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ABSTRACT

Many works have developed no-regret algorithms for contextual bandits with
function approximation, where the mean rewards over context-action pairs be-
long to a function class F . Although there are many approaches to this prob-
lem, algorithms based on the principle of optimism, such as optimistic least
squares have gained in importance. The regret of optimistic least squares
scales as rO

´

a

deluderpFq logpFqT
¯

where deluderpFq is a statistical measure
of the complexity of the function class F known as eluder dimension. Un-
fortunately, even if the variance of the measurement noise of the rewards at
time t equals σ2

t and these are close to zero, the optimistic least squares al-
gorithm’s regret scales with

?
T . In this work we are the first to develop

algorithms that satisfy regret bounds for contextual bandits with function ap-
proximation of the form rO

´

σ
a

logpFqdeluderpFqT ` deluderpFq ¨ logp|F |q

¯

when the variances are unknown and satisfy σ2
t “ σ for all t and

rO
ˆ

deluderpFq

b

logpFq
řT

t“1 σ
2
t ` deluderpFq ¨ logp|F |q

˙

when the variances

change at every time-step. These bounds generalize existing techniques for deriving
second order bounds in contextual linear problems.

1 INTRODUCTION

Modern decision-making algorithms have achieved impressive success in many important problem
domains, including robotics Kober et al. (2013); Lillicrap et al. (2015), games Mnih et al. (2015);
Silver et al. (2016), dialogue systems Li et al. (2016), and online personalization Agarwal et al.
(2016); Tewari & Murphy (2017). Problems in these domains are characterized by the interactive
nature of the data collection process. For example, to train a robotic agent to perform a desired
behavior in an unseen environment, the agent is required to interact with the environment in a way
that empowers it to learn about the world, while at the same time learning how to best achieve its
objectives. Many models of sequential interaction have been proposed in the literature to capture
scenarios such as this. Perhaps the most basic one is the multi-armed bandit model Thompson (1933);
Lai & Robbins (1985); Auer et al. (2002a); Lattimore & Szepesvári (2020), where it is assumed a
learner has access to K P N arms (actions), such that when playing any of these results in a random
reward. Typically, the learner’s objective is to select actions, and observe rewards in order to learn
which arm produces the highest mean reward value. Algorithms for the multi-armed bandit model
can be used to solve problems such as selecting a treatment that in expectation over the population
achieves the best expected success.

Deploying an algorithm designed for the multi-armed bandit setting may be suboptimal for applica-
tions where personalized policies are desirable, for example, when we would like to design a treatment
regime that maximizes the expected success rate conditioned on an individual’s characteristics. This
situation arises in many different scenarios, from medical trials Villar et al. (2015); Aziz et al. (2021),
to education Erraqabi et al. (2016), and recommendation systems Li et al. (2010) . In many of these
decision-making scenarios, it is often advantageous to consider contextual information when making
decisions. This recognition has sparked a growing interest in studying adaptive learning algorithms
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in the setting of contextual bandits Langford & Zhang (2007); Li et al. (2010); Agrawal & Goyal
(2013) and reinforcement learning (RL) Sutton (1992).

In the contextual bandit model, a learner interacts with the world in a sequential manner. At the start of
round t P N the learner receives a context xt P X , for example in the form of user or patient features.
The learner then selects an action to play at P A, representing for example a medical treatment, and
then observes a reward rt P R that depends on the context xt, the action at and may be random. For
example rt may be the random binary outcome of a medical treatment at on a specific patient xt. The
study of contextual bandit scenarios has produced a rich literature. Many aspects of the contextual
bandit model have been explored, such as regret bounds under adversarial rewards Auer et al. (2002b);
Lattimore & Szepesvári (2020); Neu & Olkhovskaya (2020), learning with offline data Dudík et al.
(2012), the development of statistical complexity measures that characterize learnability in this
model Russo & Van Roy (2013); Foster et al. (2021) and others.

The focus of many works, including this one is to flesh out the consequences of different modeling
assumptions governing the relationship between the context, the action and the reward For example
by developing algorithms for scenarios where the reward is a linear function of a linear function of
an embedding of the context and action pair Auer (2002); Rusmevichientong & Tsitsiklis (2010);
Chu et al. (2011); Abbasi-Yadkori et al. (2011). This has lead to algorithms such as OFUL that can
be used to derive bounds for contextual bandit problems with linear rewards Abbasi-Yadkori et al.
(2011). Other works have considered scenarios that go beyond the linear case, where it is assumed
the reward function over context action pair xt, at is realized by an unknown function f‹ belonging
to a known function class F (which can be more complex than linear). Various adaptive learning
procedures compatible with generic function approximation have been proposed for contextual
bandit problems. Among these, we highlight two significant methods relevant to our discussion;
the Optimistic Least Squares algorithm introduced by Russo & Van Roy (2013) and the SquareCB
algorithm introduced by Foster & Rakhlin (2020). Both of these methods offer guarantees for
cumulative regret. Specifically, the cumulative regret of Optimistic Least Squares scales with factors
Op

a

deluderpFq logp|F |qq, while the cumulative regret of Square CB scales as O
´

a

|A| logp|F |q

¯

,

where A is the set of actions. The eluder dimension1 (deluder) is a statistical complexity measure
introduced by Russo & Van Roy (2013), that enables deriving guarantees for adaptive learning
algorithms based on the principle of optimism in contextual bandits and reinforcement learning Li
et al. (2022); Jin et al. (2021); Osband & Van Roy (2014); Chan et al. (2021).

The design of algorithms that can handle rich function approximation scenarios represents a great
leap towards making the assumptions governing contextual bandit models more realistic and the
algorithms more practical. The concerns addressed by this line of research are focused on the nature
of the mean reward function. Nonetheless, they have left open the study of the dependence on the
noise ξt “ rt ´ f‹pxt, atq. Intuitively, as the conditional variance of ξt decreases, the value of rt
contains more information about the reward function f‹. Algorithms that leverage the scale of the
variance to achieve sharp regret bounds are said to satisfy a variance aware or second order bound.

Different works have considered this research direction and developed variance-dependent bounds for
linear and contextual linear bandits Kirschner & Krause (2018); Zhou et al. (2021); Kim et al. (2022);
Zhao et al. (2023); Xu et al. (2024). In summary, the sharpest bounds for contextual linear bandits
are achieved by the SAVE Algorithm in Zhao et al. (2023) and scale (up to logarithmic factors) as

O
ˆ

d

b

řT
t“1 σ

2
t

˙

where σ2
t is the conditional variance of ξt, the time t measurement noise.

In the context of function approximation, second order bounds for contextual bandits have been
developed in Zhao et al. (2022) under the assumption that the value of the conditional variances σt
is observed. This restrictive assumption has been lifted in more recent work Wang et al. (2024b;a)
under a stronger distributional realizability assumption. In Wang et al. (2024b;a), the authors assume
realizability of the noise distribution, that is, the existence of a function class that fits not only
the mean rewards as a function of context-action pairs, but also the measurement noise. This is a
somewhat restrictive assumption since it effectively reduces the set of problems that can be solved to
parametric scenarios where the distributional class of the noise is known; something that in practical
settings typically means simple scenarios such as gaussian or bernoulli noise.

1We formally introduce this quantity in Section 2. Here we use a simpler notation to avoid confusion.
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A recent work Jia et al. (2024), published while our paper was under review, removes the assumptions
made in Wang et al. (2024b;a). Here a summary of their results. When the variances σt are revealed
with the contexts, they show that for some function classes, any algorithm must incur a regret of
Ω
´

a

minp|A|, deluderqΛ ` minpdeluder,
a

|A|T q

¯

, where Λ “
řT

t“1 σ
2. They also propose an

algorithm with an upper bound of O
´

a

|A|Λ logp|F |q ` deluder logp|F |q

¯

. In this setting, our

techniques from Section 3 yield a refined bound of O
´

a

deluderΛ logp|F |q ` deluder logp|F |q

¯

(see
Theorem 3.5 for the special case where all variances are equal). For the setting where variances
are not revealed with xt and may depend on the action at, Jia et al. (2024) derives the lower bound
Ω
´

min
´?

deluderΛ ` deluder,
a

|A|T
¯¯

. For the unknown fixed-variance case, our bounds match
their lower bound (see Theorem 4.6). They also present an algorithm achieving an upper bound of
O
´

deluder
a

Λ logp|F |q ` deluder logp|F |q

¯

, which matches our result in Theorem 4.10.

Contributions. In this work we present second order bounds for contextual bandit problems under
a mean reward realizability assumption. The techniques we develop are inspired by previous works on
variance aware linear bandits such as Zhao et al. (2023), and rely on an uncertainty filtered multi-scale
least squares procedure. We are able to make the connection to general function approximation
by refining existing techniques to prove eluder dimension regret bounds such as those presented
in Russo & Van Roy (2013); Chan et al. (2021); Pacchiano et al. (2024). These techniques should
be easily extended to the setting of reinforcement learning and beyond, thus unlocking an important
area of research. The sharpest bounds we develop in this work (satisfied by the same algorithm) have

the form O
ˆ

deluder

b

logp|F |q
řT

t“1 σ
2
t ` deluder ¨ logp|F |q

˙

when we allow different conditional

variances during all time-steps, and O
´

σ
a

deluder logp|F |qT ` deluder ¨ logp|F |q

¯

when σt “ σ for
all t. Although it is likely our bounds are not the sharpest in the case of different variances, since
eluder dimension bounds as in Russo & Van Roy (2013) suggest the dominating term in the optimal

bound should scale as O
ˆ

b

deluder logp|F |q
řT

t“1 σ
2
t

˙

, we believe a sharper analysis based on our

ideas might be sufficient to prove such a result.

