V,) =P ((ﬁie[Qt]Wt(Ti)) n thl) =P(V4-1)-P ((mie[qt]Wt(Ti)) N Vt—l) = P(thl)_ﬁ'
(29)

Since P(V,) = 1, unrolling inequalityimplies that for any m € N,

m

P(Vm) = P(mm/<m m/ Z
Thus, taking the limit we conclude that N,V holds with probability at least
lim,_op (1 -3, %) >1-6.

Since NP & 2 N2, Vs, we also conclude that n$2 ; &/ holds with probability at least 1 — § (when
N2 1V, holds).

Thus we conclude that for all i € [g;],

C'Ti\/Wthi log (2i2t|F|/8) + C'r;Blog (2i*t|F|/5)

< C”Ti\/Wtb:i log (22t|F|/8) + C" ;B log (26°t].F1/9) - @0

and f, € G, is satisfied for all ¢ € N simultaneously with probability at least 1 — §. Optimism
holds because when f, € Gy, fi(7¢,a) < maxseg; f(x1,a) < Up(2, ar) for all a € A and therefore
maXge A f+(x¢,a) < Up(xy, a). Moreover when mequahtymls satisfied,

Gi(m) = {f e Fs.t 2 ( [ri.2m:) (e, ar) — f(.%‘e,ag))2 L(w(xe, ap,Ge) € (14,275]) <

c’m/ WP log (2i2t|F|/8) + C'r;Blog (2d%t|F|/6) }

c {f € F s.t. 2 ( (T“QT’ (z¢,ap) — f($g7ag))2 L(w(ze, ap,Ge) € (14,27]) <

c”m/ WP log (2i2t|F|/6) + €7 Blog (2it| F/5) }
This finalizes the proof. O

Theorem 4.10. LetT €N, ¢ € (0,1) and g = log(T). The regret ofAlgorithmsatisﬁes,
Regret(T)

< O (deluder (]:7 ?) $ <Z Ut2> IOg(T) lOg (T|]:|/6) + Bdeluder (]:7 ?) log(T) IOg(T]:/(s))

t=1

simultaneously for all T € N with probability at least 1 — 6.

Proof. Let’s condition on £’. When this event holds, optimism ensures the pseudo-regret can be
upper bounded by the sum of the widths,

T
Regret(T Z w(xy, ar, Gp)-
t=1
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This is the same argument as in the proof of Theorem 3.5}

Recall that 7; =
Bforallt e N,

21 . In order to bound the RHS of this inequality, we use the fact that w(x¢, as, F) <

T
Etns 2(2<<D>
t=1 =1 \t=1
q T
+ 3] (Z 1 (w(xy, a¢,Gy) € (73, 271]) -271»)
i=1 \t=1
q T
Z <2 1 (w(zy, a¢,Gy) € (Ti,2’7'i]>>
=1 t=1

Lemmaimplies that when &£’ holds,

d T-B d
Z w(xy, ar,Gp) < -+ 2 Z T - (Z 1 (w(w,a0,Gy) € (Ti,QTi])>

=1
Ba s (CtelBr) o g i i)+

Ti

C -B- deluder(fy Ti)

Ti

IOg ((Z + 1)T|]:|/(S) + é . deluder(]:a Tz))

2 (detuaer(F, VR log (i + 1)TIF|/0) +

B - detuder (F, 73) log (i + 1)T|F|/5) + Tidetuder (F, Ti))

T-B _~ B L e
< 55+ 20w (7.5 ) [ W s (a4 071+

Blog ((q + DT|F/s) + n—] 31)

Notice that,

Z \/Wj‘?;" log (¢ + 1)T|F|/8) = A/log ((q + 1)T|F|/3) (Z \/W. >

1=

—

< Valog (g + VTTFI/5)