2 PROBLEM DEFINITION

In this section we consider the scenario of contextual bandits, where at time t the learner receives a
context xt P X belonging to a context set X , decides to take an action at P A and observes a reward
of the form rt such that Etrrts “ f‹pxt, atq where it is assumed that f‹ P F for F a known class of
functions with domain X ˆ A (see Assumption 2.1). Throughout this section we use the notation
rt “ f‹pxt, atq ` ξt so that the conditional expectation of ξt satisfies Etrξts “ 0. Throughout this
work we will use the notation σ2

t “ Vartpξtq to denote the time t conditional variance of the noise.
We’ll assume the random variables rt are bounded by a known parameter B ą 0 with probability
one.

The objetive of this work is to design algorithms with sublinear regret. Regret is a measure of
performance defined in the realizable contextual scenario studied in this work as the cumulative
difference between the best expected reward the learner may have achieved at each of the contexts it
interacted with and the expected reward of the actions played.

RegretpT q “

T
ÿ

t“1

max
aPA

f‹pxt, aq ´ f‹pxt, atq

The objective is to design algorithms with regret scaling sublinearly with the time horizon T .
Assumption 2.1 (Realizability). There exists a (known) function class F : X ˆ A Ñ R such that
Etrrts “ f‹pxt, atq for all t P N.
Assumption 2.2 (Boundedness). There exists a (known) constant B ą 0 such that |rℓ|, |ξℓ| ď B
and maxxPX ,aPA |fpx, aq| ď B and maxxPX ,aPA |fpx, aq ´ f 1px, aq| ď B for all f, f 1 P F and all
ℓ P N.
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The sample complexity analysis of our algorithms will rely on a combinatorial notion of statistical
complexity of a scalar function class known as Eluder Dimension Russo & Van Roy (2013). We
reproduce the necessary definitions here for completeness.
Definition 2.1. (ϵ´dependence) Let G be a scalar function class with domain Z and ϵ ą 0. An
element z P Z is ϵ´dependent on tz1, ¨ ¨ ¨ , znu Ď Z w.r.t. G if any pair of functions g, g1 P G
satisfying

a

řn
i“1pgpziq ´ g1pziqq2 ď ϵ also satisfies gpzq ´ g1pzq ď ϵ. Furthermore, z P Z is

ϵ´independent of tz1, ¨ ¨ ¨ , znu w.r.t. G if it is not ϵ´dependent on tz1, ¨ ¨ ¨ , znu.
Definition 2.2. (ϵ-eluder) The ϵ´non monotone eluder dimension ĞdeluderpG, ϵq of G is the length of
the longest sequence of elements in Z such that every element is ϵ´independent of its predecessors.
Moreover, we define the ϵ´eluder dimension deluderpG, ϵq as deluderpG, ϵq “ maxϵ1ěϵ

ĞdeluderpG, ϵq.

In order to introduce our methods we require some notation. The uncertainty radius function is a
mapping ω : X ˆ X ˆ PpFq Ñ R is defined as,

ωpx, a,Gq “ max
f,f 1PG

fpx, aq ´ f 1px, aq

for x P X , a P A,G Ď F . The quantity ωpx, a,Gq equals the maximum fluctuations in value for
the function class G when evaluated in context x P X and action a P A. Throughout this work we
will use the notation ΣpA,B, ¨ ¨ ¨ , Cq to denote the sigma algebra generated by the random variables
A,B, ¨ ¨ ¨ , C.

In this work we design the first algorithm for contextual bandits with function approximation that
satisfies a variance dependent regret bound. In this work we extend the optimistic least squares
algorithm for contextual bandits with function approximation Russo & Van Roy (2013). Our main
result (simplified) states that,
Theorem 2.1 (Simplified). Let δ P p0, 1q. There exists an algorithm that achieves a regret rate of,

RegretpT q ď rO

¨

˝deluder

ˆ

F , B
T

˙

g

f

f

e

˜

T
ÿ

t“1

σ2
t

¸

log p|F |{δq `Bdeluder

ˆ

F , B
T

˙

logp|F |{δq

˛

‚

for all T P N with probability at least 1 ´ δ. Where rOp¨q hides logarithmic dependencies.

3 SECOND ORDER OPTIMISTIC LEAST SQUARES WITH KNOWN VARIANCE

In this section we introduce an algorithm that satisfies second order regret bounds. Algorithm 1 takes
as input a variance upper bound σ2 such that σ2

t ď σ2, and achieves a regret bound of order

RegretpT q ď O
´

σ
a

deluderpF , B{T qT logpT |F |{δq ` deluder ¨ logpT |F |{δq

¯

.

This is a warm-up example that will be sharpened in section 4.2 to the case where the variance is
unknown where we can achieve regret bounds of the same order. This algorithm is based on an
uncertainty filtered least squares procedure that satisfies sharper bounds than the unfiltered ordinary
least squares guarantees. For a complete discussion of estimation bounds for least squares, and
their use in the optimistic least squares algorithm from Russo & Van Roy (2013) see Appendix B.
Since σ2 ď B this bound could be much smaller than the regret bound for Optimistic Least Squares
(Algorithm 3) described in Theorem B.4 that scale as Opσ

a

deluderpF , B{T qT logpT |F |{δqq. In
this section we work under the following assumption that we relax in section 4.2,
Assumption 3.1 (Known Variance Upper Bound). There exists a (known) constant σ ą 0 such that
σt ď σ2 for all t P N.

Given a data stream tpxℓ, aℓ, rℓquℓPN where rℓ “ f‹pxℓ, aℓq ` ξℓ for f‹ P F such that ξℓ is condi-
tionally zero mean, a sequence of subsets of Gt Ď ¨ ¨ ¨G2 Ď G1 “ F such that Gt is a function of
tpxℓ, aℓ, rℓqu

t´1
ℓ“1), and f‹ P Gt for all t P N. Given τ ą 0 we define an uncertainty filtered least

squares objective that takes a filtering parameter τ ą 0 and defines a least squares regression function
computed only over datapoints whose uncertainty radius is smaller than τ ,

fτt “ argmin
fPGt´1

t´1
ÿ

ℓ“1

pfpxℓ, aℓq ´ rℓq
21pωpxℓ, aℓ,Gℓq ď τq (1)

4



Published as a conference paper at ICLR 2025

The uncertainty filtering procedure will allow us to prove a least squares guarantee with dependence
on the variance and also on a vanishing low order term that scales with τB. We’ll use the notation

βtpτ, δ̃, rσ
2q “ p4minpτB,B2q ` 16rσ2q logpt|F |{δ̃q

to denote the confidence radius function, in this case a function of τ, rδ and rσ2. Algorithm 1 shows
the pseudo-code for our Second Order Optimistic Algorithm.

Algorithm 1 Second Order Optimistic Least Squares
1: Input: function class F , variance upper bound σ2.
2: Set the initial confidence set G0 “ F .
3: for t “ 1, 2, ¨ ¨ ¨ do
4: Compute regression function for each threshold level τi “ B

2i for i P t0u Y rqts where
qt “ rlogptqs

fτit “ argmin
fPGt´1

t´1
ÿ

ℓ“1

pfpxℓ, aℓq ´ rℓq
21pωpxℓ, aℓ,Gℓq ď τiq

5: Compute threshold confidence sets for all i P t0u Y rqts,

Gtpτiq “

(2)
#

f P F :
t´1
ÿ

ℓ“1

pfτ
t pxℓ, aℓq ´ fpxℓ, aℓqq

2 1pωpxℓ, aℓ,Gℓq ď τiq ď βt

`

τi, δi, σ
2
˘

+

X Gt´1pτiq

6: where δi “ δ
2pi`1q2

.
7: Compute Gt “ Gt´1 X pX

q
i“0Gtpτiqq

8: Receive context xt.
9: Compute Utpxt, aq “ maxfPGt

fpxt, aq for all a P A.
10: play at “ argmaxaPA Utpxt, aq and receive rt “ f‹pxt, atq ` ξt.
11: end for

Notice that by definition in Algorithm 1 the confidence sets satisfy Gℓ Ď Gℓ1 for all ℓ ě ℓ1. In order
to state our results we’ll define a sequence of events tEℓu8

ℓ“1 such that Eℓ corresponds to the event
that f‹ P Gℓ´1 and therefore f‹ P Gℓ1 for all ℓ1 ď ℓ´ 1. The following proposition characterizes the
error of the filtered least squares estimator fτt when Et holds.

Proposition 3.1. [Variance Dependent Least Squares] Let t P N, τ ě 0 and δ̃ ą 0. If σ2
ℓ ď rσ2 for

all ℓ ď t´ 1 and Et holds then

P

˜

t´1
ÿ

ℓ“1

pfτt pxℓ, aℓq ´ f‹pxℓ, aℓqq
2
1pωpxℓ, aℓ,Gℓq ď τq ď βtpτ, rδ, rσ

2q, Et

¸

ě PpEtq ´ δ̃. (3)

The proof of Proposition 3.1 can be found in Appendix C. It follows the structure of the least squares
result from Proposition 3.1. For a given τ ą 0, estimator fτt achieves a sharper bound than the
ordinary least squares estimator because the low order term in the portion of the analysis that requires
the use of Freedman’s inequality (see Lemma A.1) that has a magnitude scaling with the error of fτt
on historial points can be upper bounded by τ instead of scaling with B. This results in a second
order term scaling with minpτB,B2q instead of B2 as is reflected by the definition of βtpτ, rδ, rσ2q.

In contrast with the results of Lemma B.1 the confidence radius of the τ -uncertainty filtered least
squares estimator depends on a variance upper bound whereas the uncertainty radius in Lemma B.1
doesn’t. Proposition 3.1 provides us with a variance aware least squares guarantee. If the uncer-
tainty threshold τ is small, the historical least squares error captured by equation 3 scales with
σ2 logpt|F |{δ̃q and does not depend on the scale of B. Algorithm 1 leverages these confidence
sets to design a variance aware second order optimistic least squares algorithm. The basis of the
regret analysis for Algorithm 1 is the validity of the confidence sets Gt and therefore the estimators
Utpxt, atq being optimistic.
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Lemma 3.2. The confidence intervals are valid so that f‹ P Gt for all t P N and optimism holds,
maxaPA f‹pxt, aq ď Utpxt, atq with probability at least 1 ´ δ for all t P N.

The proof of Proposition 3.2 can be found in Appendix C. From now on we denote by E the event
described in Lemma 3.2 where all the confidence intervals are valid. In order to relate the regret to
the eluder dimension of F , we develop a sharpened version of Lemma B.3 to bound the sum of the
uncertainty widths over the context-action pairs played by Algorithm 1. Lemma B.3’s guarantees
are insufficient to yield the desired result because this result is unable to leverage any dependence
on the scale of the widths in the definition of the confidence sets. This is sufficient to show a regret
bound as it is evident by following the same logic as in the analysis of the optimistic least squares
(Theorem B.4). In order to prove this result, we need to first bound the number of context-action
pairs with large uncertainty radius.
Lemma 3.3. If Algorithm 1 is run with input variance upper bound σ ą 0, E is satisfied and tGtu

8
t“1

is the sequence of confidence sets produced by Algorithm 1 then for all T P N and τ ě τqT ,
T
ÿ

t“1

1pωpxt, at,Gtq ą τq ď 3 ¨ deluderpF , τq

ˆ

64B logpT |F |{δq

τ
`

64σ2 logpT |F |{δq

τ2
` 1

˙

Lemma 3.3 can be used to show the following sharpened version of Lemma B.3.
Lemma 3.4. If E holds, then for all T P N the uncertainty widths of context-action pairs from
Algorithm 1 satisfy,
T
ÿ

t“1

ωpxt, at,Gtq ď O
´

σ
a

deluderpF , B{T q logpT |F |{δqT `BdeluderpF , B{T q logpT q logpT |F |{δq

¯

.

The proof of this result is based on an integration argument that leverages the inequality in Lemma 3.3.

Algorithm 1 satisfies the following regret bound,
Theorem 3.5. If δ P p0, 1q is the input to Algorithm 1 satisfies,

RegretpT q ď O
´

σ
a

deluderpF , B{T q logpT |F |{δqT `B ¨ deluderpF , B{T q logpT q logpT |F |{δq

¯

.

for all T P N with probability at least 1 ´ δ.

The proof of this Theorem can be found in Appendix D.

4 CONTEXTUAL BANDITS WITH UNKNOWN VARIANCE

In the case where the variance is not known our contextual bandit algorithms work by estimating the
cumulative variance up to constant multiplicative accuracy and use this estimator to build confidence
sets as in Algorithms 3 and 1. In section 4.1 we describe how to successfully estimate the cumulative
variance in contextual bandit problems, in section 4.2 we show how to adapt a version of Algorithm 1
to the case of a single unknown variance and finally in section 4.3 we introduce Algorithm 2 that

satisfies a regret guarantee whose dominating term scales with deluder
b

logp|F |q
řT

t“1 σ
2
t , and the

low order term with deluder ¨ logp|F |q.

4.1 VARIANCE ESTIMATION IN CONTEXTUAL BANDIT PROBLEMS

In this section we discuss methods for estimating the variance in contextual bandit problems. Our
estimator is the cumulative least squares error of a sequence of (biased) estimators. Given context-
action pairs and reward information tpxℓ, aℓ, rℓqu

t´1
ℓ“1 and a filtering process bt “ tbℓu

t´1
ℓ“1 of bernoulli

random variables bℓ P t0, 1u such that bℓ is Σpx1, a1, b1, r1, ¨ ¨ ¨ , xℓ´1, aℓ´1, bℓ´1, rℓ´1, xℓ, aℓq-
measurable. Let fbt

t be the “filtered” least squares estimator:

fbt
t “ argmin

fPF

t´1
ÿ

ℓ“1

bℓ ¨ pfpxℓ, aℓq ´ rℓq
2
.

A filtered least squares estimator satisfies a least squares bound similar to Lemma B.1,
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Lemma 4.1. Let δ̃ P p0, 1q, t P N, txℓ, aℓu
t´1
ℓ“1 be a sequence of context-action pairs and and trtu

t´1
t“1

be a sequence of values satisfying rℓ “ f‹pxℓ, aℓq ` ξℓ where f‹ P F and the ξℓ are conditionally
zero mean. Let tbℓu

t´1
ℓ“1be a filtering process of Bernoulli random variables bℓ P t0, 1u such that bℓ is

Σpx1, a1, b1, r1, ¨ ¨ ¨ , xℓ´1, aℓ´1, bℓ´1, rℓ´1, xℓ, aℓq-measurable. Let fbt
t “ argminfPF

řt´1
ℓ“1 bℓ ¨

pfpxℓ, aℓq ´ rℓq
2 be the “filtered” least squares estimator. If Assumption 2.2 holds then,

ˇ

ˇ

ˇ

ˇ

ˇ

t´1
ÿ

ℓ“1

ξℓ ¨ bℓ ¨

´

f‹pxℓ, aℓq ´ fbt
t pxℓ, aℓq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď 6B2 logp2|F |{δ̃q.

and
t´1
ÿ

ℓ“1

bℓ ¨

´

fbt
t pxℓ, aℓq ´ f‹pxℓ, aℓq

¯2

ď 8B2 logp2|F |{δ̃q

with probability at least 1 ´ δ̃.

Based on the definitions above we will consider the following cumulative variance estimator for a
filtered context, action, reward process:

Wbt
t “

t´1
ÿ

ℓ“1

bℓ ¨ prℓ ´ fbt
t pxℓ, aℓqq2. (4)

We now prove this estimator achieves a small error.

Lemma 4.2. Let δ̃ P p0, 1q be a probability parameter. If Assumption 2.2 holds,

2

3
¨Wbt

t ´ 11B2 logp4|F |{δ̃q ď ĎWbt
t ď 2Wbt

t ` 48B2 logp4|F |{δ̃q

with probability at least 1 ´ δ̃ where ĎWbt
t “

řt´1
ℓ“1 bℓ ¨ σ2

ℓ .

Using the union bound (by setting δ̃ “ δ1

2¨t2 in Lemma 4.1) we can write an anytime guarantee for the
variance estimators Wbt

t ).
Corollary 4.3. Let δ1 P p0, 1q, txℓ, aℓ, rℓu

8
ℓ“1 be a sequence of context-action and rewards triplets

such that rℓ “ f‹pxℓ, aℓq ` ξℓ where f‹ P F and the ξℓ are conditionally zero mean. Let tbℓu
t´1
ℓ“1be

a filtering process of Bernoulli random variables bℓ P t0, 1u such that bℓ is Σpx1, a1, b1, r1, ¨ ¨ ¨ ,

xℓ´1, aℓ´1, bℓ´1, rℓ´1, xℓ, aℓq-measurable and fbt
t “ argminfPF

řt´1
ℓ“1 bℓ ¨ pfpxℓ, aℓq ´ rℓq

2 be the
“filtered” least squares estimator. If Assumption 2.2 holds there exists a universal constant C ą 0 such
that the cumulative variance estimator Wbt

t “
řt´1

ℓ“1 bℓ ¨ prℓ ´ fbt
t pxℓ, aℓqq2 satisfies,

2

3
¨Wbt

t ´ C ¨B2 logpt|F |{δ1q ď ĎWbt
t ď 2Wbt

t ` C ¨B2 logpt|F |{δ1q

with probability at least 1 ´ δ1 for all t P N.

The proof of Corollary 4.3 can be found in Appendix E.1.

4.2 UNKNOWN-VARIANCE GUARANTEES FOR ALGORITHM 1

Although Algorithm 1 was formulated under the assumption of a known variance upper bound σ, in
this section we show it is possible to combine the variance estimation procedure we propose here
with Algorithm 1. A simple and immediate consequence of Corollary 4.3 is,
Corollary 4.4. Let δ1 P p0, 1q. Under the assumptions of Corollary 4.3. If σt “ σ for all t P N and
we define Nbt

t “
řt´1

ℓ“1 bℓ then,

2Wbt
t

3Nbt
t

´
C ¨B2 logpt|F |{δ1q

Nbt
t

ď σ2 ď
2Wbt

t

Nbt
t

`
C ¨B2 logpt|F |{δ1q

Nbt
t

with probability at least 1 ´ δ1 for all t P N. Where C ą 0 is the same universal constant as in
Corollary 4.3.

7
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Let tbtutPN be the trivial filtering process defined by setting bℓ “ 1 for ℓ ď t ´ 1 so that
Nbt

t “ t ´ 1 and define the variance upper-bound estimator sequence pσ2
1 “ B2 and pσ2

t “

min
´

pσ2
t´1,

2W
bt
t

t´1 `
C¨B2 logpt|F |{δ1

q

t´1

¯

for all t ě 2. Corollary 4.4 implies that

σ2 ď pσt ď
2Wbt

t

t´ 1
`
C ¨B2 logpt|F |{δ1q

t´ 1
ď 3σ2 `

3C ¨B2 logpt|F |{δ1q

t´ 1
(5)

for all t P N with probability at least 1 ´ δ1.