N

T
(Z 0?) qlog ((¢ + 1)T|F|/9) (32)

t=1

where inequality (i) holds because >/ \/27 \q X zifor z1,- -+, z4 = 0. Plugging inequal-
ity [32)into [31]and using the fact that ¢ = log(T") we conclude that
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T T
> wlon,aG7) < B + 20w (7.7 (§}ﬁ>kgawmg«bafv+lﬂwf/®+
t=1 t=1

~ B ~ B
2C Bdgluder (]-"7 T> log(T) log((log(T') + 1)T|F|/d) + 2C Bdeluder (]-"7 T>

T
=0 deluder <~7:7 ?) <2 O’%) IOg(T) log (T|}—|/§) + Bdeluder (fa g) IOg(T) 10g(T|}—‘/(5)
t=1

Using the fact that P(’) = 1 — § finalizes the proof.

F ELUDER LEMMAS

In this section we have compiled all Lemmas that deal with eluder dimension arguments.

Lemma 4.9. [f {G;}? , is the sequence of confidence sets produced by Algorithm there exists a
universal constant C > 0 such that when &' is satisfied,

T
Z 1(w(xt7at7g;) € (Ti72Ti]) <

t=1

C- de}ude_r(]:’ T—L)\/W;TL log (zT‘f|/5) " C-B- delu'der(f7 Ti)

Ti Ti

log (iT|F|/8) + C - deuaer (F, 7i)

forallT e Nandi € [qr].

Proof. For simplicity we’ll use the notation d = dejuder (F, 75) -

Define Igi’zﬂ] = {{ < T s.t w(xeae,Ge) € (14,27;]}. And in order to refer to each of its compo-
nent indices let’s write Ig"’%i] = {(17 . ,K‘I(TWQW]l} with 0] < ly--- < f\z(;i‘z”]\'
Let N € Nu {0}. We’ll start by showing that if \I(TT“QT“] | > d(N + 1) then there exists an index m €
[\I(TTi’ZTi]|] and a pair of functions é:}, [(i) € Gy, such that fe(,i) (w0, ,a0,,) — é(i) (g, a0, ) €

(7:,27;] and N + 1 non-empty disjoint subsets §1, e ,§N+1 < {¢;}<m—1 such that,

2
172 = 2213 = 3 (#2(@ea0) = £2 (0 ar)) > 72,

éegj
To prove this result, let’s start building the sequence §1, ceey S ~n+1 by setting §j = /{;forall j =
1,--- ,N+1. Let’slookatm = N+2,--- |I¥"’2”] |. Consider a pair of functions fe(jl), L’(i) € G,
such that £ (2, am) — £ (20, a0,) > 75 | fH) — fe(z)HQg >72forallj=1,--- ,N+1
m m m m 13,

25 < 72. Thus, we can
v J

the result follows. Otherwise there exists at least one j such that | fz(,ln) - @(2)

add /,, to .§j.

Finally, by construction, the §j sets satisfy the definition of eluder 7;-independence and therefore
they must satisfy |.S;| < d for all j.

This means the process of expanding the sets { gj } §V= *11 must ‘fail” at most after all §j have d elements.
Thus |I(Tn72”]

> d(N + 1) guarantees this will occur.
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As we have shown, if \I;T“Q”]\ > d(N + 1), there exists an index m € [|I(T7i’2Ti] |], disjoint subsets

S+, 841 € {4} j<m—1 and fz(l), ®) ¢ G, such that,
N+ < 30U - A 25 1 - £ fe ot (33)
JE[N+1]

On the other hand, since f, (1) f@(i) €G, <G, (7i), we have that if £’ holds Lemmaimplies,

em—l

?ej};';ll =2 (fz[:f’z (we,a0) - f(j)(xe,ae)) L(w(ze, ae, Gp) € [7i,27:))

(Ti,z‘f'i]

<c%¢w%bmwafwuc%3m@ﬂﬂﬂ@

< C TZ\/W ™ log (2i2T|F|/) + C" 7, Blog (2i°T|F|/9)

for j € {1,2}. Where inequality (i) holds because ¢,,, < T and because V_thtl is monotonic w.r.t.