We’ll analyze a version of Algorithm 1 where the confidence sets Gtpτiq are computed using confi-
dence radii equal to βt

´

τi,
δ

2pi`1q2
, pσ2

t

¯

in equation 2. With these parameter choices, we can show a
result equivalent to Lemma 3.2,
Corollary 4.5. Let δ P p0, 1q. If δ{2 is the input to Algorithm 1 and pσ2

t estimators are computed by
setting δ1 “ δ{2, then the confidence intervals are valid so that f‹ P Gt for all t P N and optimism
holds, maxaPA f‹pxt, aq ď Utpxt, atq with probability at least 1 ´ δ for all t P N.

The proof of this result follows by a simple union bound between the result of Lemma 3.2 and the
inequality σ2 ď pσ2

t . Let Ē denote the event described in Corollary 4.5. This version of Algorithm 1
satisfies the following guarantees,
Theorem 4.6. Let δ P p0, 1q. If δ{2 is the input to Algorithm 1 and pσ2

t estimators are computed by
setting δ1 “ δ{2. If σt “ σ for all t P N the regret of Algorithm 1 with modified confidence set sizes
satisfies,

RegretpT q ď O
´

σ
a

deluderpF , B{T q logpT |F |{δqT `BdeluderpF , B{T q log2pT q logpT |F |{δq

¯

.

for all T P N with probability at least 1 ´ δ.

The proof of Theorem 4.6 can be found in Appendix E.2.

4.3 UNKNOWN-VARIANCE DEPENDENT LEAST SQUARES REGRESSION

We borrow the setting of Section 3 with a few modifications. Given a data stream tpxℓ, aℓ, rℓquℓPN
where rℓ “ f‹pxℓ, aℓq ` ξℓ for f‹ P F such that ξℓ is conditionally zero mean, a sequence of subsets
of G1

t Ď ¨ ¨ ¨G1
2 Ď G1

1 “ F such that G1
t is a function of tpxℓ, aℓ, rℓqu

t´1
ℓ“1), and f‹ P G1

t for all t P N.
Given τ ą 0 we define an uncertainty-filtered least squares objective,

f
pτ,2τs

t “ argmin
fPGt´1

t´1
ÿ

ℓ“1

pfpxℓ, aℓq ´ rℓq
21

`

ωpxℓ, aℓ,G1
ℓq P pτ, 2τ s

˘

. (6)

in the following, for any τ we’ll use the notation bτℓ to denote the filtering random variables bτℓ “

1pωpxℓ, aℓ,G1
ℓq P pτ, 2τ sq. Similarly, we denote by bτ

t “ pbτ1 , ¨ ¨ ¨ , bτt´1q.

We develop a result equivalent to Lemma B.1 and Proposition 3.1 to characterize the confidence
sets. Just like in Section 3 we write our result in terms of a sequence of events tE 1

ℓu
8
ℓ“1 such that E 1

ℓ
corresponds to the event that f‹ P G1

ℓ´1 and therefore f‹ P G1
ℓ1 for all ℓ1 ď ℓ´ 1 so that Eℓ Ď E 1

ℓ for
all ℓ ě ℓ1.
Proposition 4.7. Let δ̃ P p0, 1q and τ ą 0. Let trE 1

ℓu
8
ℓ“1 be a sequence of events such that rE 1

1 Ě rE 1
2 ¨ ¨ ¨

and rE 1
t Ď E 1

t. Let f pτ,2τs

t be result of solving the uncertainty-filtered least-squares objective from equa-
tion 6. Additionally letWbτ

t
t be the filtered estimator of the cumulative variances defined by equation 4

when setting bτℓ “ 1 pωpxℓ, aℓ,G1
ℓq P pτ, 2τ sq and ĎW

bτ
t

t :“
řt´1

ℓ“1 σ
2
ℓ ¨ 1 pωpxℓ, aℓ,G1

ℓq P pτ, 2τ sq.
There exist universal constants C,C 1 ą 0 such that the events Wtpτq defined for any t as

t´1
ÿ

ℓ“1

´

f
pτ,2τs

t pxℓ, aℓq ´ f‹pxℓ, aℓq
¯2

1pωpxℓ, aℓ,Gℓq P pτ, 2τ sq

ď C 1τ

c

W
bτ

t
t log

´

t|F |{δ̃
¯

` C 1τB log
´

t|F |{δ̃
¯

8
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Algorithm 2 Unknown-Variance Second Order Optimistic Least Squares
1: Input: probability parameter δ P p0, 1q, function class F .
2: Set the initial confidence set G1

0 “ F .
3: for t “ 1, 2, ¨ ¨ ¨ do
4: Compute regression function for each threshold level τi “ B

2i for i P rqts where qt “ rlogptqs

f
pτi,τi´1s

t “ argmin
fPG1

t´1

t´1
ÿ

ℓ“1

pfpxℓ, aℓq ´ rℓq
21

`

ωpxℓ, aℓ,G1
ℓq P pτi, τi´1s

˘

5: Estimate the sum of the filtered variances for all threshold levels τi for i P rqts.

W
b

τi
t

t “

t´1
ÿ

ℓ“1

1
`

ωpxℓ, aℓ,G1
ℓq P pτi, τi´1s

˘

¨ prℓ ´ f
pτi,τi´1s

t pxℓ, aℓqq2.

6: Compute threshold confidence sets for all i P rqts,

G1
tpτiq “

#

f P F :
t´1
ÿ

ℓ“1

pfτ
t pxℓ, aℓq ´ fpxℓ, aℓqq

2 1pωpxℓ, aℓ,Gℓq ď τiq ď C 1τi

b

W
b
τi
t

t log p2i2t|F |{δq

`C 1τiB log
`

2i2t|F |{δ
˘

+

X G1
t´1pτiq

where C 1 ą 0 is the constant from Proposition 4.7.
7: Compute G1

t “ G1
t´1 X pX

q
i“1G1

tpτiqq

8: Receive context xt.
9: Compute Utpxt, aq “ maxfPGt fpxt, aq for all a P A.

10: play at “ argmaxaPA Utpxt, aq and receive rt “ f‹pxt, atq ` ξt.
11: end for

and

C 1τ

c

W
bτ
t

t log
´

t|F |{δ̃
¯

` C 1τB log
´

t|F |{δ̃
¯

ď C
2

τ

c

ĎW
bτ
t

t log
´

t|F |{δ̃
¯

` C
2

τB log
´

t|F |{δ̃
¯

satisfy the bound PprE 1
t X pWtpτqq

c
q ď δ̃

2t2 .

The proof of Proposition 4.7 can be found in Appendix E.3. Similar to Corollary B.2 and Proposi-
tion 4.7 we derive the following anytime guarantee for the confidence sets, and show that optimism
holds
Lemma 4.8. Let δ P p0, 1q. When the confidence sets G1

t Ď F are defined as in Algorithm 2, then
f‹ P G1

t so that maxaPA f‹pxt, aq ď Utpxt, atq (optimism holds), and for all i P rqts,

G1
tpτiq Ď

!

f P F s.t.
t´1
ÿ

ℓ“1

´

f
pτi,2τis

t pxℓ, aℓq ´ fpxℓ, aℓq
¯2

1pωpxℓ, aℓ,Gℓq P pτi, 2τisq ď

C
2

τi

b

ĎW
b

τi
t

t log p2pi` 1q2t|F |{δq ` C
2

τiB log
`

2i2t|F |{δ
˘

)

.

(7)

with probability at least 1 ´ δ for all t P N. Where C
2

ą 0 is the same universal constant as in
Proposition 4.7.

The proof of Lemma 4.8 can be found in Appendix E.3. Define E 1 as the event outlined in Lemma 4.8
such that f‹ P G1

t, optimism holds, and inequality 7 holds for all i P rqts and all t P N. This
event satisfies P pE 1q ě 1 ´ δ. The proof of the regret guarantees of Algorithm 2 will follow a
similar template as in the previous sections; establishing optimism and then bounding the sum of
the uncertainty widths over the context-action pairs played by the algorithm. In order to execute
this proof strategy we need a way to relate the sum of the uncertainty widths to the definition of

9
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the confidence sets and by doing so with the true cumulative sum of variances. We do this via the
following Lemma.
Lemma 4.9. If tG1

tu
8
t“1 is the sequence of confidence sets produced by Algorithm 1, there exists a

universal constant rC ą 0 such that when E 1 is satisfied,

T
ÿ

t“1

1pωpxt, at,G1
tq P pτi, 2τisq ď

rC ¨ deluderpF , τiq

τi

b

ĎW
b
τi
T

T log piT |F |{δq `
rC ¨ B ¨ deluderpF , τiq

τi
log piT |F |{δq ` rC ¨ deluderpF , τiq

for all T P N and i P rqT s.

The proof of Lemma 4.9 can be found in Appendix F. Finally, we can combine the result above with
an optimism argument to prove the following regret bound for Algorithm 2.
Theorem 4.10. Let T P N, δ P p0, 1q and q “ logpT q. The regret of Algorithm 2 satisfies,

RegretpT q

ď O

¨

˝deluder

ˆ

F ,
B

T

˙

g

f

f

e

˜

T
ÿ

t“1

σ2
t

¸

logpT q log pT |F |{δq ` Bdeluder

ˆ

F ,
B

T

˙

logpT q logpT |F |{δq

˛

‚

simultaneously for all T P N with probability at least 1 ´ δ.

Proof Sketch. The proof of Theorem 4.10 relies on observation that when E 1 holds, optimism implies

RegretpT q ď

T
ÿ

t“1

ωpxt, at,G1
tq.

The sum of widths can be upper bounded as,

T
ÿ

t“1

ωpxt, at,G1
tq ď

T ¨B

2q
` 2

q
ÿ

i“1

τi ¨

˜

T
ÿ

t“1

1
`

ωpxt, at,G1
tq P pτi, 2τis

˘

¸

.

Finally Lemma 4.9 can be used to finish the proof.

5 CONCLUSION

In this work we have introduced second order bounds for contextual bandits with function approxima-
tion. These bounds improve on existing results such as Wang et al. (2024b) because they only require
a realizability assumption on the mean reward values of each context-action pair. We introduce two
types of algorithm, one that achieves what we believe is sharp dependence on the complexity of the
underlying reward class measured by the eluder dimension when all the measurement noise variances
are the same and unknown, and a second one that in the case of changing noise variances achieves a
bound that scales with the square root of the sum of these variances but scales linearly in the eluder
dimension. In a future version of this writeup we will strive to update our results to achieve a sharper
dependence on the eluder dimension scaling with its square root. We hope the techniques we have
developed in this manuscript can be easily used to develop second order algorithms with function
approximation in other related learning models such as reinforcement learning. These techniques
distill, simplify and present in a didactic manner many of the ideas developed for the variance aware
literature in linear contextual bandit problems in works such as Kirschner & Krause (2018); Zhou
et al. (2021); Kim et al. (2022); Zhao et al. (2023); Xu et al. (2024) and transports them to the setting
of function approximation. Although we did not cover this in our work, an interesting avenue of
future research remains to understand when can we design second order bounds for algorithms based
on the inverse gap weighting technique that forms the basis of the SquareCB algorithm from Foster
& Rakhlin (2020).
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A SUPPORTING RESULTS

Our results relies on the following variant of Bernstein inequality for martingales, or Freedman’s
inequality Freedman (1975), as stated in e.g., Agarwal et al. (2014); Beygelzimer et al. (2011).
Lemma A.1 (Simplified Freedman’s inequality). Let Z1, ..., ZT be a bounded martingale difference
sequence with |Zℓ| ď R. For any δ1 P p0, 1q, and η P p0, 1{Rq, with probability at least 1 ´ δ1,

T
ÿ

ℓ“1

Zℓ ď η
T
ÿ

ℓ“1

EℓrZ
2
ℓ s `

logp1{δ1q

η
. (8)

where Eℓr¨s is the conditional expectation2 induced by conditioning on Z1, ¨ ¨ ¨ , Zℓ´1.
Lemma A.2 (Anytime Freedman). Let tZtu

8
t“1 be a bounded martingale difference sequence with

|Zt| ď R for all t P N. For any δ1 P p0, 1q, and η P p0, 1{Rq, there exists a universal constant C ą 0
such that for all t P N simultaneously with probability at least 1 ´ δ1,

t
ÿ

ℓ“1

Zℓ ď η
t
ÿ

ℓ“1

EℓrZ
2
ℓ s `

C logpt{δ1q

η
. (9)

where Eℓr¨s is the conditional expectation induced by conditioning on Z1, ¨ ¨ ¨ , Zℓ´1.
2We will use this notation to denote conditional expectations throughout this work.
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Proof. This result follows from Lemma A.1. Fix a time-index t and define δt “ δ1

12t2 . Lemma A.1
implies that with probability at least 1 ´ δt,

t
ÿ

ℓ“1

Zℓ ď η
t
ÿ

ℓ“1

Eℓ

“

Z2
ℓ

‰

`
logp1{δtq

η
.

A union bound implies that with probability at least 1 ´
řt

ℓ“1 δt ě 1 ´ δ1,
t
ÿ

ℓ“1

Zℓ ď η
t
ÿ

ℓ“1

Eℓ

“

Z2
ℓ

‰

`
logp12t2{δ1q

η

piq
ď η

t
ÿ

ℓ“1

Eℓ

“

Z2
ℓ

‰

`
C logpt{δ1q

η
.

holds for all t P N. Inequality piq holds because logp12t2{δ1q “ O plogptδ1qq.

Lemma A.3 (Uniform empirical Bernstein bound). In the terminology of Howard et al. (2021), let
St “

řt
i“1 Yi be a sub-ψP process with parameter c ą 0 and variance process Wt. Then with

probability at least 1 ´ rδ for all t P N

St ď 1.44

d

maxpWt,mq

ˆ

1.4 ln ln

ˆ

2

ˆ

max

ˆ

Wt

m
, 1

˙˙˙

` ln
5.2

rδ

˙

` 0.41c

ˆ

1.4 ln ln

ˆ

2

ˆ

max

ˆ

Wt

m
, 1

˙˙˙

` ln
5.2

rδ

˙

where m ą 0 is arbitrary but fixed.

As a corollary of Lemma A.3 we can show the following,
Lemma A.4 (Freedman). Suppose tXtu

8
t“1 is an adapted process with |Xt| ď b. Let Vt “

řt
ℓ“1 Varℓ where Varℓ “ EℓrX

2
ℓ s ´ E2

ℓ rXℓs. For any rδ P p0, 1q, with probability at least 1 ´ rδ,

t
ÿ

ℓ“1

Xℓ ´ EℓrXℓs ď 4

d

Vt ln
12 ln 2t

rδ
` 6b ln

12 ln 2t

rδ
.

for all t P N simultaneously.

Proof. We are ready to use Lemma A.3 (with c “ b). Let St “
řt

ℓ“1Xt and Wt “
řt

ℓ“1 VarℓpXℓq.
Let’s set m “ b2. It follows that with probability 1 ´ rδ for all t P N

St ď 1.44

d

maxpWt, b2q

ˆ

1.4 ln ln

ˆ

2

ˆ

max

ˆ

Wt

b2
, 1

˙˙˙

` ln
5.2

rδ

˙

` 0.41b

ˆ

1.4 ln ln

ˆ

2

ˆ

max

ˆ

Wt

b
, 1

˙˙˙

` ln
5.2

rδ

˙

ď 2

d

maxpWt, b2q

ˆ

2 ln ln

ˆ

2

ˆ

max

ˆ

Wt

b2
, 1

˙˙˙

` ln
6

rδ

˙

` b

ˆ

2 ln ln

ˆ

2

ˆ

max

ˆ

Wt

b2
, 1

˙˙˙

` ln
6

rδ

˙

“ 2maxp
a

Wt, bqAt ` bA2
t

ď 2
a

WtAt ` 2bAt ` bA2
t

piq
ď 2

a

WtAt ` 3bA2
t ,
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where At “

b

2 ln ln
`

2
`

max
`

Wt

b2 , 1
˘˘˘

` ln 6
rδ
. Inequality piq follows because At ě 1. By

identifying Vt “ Wt we conclude that for any rδ P p0, 1q and t P N

P

˜

t
ÿ

ℓ“1

Xℓ ą 2
a

VtAt ` 3bA2
t

¸

ď rδ

Where At “

b

2 ln ln
`

2
`

max
`

Vt

b2 , 1
˘˘˘

` ln 6
rδ
. Since Vt ď tb2 with probability 1,

Vt
b2

ď t,

And therefore 2 ln ln
`

2maxpVt

b2 , 1q
˘

ď 2 ln ln 2t implying,

At ď

d

2 ln
12 ln t

rδ

Thus

P

˜

t
ÿ

ℓ“1

Xℓ ą 4

d

Vt ln
12 ln 2t

rδ
A` 6b ln

12 ln 2t

rδ

¸

ď rδ

Since Vt ď St the result follows.

Proposition A.5. Let δ1 P p0, 1q, β P p0, 1s and tZℓu
8
ℓ“1 be an adapted sequence satisfying

0 ď Zℓ ď B̃ for all ℓ P N. It follows that,

p1 ´ βq

t
ÿ

ℓ“1

EℓrZℓs ´
2B̃ logp1{δ1q

β
ď

t
ÿ

ℓ“1

Zℓ ď p1 ` βq

t
ÿ

ℓ“1

EℓrZℓs `
2B̃ logp1{δ1q

β

with probability at least 1 ´ 2δ1.

Proof. Consider the martingale difference sequence Xt “ Zt ´EtrZts. Notice that |Xt| ď B̃. Using
the inequality of Lemma A.1 we obtain for all η P p0, 1{B2q.

t
ÿ

ℓ“1

Xℓ ď η
t
ÿ

ℓ“1

EℓrX
2
ℓ s `

logp1{δ1q

η

piq
ď 2ηB2

t
ÿ

ℓ“1

EℓrZℓs `
logp1{δ1q

η

with probability at least 1 ´ δ1. Inequality piq holds because EtrX
2
t s ď B2Er|Xt|s ď 2B2EtrZts for

all t P N. Setting η “
β

2B2 and substituting
řt

ℓ“1Xℓ “
řt

ℓ“1 Zℓ ´ EℓrZℓs,

t
ÿ

ℓ“1

Zℓ ď p1 ` βq

t
ÿ

ℓ“1

EℓrZℓs `
2B2 logp1{δ1q

β
(10)

with probability at least 1 ´ δ1. Now consider the martingale difference sequence X 1
t “ ErZts ´ Zt

and notice that |X 1
t| ď B2. Using the inequality of Lemma A.1 we obtain for all η P p0, 1{B2q,

t
ÿ

ℓ“1

X 1
ℓ ď η

t
ÿ

ℓ“1

EℓrpX
1
ℓq

2s `
logp1{δ1q

η

ď 2ηB2
t
ÿ

ℓ“1

EℓrZℓs `
logp1{δ1q

η

Settingη “
β

2B2 and substituting
řt

ℓ“1X
1
ℓ “

řt
ℓ“1 ErZℓs ´ Zℓ we have,
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p1 ´ βq

t
ÿ

ℓ“1

ErZℓs ď

t
ÿ

ℓ“1

Zℓ `
2B2 logp1{δ1q

β
(11)

with probability at least 1 ´ δ1. Combining Equations 10 and 11 and using a union bound yields the
desired result.