t for all + € {0} U [¢] (recall Wtb:'i = E iae 1 (w(ze, ap, Gy) € [73,27;))). Therefore when &’
holds,

1 2 1 (2
1962 = Ny 2D = £y + 200 = SR s

4. (C"n\/ WL log (2i2T|F|/8) + C' ;B log (2:T|F| /5)) (34)

For simplicity within the context of this proof let’s use the notation

Br(7i, 8) := c”m/ Wt log (22T|F|/8) + C'7;Blog (2i°T|F|/5) .
Thus combining inequalities and [34 we conclude that if N > max (@ -1, 0) then

2N +1) > 4837 (7:,6) and therefore we would incur in a contradiction because

4Br(ri.6) < (N + D7 < £y = £213, s < 4Br(7:.0).

This implies

<d (max (W,O) + 1)
<d <4ﬂT(72'i75) n 1>
T

 4dC”

(7'7; ,27’1]
127

7"

4dC" B

IR log (22T F1/5) + log (20°T|F|/8) + d

- o (s P i g i) +

Ti

M log (iT|F1/8) + detuder (F, n))

Since we have shown this result for an arbitrary 7" € N and to prove the result we have only used that
T e N the result follows.

O

Lemma 3.3. IfAlgonthmIls run with input variance upper bound o > 0, £ is satisfied and {G;}?°
is the sequence of confidence sets produced by Algorlthmmthen forallTeNand T > 74, ,

64B10g(T|F|/0) | 640> log(T|FI/3) | 1)
2

T T

Z xtvatagt > T) 3 deluder(]:7 T) (

t=1
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Proof. For simplicity we’ll use the notation d = dejyder (F, 7). We'll start by showing the following
bound,

T

Z L(w(ze, ae,Ge) € (1,27]) < d (

64CB log(T|]-'|/5) 64Co? log(T|F|/d) 1)
T 72

Define I(T’QT {¢ < T st w(xg,ae,Ge) € (1,27]}. And in order to refer to each of its component

indices let’s write I(T - {61, e (2 } with ¥y <l <, (r201,.
[Zy 7" 1Zy 7"

Let N € N u {0}. We’ll start by showing that if |I:(FT’27]| > d(N + 1) then there exists an index i €
[\Ij(f’%”] and a pair of functions fe(il), é(?) € Gy, such that fe(il)(xgi, ap,) — é?)(iﬂg“agi) € (1,27]

and N + 1 non-empty disjoint subsets §17 e 7§N+1 < {¢;}<i—1 such that,
(1) _ @2 ._ (() 2) )2 2
I.fe, 5, Z (xe,ae) = fo; (we,a0)) > 77
éESj
To prove this result, let’s start building the sequence §1, ceey S ~N+1 by setting § i =/{;forall j =
,N +1.Letslookatm = N +2,---, |I(T’27]| Consider a pair of functions f(l) fﬁ(i) €

ff(i) 25 >72forallj=1,---,N+1

the result follows. Otherwise there exists at least one j such that | fé fé(Q) H2 72. Thus, we can

add 4, to §j.

such that fg(yln)(x,,mam) fz ( sap, ) > T If H z

m

m

Finally, by construction, the §j sets satisfy the definition of eluder 7-independence and therefore they
must satisfy |S;| < d for all j.

This means the process of expanding the sets { S i} ;V: +11 must “fail’ at most after all S '; have d elements.
Thus when \I}T’2T]| > d(N + 1) guarantees this will occur. Let 7 = argmin{j s.t. Tj = 27} be the
smallest index in the input thresholds for Algorithm |I| such that 7; > 27. Notice that 47 > ;.