B OPTIMISTIC LEAST SQUARES

The algorithms we propose in this work are based on the optimism principle. This simple yet
powerful algorithmic idea is the basis of a celebrated algorithm for contextual bandits with function
approximation known as Optimistic Least Squares. Algorithm 3 presents the pseudo-code of the
Optimistic Least Squares algorithm.

Algorithm 3 Optimistic Least Squares
1: Input: Function class F , confidence radius functions tβt : r0, 1s Ñ Ru8

t“1.
2: for t “ 1, 2, ¨ ¨ ¨ do
3: Compute least squares regression

ft “ argmin
fPF

t´1
ÿ

ℓ“1

pfpxℓ, aℓq ´ rℓq
2
. (12)

4: Compute confidence set3,

Gt “

#

f P F :
t´1
ÿ

ℓ“1

pftpxℓ, aℓq ´ fpxℓ, aℓqq2 ď βtpδq

+

5: Receive context xt.
6: Compute Utpxt, aq “ maxfPGt

fpxt, aq for all a P A.
7: play at “ argmaxaPA Utpxt, aq and receive rt “ f‹pxt, atq ` ξt.
8: end for

To derive a bound for the optimistic least squares algorithm, we require guarantees for the confidence
sets. This is captured by the following Lemma.
Lemma B.1. [LS guarantee] Let δ P p0, 1q, txt, atu

8
t“1 be a sequence of context-action pairs and

and trtu
8
t“1 be a sequence of reward values satisfying rt “ f‹pxt, atq ` ξt where f‹ P F and ξt

is conditionally zero mean. Let ft “ argminfPF
řt´1

ℓ“1 pfpxℓ, aℓq ´ rℓq
2 be the least squares fit. If

Assumption 2.2 holds then there is a constant C ą 0 such that,

t´1
ÿ

ℓ“1

pftpxℓ, aℓq ´ f‹pxℓ, aℓqq
2

ď βtpδq

with probability at least 1 ´ δ for all t P N where βtpδq “ 4CB2 logpt ¨ |F |{δq.

The proof of Lemma B.1 can be found in Section C. This result allows provides us with the tools to
justify the choice of confidence sets in Algorithm 3. A simple corollary is,
Corollary B.2. Let δ P p0, 1q and βtpδq “ 4CB2 logpt ¨ |F |{δq as defined in Lemma B.1. The
confidence sets Gt satisfy f‹ P Gt for all t P N simultaneously with probability at least 1 ´ δ.
Moreover, this property holds, Utpx, atq ě maxaPA f‹pxt, aq for all t P N.

The proof of this result can be found in Appendix C. In order to relate the scale of these confidence sets
with the algorithm’s regret we need to tie these values to the statistical capacity of the function class
F . This can be captured by its eluder dimension (see Definition 2.2). This is done via Lemma B.3, a
standard result that is crucial in showing an upper bound for the optimistic least squares algorithm
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regret. This result is a version of Lemma 3 from (Chan et al., 2021) presented as Lemma 4.3
in (Pacchiano et al., 2024) which we reproduce here for readability.

Lemma B.3. Let F be a function class satisfying Assumption 2.2 and with ϵ-eluder dimension
ĞdeluderpF , ϵq . For all T P N and any dataset sequence tD̄tu

8
t“1 for D̄1 “ H and D̄t “ tpx̄ℓ, āℓqu

t´1
ℓ“1

of context-action pairs, the following inequality on the sum of the uncertainty radii holds,

T
ÿ

t“1

ωpx̄t, āt, D̄tq ď O
ˆ

min

ˆ

BT,

b

βtpδq ¨ ĞdeluderpF , B{T q ¨ T `BĞdeluderpF , B{T q

˙˙

Lemmas B.1 and B.3 can be used to prove Algorithm 3 satisfies the following regret guarantee,

Theorem B.4. The regret of the Optimistic Least Squares (Algorithm 3) with input values δ P p0, 1q

and βtpδq “ 4CB2 logpt|F |{δq satisfies,

RegretpT q ď O
´

B
a

deluderpF , B{T q ¨ T ¨ logpT |F |{δq `BdeluderpF , B{T q

¯

with probability at least 1 ´ δ for all T P N simultaneously.

The proof of this result can be found in Appendix C. Thus the dominating term of the regret bound (the
term growing at a

?
T rate) for optimistic least squares scales with the square root of the uncertainty

radius, in this case given by the function βT pδq “ 4CB2 logpT |F |{δq defined in Lemma B.1.
Unfortunately, this introduces an unavoidable dependence on B. Thus, the dominating term of our
regret bound has a scale controlled by B instead of the variances tσ2

ℓ uTℓ“1. This dependence comes
up because the proof of Lemma B.1 relies on Freedman’s inequality (Lemma A.1 in Appendix A)
that exhibits an unavoidable dependence on the scale of the random variables in the low order terms.
In the following section we show a way to bypass this issue by introducing a multi-bucket regression
approach that has a vanishing dependence on the low order terms.

C PROOFS OF SECTION B

Lemma B.1. [LS guarantee] Let δ P p0, 1q, txt, atu
8
t“1 be a sequence of context-action pairs and

and trtu
8
t“1 be a sequence of reward values satisfying rt “ f‹pxt, atq ` ξt where f‹ P F and ξt

is conditionally zero mean. Let ft “ argminfPF
řt´1

ℓ“1 pfpxℓ, aℓq ´ rℓq
2 be the least squares fit. If

Assumption 2.2 holds then there is a constant C ą 0 such that,

t´1
ÿ

ℓ“1

pftpxℓ, aℓq ´ f‹pxℓ, aℓqq
2

ď βtpδq

with probability at least 1 ´ δ for all t P N where βtpδq “ 4CB2 logpt ¨ |F |{δq.

Proof. Substituting rℓ “ f‹pxℓ, aℓq ` ξℓ into the definition of ft we obtain the following inequalities,

t´1
ÿ

ℓ“1

pftpxℓ, aℓq ´ rℓq
2 ď

t´1
ÿ

ℓ“1

pf‹pxℓ, aℓq ´ rℓq
2 “

t´1
ÿ

ℓ“1

ξ2ℓ

substituting again the definition of rℓ on the left hand side of the inequality above and rearranging
terms yields,

t´1
ÿ

ℓ“1

pftpxℓ, aℓq ´ f‹pxℓ, aℓqq2 ď 2
t´1
ÿ

ℓ“1

ξℓ ¨ pf‹pxℓ, aℓq ´ ftpxℓ, aℓqq (13)

We now focus on bounding the RHS of equation 13. For any f P F let Zf
ℓ “ ξℓ ¨

pf‹pxℓ, aℓq ´ fpxℓ, aℓqq. The sequence Zt forms a martingale difference sequence such that

Eℓ

„

´

Zf
ℓ

¯2
ȷ

“ σ2
ℓ ¨ pfpxℓ, aℓq ´ f‹pxℓ, aℓqq2 and Assumption 2.2 implies |Zf

ℓ | ď B2 for all

ℓ P N.
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We can use Freedman inequality (see for example Lemma A.2 in Appendix A) to bound this term
and show that with probability at least 1 ´ δ1 for all t P N,

t´1
ÿ

ℓ“1

ξℓ ¨ pfpxℓ, aℓq ´ f‹pxℓ, aℓqq ď η ¨

˜

t´1
ÿ

ℓ“1

σ2
ℓ ¨ pfpxℓ, aℓq ´ f‹pxℓ, aℓqq

2

¸

`
C logpt{δ1q

η

piq
ď

1

4

t´1
ÿ

ℓ“1

pfpxℓ, aℓq ´ f‹pxℓ, aℓqq
2

` 4CB2 logpt{δ1q.

Where inequality piq follows from setting η “ 1
4B2 and noting that σℓ ď B2 for all ℓ. Finally, setting

δ1 “ δ
|F |

and considering a union bound over all f P F we conclude that,

t´1
ÿ

ℓ“1

ξℓ ¨ pf‹pxℓ, aℓq ´ ftpxℓ, aℓqq ď
1

4

t´1
ÿ

ℓ“1

pftpxℓ, aℓq ´ f‹pxℓ, aℓqq
2

` 4CB2 logpt ¨ |F |{δq.

Plugging this inequality into equation 13 and rearranging terms yields,
t´1
ÿ

ℓ“1

pftpxℓ, aℓq ´ f‹pxℓ, aℓqq2 ď 4CB2 logpt ¨ |F |{δq.

Corollary B.2. Let δ P p0, 1q and βtpδq “ 4CB2 logpt ¨ |F |{δq as defined in Lemma B.1. The
confidence sets Gt satisfy f‹ P Gt for all t P N simultaneously with probability at least 1 ´ δ.
Moreover, this property holds, Utpx, atq ě maxaPA f‹pxt, aq for all t P N.

Proof. Lemma B.1 implies that f‹ P Gt for all t P N simultaneously with probability at least 1 ´ δ.
When this occurs, the following sequence of inequalities is satisfied,

f‹pxt, aq ď max
fPGt

fpxt, aq “ Utpxt, aq ď Utpxt, atq.

for all a P A. Thus it holds that maxaPA f‹pxt, aq ď Utpxt, atq.

Theorem B.4. The regret of the Optimistic Least Squares (Algorithm 3) with input values δ P p0, 1q

and βtpδq “ 4CB2 logpt|F |{δq satisfies,

RegretpT q ď O
´

B
a

deluderpF , B{T q ¨ T ¨ logpT |F |{δq `BdeluderpF , B{T q

¯

with probability at least 1 ´ δ for all T P N simultaneously.

Proof. Lemma 3 implies the event E where f‹ P Gt for all t P N occurs with probability at least
1 ´ δ. The analysis of the regret of Algorithm 3 follows the typical analysis for optimistic algorithms,

RegretpT q “

T
ÿ

t“1

max
aPA

f‹pxt, aq ´ f‹pxt, atq

ď

T
ÿ

t“1

Utpxt, atq ´ f‹pxt, atq

“

T
ÿ

t“1

ftpxt, atq ´ f‹pxt, atq

piq
ď

T
ÿ

t“1

max
f,f 1PGt

fpxt, atq ´ f 1pxt, atq

“

T
ÿ

t“1

ωpxt, at,Gtq

piiq
ď O

´

BdeluderpF , B{T q `
a

βT pδq ¨ deluderpF , B{T q ¨ T
¯
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where ft is the function that achieves the argmax in the definition of Ut over input context xt.
Inequality piq holds because when E holds, f‹ P Gt and ft P Gt for all t P N. Inequality piiq is a
variation of Lemma 3 in (Chan et al., 2021) (see a simplified version in Lemma B.3 from Appendix F).
Substituting βT pδq “ 4CB2 logpT |F |{δq finalizes the result.

D PROOFS OF SECTION 3

Proposition 3.1. [Variance Dependent Least Squares] Let t P N, τ ě 0 and δ̃ ą 0. If σ2
ℓ ď rσ2 for

all ℓ ď t´ 1 and Et holds then

P

˜

t´1
ÿ

ℓ“1

pfτt pxℓ, aℓq ´ f‹pxℓ, aℓqq
2
1pωpxℓ, aℓ,Gℓq ď τq ď βtpτ, rδ, rσ

2q, Et

¸

ě PpEtq ´ δ̃. (3)

Proof. Given f P F we consider a martingale difference sequence Zf
ℓ for ℓ P N defined as,

Zf
ℓ “ pfpxℓ, aℓq ´ f‹pxℓ, aℓqq ¨ 1pωpxℓ, aℓ,Gℓq ď τq ¨ 1pf P Gℓq ¨ ξℓ

First let’s see that
|Zf

ℓ | ď minpτB,B2q @ℓ P N.
To see this we recognize two cases, first when f R Gℓ in which case Zτ

ℓ “ 0. When f P Gℓ, we
also recognize two cases. When 1pωpxℓ, aℓ,Gℓq ď τq “ 0 the random variable Zf

ℓ “ 0 . When
f P Gℓ, and ωpxℓ, aℓ,Gℓq ď τ , it follows that |fpxℓ, aℓq ´ f‹pxℓ, aℓq| ď τ . Finally since |ξℓ| ď B

we conclude |Zf
ℓ | ď minpτB,B2q.

The conditional variance of the martingale difference sequencetZf
ℓ uℓ can be upper bounded as

VarℓpZ
f
ℓ q “ EℓrpZ

f
ℓ q2s

“ σ2
ℓ pfpxℓ, aℓq ´ f‹pxℓ, aℓqq21pωpxℓ, aℓ,Gℓq ď τq ¨ 1pf P Gℓq

piq
ď rσ2pfpxℓ, aℓq ´ f‹pxℓ, aℓqq21pωpxℓ, aℓ,Gℓq ď τq ¨ 1pf P Gℓq

where inequality piq follows because of σ2
ℓ ď rσ2.

We now invoke Lemma A.1 applied to the martingale difference sequence tZf
ℓ u

t´1
ℓ“1. In this case

R “ τB and we’ll set η “ 1
minpτB,B2q`4rσ2 ď 1

R . Thus,

t´1
ÿ

ℓ“1

Zf
ℓ ď

1

minpτB,B2q ` 4σ2

t´1
ÿ

ℓ“1

rσ2pfpxℓ, aℓq ´ f‹pxℓ, aℓqq21pωpxℓ, aℓ,Gℓq ď τq ¨ 1pf P Gℓq`

pminpτB,B2q ` 4rσ2q logp|F |{rδq

ď
1

4

t´1
ÿ

ℓ“1

pfpxℓ, aℓq ´ f‹pxℓ, aℓqq21pωpxℓ, aℓ,Gℓq ď τq ¨ 1pf P Gℓq ` pminpτB,B2q ` 4rσ2q logp|F |{rδq

(14)

with probability at least 1 ´
rδ

|F |
. A union bound implies the same inequality holds for all f P F

simultaneously with probability at least 1 ´ rδ. Let’s call this event B. We have just shown that
PpBq ě 1 ´ δ̃. In particular when B holds, inequality 14 is also satisfied for f “ fτt . When Et holds
fτt P Gt´1 then 1pfτt P Gℓq “ 1 for all4 ℓ ď t´ 1 and therefore,

t´1
ÿ

ℓ“1

Z
fτ
t

ℓ “

t´1
ÿ

ℓ“1

pfτt pxℓ, aℓq ´ f‹pxℓ, aℓqq ¨ ξℓ ¨ 1pωpxℓ, aℓ,Gℓq ď τq. (15)

4This is where the definition of Gt´1 as an intersection of all previous confidence sets is important. The
intersection ensures that for any τ the minimizer of the filtered least squares is achieved at an fτ

t for which the
inidicator 1pf P Gℓq “ 1 is true for all ℓ ď t ´ 1.
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We proceed by subtituting the definition of rℓ “ f‹pxℓ, aℓq ` ξℓ in equation 1 and noting that when
Et holds f‹ P Gt´1, so that fτt , the minimizer of the uncertainty filtered least squares loss satisfies,

t´1
ÿ

ℓ“1

pfτt pxℓ, aℓq ´ f‹pxℓ, aℓq ´ ξℓq
2
1pωpxℓ, aℓ,Gℓq ď τq ď

t´1
ÿ

ℓ“1

ξ2ℓ1pωpxℓ, aℓ,Gℓq ď τq

expanding the left hand side of the inequality above and rearranging terms yields,
t´1
ÿ

ℓ“1

pfτt pxℓ, aℓq ´ f‹pxℓ, aℓqq
2
1pωpxℓ, aℓ,Gℓq ď τq ď 2

t´1
ÿ

ℓ“1

pfτt pxℓ, aℓq ´ f‹pxℓ, aℓqq ¨ ξℓ ¨ 1pωpxℓ, aℓ,Gℓq ď τq

(16)

To bound the right hand side of the inequality above we plug inequality 14 and equality 15 into
equation 16 we conclude that when B X Et holds,
t´1
ÿ

ℓ“1

pfτt pxℓ, aℓq ´ f‹pxℓ, aℓqq
2
1pωpxℓ, aℓ,Gℓq ď τq ď 2

t´1
ÿ

ℓ“1

pfτt pxℓ, aℓq ´ f‹pxℓ, aℓqq ¨ ξℓ ¨ 1pωpxℓ, aℓ,Gℓq ď τq ď

1

2

t´1
ÿ

ℓ“1

pfτt pxℓ, aℓq ´ f‹pxℓ, aℓqq
2
1pωpxℓ, aℓ,Gℓq ď τq ` p2minpτB,B2q ` 8rσ2q logp|F |{rδq

rearranging terms we conclude that when B X Et is satisfied,
t´1
ÿ

ℓ“1

pfτt pxℓ, aℓq ´ f‹pxℓ, aℓqq
2
1pωpxℓ, aℓ,Gℓq ď τq ď p4minpτB,B2q ` 16rσ2q logp|F |{rδq

with probability at least PpB X Etq ě PpEtq ´ rδ. This finalizes the result.

Proposition D.1 (Intersection Result). Let A,B,C be three sets such that,

PpAXBq ě PpAq ´ δ1, PpAX Cq ě PpAq ´ δ2

then PpAXB X Cq ě PpAq ´ δ1 ´ δ2.

Proof. Notice that PpA X Bq ě PpAq ´ δ1 is equivalent to PpAzBq ď δ1. Similarly PpA X Cq ě

PpAq ´ δ2 is equivalent to PpAzCq ď δ2. Therefore,

PpAzrB X Csq ď PpAzBq ` PpAzCq ď δ1 ` δ2.

Finally, this is equivalent to the statement PpAXB X Cq ě PpAq ´ δ1 ´ δ2.

Lemma 3.2. The confidence intervals are valid so that f‹ P Gt for all t P N and optimism holds,
maxaPA f‹pxt, aq ď Utpxt, atq with probability at least 1 ´ δ for all t P N.