As we have shown, if \I;T’QT” > d(N + 1), there exists an index i € [|I¥’27 |] and f(l) 4(7-2) € Gy,
such that, '

(N4 < 30D = 11 <D = £ e gy (35)
JE[N+1]
On the other hand, since f,, ) fe(?) € Go, < Gy, (7;), we have that
Iq(ﬁ) = {6 < T st w(zg,ap,Ge) < T;}
satisfies 7727 < Igg) and therefore,
1767 = 1 Vo iy <V = £ - (36)
Proposition [3.1]implies
e I i I A .
< 4B, (13,0)
< 4Pr(7,0)
=4 (4min(r; B, B?) + 160°) log(T|F|/5)
< 4-(47B + 1602) log(T|F|/d)
<64 (7B + o%)log(T|F|/9)
when & holds.
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Thus combining inequalities and ﬁ we conclude that if N > max (w -1, ()) then
72(N + 1) = 4B7(7;, 6) and therefore we would incur in a contradiction because

4Br(r;,8) < (N + )% < | £P - 2>|\2(Tﬁ ey <481 (T0).
j=1

4 )
|I¥’2T]\ <d (max (%”,O) + 1)

ca(2D )

T

2
<d (64Blog(T|}'|/6) N 640 log(2T|]-'|/5) N 1)

This implies

(37)
T T

Recall that 7; = 7 - 277. Observe that I, (rimol < Iy (r2r] 4 ZZH (i-7-1] We will apply the result

in equatlon to each of these quantities and focus on bounding ZHI ;Tj il Equation [37|along
with the 1nequa11ty deluder(}' 7;) < d = deluder(F,7) for all j < i+l implies we can focus on

controlling Z H 1 and ZZH L. We proceed to bound these terms.

i+l 12“, 9 . 9

= 2
Llyw-23w-2eno
=17 T4 0 15 To U
similarly
it+1 i+l P 2(74-1 ~
izzi? 22j=i2222j=i2. 204 -1 <i2.22(i+1)< 22
o To o o = 75 3 375 T

we have A2 < Zand 2 < 2.
Ti+1 T i+l

Finally, since 7 < 7 1-

Combining these results we conclude that,

2
3.4 (64B log(T|F|/9) N 640 log(T|F|/9) N 1)

‘1'7(17'77'0] <

T T2

the result follows
O

Lemma 3.4. If £ holds, then for all T € N the uncertainty widths of context-action pairs from
Algorithm (] satisfy,

> w(wr,a,G) < O (03 detuder (F, B/T)10g(TIFI/8)T + Bdetaer (F, B/T) log(T) log(T|F/3)) .

t=1

Proof. For simplicity we’ll use the notation d = deuder (F, £) and wy = w (24, ar, Gr). We will first
order the sequence {w;}7_, in descending order, as w;, , - - - , w;,.. We have,

T T T B T B T B
Zwt = zwit = Z wi, L(w;, > =) + Zwitl(wit <=)<B+ Ewitl(wit > =)
t=1 t=1 = T t=1 T
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Applying Lemmaby setting 7 = w;, > % we have that,

T
t < Z L(w(ze, ae, Ge) > wy,)
=1

4C'Blog(T 1002 log(T
<3-deluder(]-',wit)<6 c Cf( |FI/8) , 64Co Zg2( \F1/5) +1>

2

2
< 3 depuaer(F, B/T) (64031°g(T|f|/5) | 64C0* log(T|F|/9) +1)

Wi, w,

© ACBlog(T ACo2 log(T
<6-deluder(f,B/T)<6 CBlog(T|F|/5) , 64Co OgQ( fl/é))

Wiy wi,

where the removal of the +1 term in step (¢) follows because w;, > B/T. Therefore,

72
1t

B 2
t < 768C - depuger(F, B/T)log(T|F|/6) - max < G) .

This inequality can be used to produce a bound for w;, when w;, > B/T,

B * Ueluder ,B T)1 T
0 ST a7, BT o175 2 1 0 \/7680 evier 7, B/T) o515

Since Zthl 1 < 2log(T) + 1 and ﬁ < 2+/T we have that

a B
Zwitl(wit > 7) <
t=1 T

1536C Bdepuder (F, B/T) log(T) log(T|F|/8) + 04/1536C - deruder (F, B/T) log(T|F|/6)T

O
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