Proof. Applying the results of Proposition 3.1 setting rδ “ δ
4pi`1q2t2 , τ “ τi for i P t1, ¨ ¨ ¨ , rlogptqsu

and rσ “ σ we conclude that when Et holds,

f‹ P

#

f P F :
t´1
ÿ

ℓ“1

pfτt pxℓ, aℓq ´ fpxℓ, aℓqq
2
1pωpxℓ, aℓ,Gℓq ď τiq ď βt

ˆ

τi,
δ

4pi` 1q2t2
, σ2

˙

+

with probability at least PpEtq ´ δ
2pi`1q2t2 . Recall that

Gtpτiq “

#

f P F :
t´1
ÿ

ℓ“1

pfτt pxℓ, aℓq ´ fpxℓ, aℓqq
2
1pωpxℓ, aℓ,Gℓq ď τiq ď βt

ˆ

τi,
δ

4pi` 1q2t2
, σ2

˙

+

XGt´1pτiq

Thus, we conclude that f‹ P Gtpτiq with probability at least PpEtq ´ δ
4pi`1q2t2 . Proposition D.1 and

a union bound over all i P t0u Y rqts we conclude that f‹ P Gt for all t P N with probability at
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least PpEtq ´ δ
2t2 . And therefore PpEt`1q ě PpEtq ´ δ

2t2 . Finally, since PpE1q “ 1 we conclude that
PpX8

t“1Etq ě 1 ´ δ.

Optimism is an immediate consequence of the previous result. When f‹ P Gt, it follows that
f‹pxt, aq ď maxfPGt,a1PA fpxt, a

1q “ Utpxt, atq for any a P A. And therefore maxaPA f‹pxt, aq ď

Utpxt, atq.

Theorem 3.5. If δ P p0, 1q is the input to Algorithm 1 satisfies,

RegretpT q ď O
´

σ
a

deluderpF , B{T q logpT |F |{δqT `B ¨ deluderpF , B{T q logpT q logpT |F |{δq

¯

.

for all T P N with probability at least 1 ´ δ.

Proof. The analysis of the regret of Algorithm 1 follows the typical analysis for optimistic algorithms.
When E holds,

RegretpT q
piq
ď

T
ÿ

t“1

ωpxt, at,Gtq

piiq
ď O

´

σ
a

deluderpF , B{T q logpT |F |{δqT `B ¨ deluderpF , B{T q logpT q logpT |F |{δq

¯

Where inequality piq is a consequence of conditioning on E and Lemma 3.2 where optimism holds
and follows the same logic as in the proof of Theorem B.4. The last inequality piiq follows from
Lemma 3.4. We finish the proof by noting that PpEq ě 1 ´ δ.

E PROOFS OF SECTION 4

In this section we list the proofs of Section 4. These are split in two subsections. In Section E.1 we
present the proofs of Section 4.1. In Section E.3 we present the proofs of Section 4.3.

E.1 PROOFS OF SECTION 4.1

Lemma 4.1. Let δ̃ P p0, 1q, t P N, txℓ, aℓu
t´1
ℓ“1 be a sequence of context-action pairs and and trtu

t´1
t“1

be a sequence of values satisfying rℓ “ f‹pxℓ, aℓq ` ξℓ where f‹ P F and the ξℓ are conditionally
zero mean. Let tbℓu

t´1
ℓ“1be a filtering process of Bernoulli random variables bℓ P t0, 1u such that bℓ is

Σpx1, a1, b1, r1, ¨ ¨ ¨ , xℓ´1, aℓ´1, bℓ´1, rℓ´1, xℓ, aℓq-measurable. Let fbt
t “ argminfPF

řt´1
ℓ“1 bℓ ¨

pfpxℓ, aℓq ´ rℓq
2 be the “filtered” least squares estimator. If Assumption 2.2 holds then,

ˇ

ˇ

ˇ

ˇ

ˇ

t´1
ÿ

ℓ“1

ξℓ ¨ bℓ ¨

´

f‹pxℓ, aℓq ´ fbt
t pxℓ, aℓq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď 6B2 logp2|F |{δ̃q.

and
t´1
ÿ

ℓ“1

bℓ ¨

´

fbt
t pxℓ, aℓq ´ f‹pxℓ, aℓq

¯2

ď 8B2 logp2|F |{δ̃q

with probability at least 1 ´ δ̃.

Proof. Substituting yℓ “ f‹pxℓ, aℓq ` ξℓ into the definition of ft we obtain the following inequalities,
t´1
ÿ

ℓ“1

bℓ ¨ pfbt
t pxℓ, aℓq ´ yℓq

2 ď

t´1
ÿ

ℓ“1

bℓ ¨ pf‹pxℓ, aℓq ´ yℓq
2 “

t´1
ÿ

ℓ“1

bℓ ¨ ξ2ℓ

substituting again the definition of yℓ on the left hand side of the inequality above and rearranging
terms yields,

t´1
ÿ

ℓ“1

bℓ ¨ pfbt
t pxℓ, aℓq ´ f‹pxℓ, aℓqq2 ď 2

t´1
ÿ

ℓ“1

ξℓ ¨ bℓ ¨

´

f‹pxℓ, aℓq ´ fbt
t pxℓ, aℓq

¯

(17)
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We now focus on bounding the RHS of equation 17. For any f P F let Zf
ℓ “ ξℓ ¨ bℓ ¨

pf‹pxℓ, aℓq ´ fpxℓ, aℓqq. The sequence Zt forms a martingale difference sequence such that

Eℓ

„

´

Zf
ℓ

¯2
ȷ

“ σ2
ℓ ¨ bℓ ¨ pfpxℓ, aℓq ´ f‹pxℓ, aℓqq2 and Assumption 2.2 implies |Zf

ℓ | ď B2 for

all ℓ P N.

We can use a two sided version of Freedman inequality (see for example Lemma A.1 in Appendix A)
to bound this term and show that with probability at least 1 ´ δ1 ,
ˇ

ˇ

ˇ

ˇ

ˇ

t´1
ÿ

ℓ“1

ξℓ ¨ bℓ ¨ pfpxℓ, aℓq ´ f‹pxℓ, aℓqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď η ¨

˜

t´1
ÿ

ℓ“1

σ2
ℓ ¨ bℓ ¨ pfpxℓ, aℓq ´ f‹pxℓ, aℓqq

2

¸

`
logp2{δ1q

η

piq
ď

1

4

t´1
ÿ

ℓ“1

bℓ ¨ pfpxℓ, aℓq ´ f‹pxℓ, aℓqq
2

` 4B2 logp2{δ1q.

Where inequality piq follows from setting η “ 1
4B2 and noting that σℓ ď B2 for all ℓ. Finally, setting

δ1 “ δ̃
|F |

and considering a union bound over all f P F we conclude that,
ˇ

ˇ

ˇ

ˇ

ˇ

t´1
ÿ

ℓ“1

ξℓ ¨ bℓ ¨

´

f‹pxℓ, aℓq ´ fbt
t pxℓ, aℓq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

4

t´1
ÿ

ℓ“1

bℓ¨
´

fbt
t pxℓ, aℓq ´ f‹pxℓ, aℓq

¯2

`4B2 logp2|F |{δ̃q.

(18)
Plugging this inequality into equation 13 and rearranging terms yields,

t´1
ÿ

ℓ“1

bℓ ¨

´

fbt
t pxℓ, aℓq ´ f‹pxℓ, aℓq

¯2

ď 8B2 logp2|F |{δ̃q. (19)

Moreover, combining equations 18 and 19,
ˇ

ˇ

ˇ

ˇ

ˇ

t´1
ÿ

ℓ“1

ξℓ ¨ bℓ ¨

´

f‹pxℓ, aℓq ´ fbt
t pxℓ, aℓq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď 6B2 logp2|F |{δ̃q.

Lemma 4.2. Let δ̃ P p0, 1q be a probability parameter. If Assumption 2.2 holds,

2

3
¨Wbt

t ´ 11B2 logp4|F |{δ̃q ď ĎWbt
t ď 2Wbt

t ` 48B2 logp4|F |{δ̃q

with probability at least 1 ´ δ̃ where ĎWbt
t “

řt´1
ℓ“1 bℓ ¨ σ2

ℓ .

Proof. This result follows the same template of the proof of Lemma B.1 which we reproduce here.
Substituting rℓ “ f‹pxℓ, aℓq ` ξℓ in the definition of Wbt

t ,

Wbt
t “

t´1
ÿ

ℓ“1

bℓ ¨ pf‹pxℓ, aℓq ` ξt ´ fbt
t pxℓ, aℓqq2

“

t´1
ÿ

ℓ“1

bℓ ¨ pf‹pxℓ, aℓq ´ fbt
t pxℓ, aℓqq2 ` 2

t´1
ÿ

ℓ“1

bℓ ¨ ξℓ ¨ pf‹pxℓ, aℓq ´ fbt
t pxℓ, aℓqq `

t´1
ÿ

ℓ“1

bℓ ¨ ξ2ℓ .

Applying Lemma 4.1 we conclude that,

Wbt
t ´ 12B2 logp4|F |{δ̃q ď

t´1
ÿ

ℓ“1

bℓ ¨ ξ2ℓ ď Wbt
t ` 20B2 logp4|F |{δ̃q. (20)

with probability at least 1´ δ̃{2. Using Proposition A.5 setting β “ 1{2 and B̃ “ B2 and Zℓ “ bℓ ¨ξ2ℓ ,

1

2

t´1
ÿ

ℓ“1

bℓ ¨ σ2
ℓ ´ 4B2 logp2{δ̃q ď

t´1
ÿ

ℓ“1

bℓ ¨ ξ2ℓ ď
3

2

t´1
ÿ

ℓ“1

bℓ ¨ σ2
ℓ ` 4B2 logp2{δ̃q (21)
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with probability at least 1 ´ δ̃{2. Combining equations 20 and 21 with a union bound we conclude,

2

3
¨Wbt

t ´8B2 logp4|F |{δ̃q´
8

3
¨B2 logp2{δ̃q ď

t´1
ÿ

ℓ“1

bℓ¨σ
2
ℓ ď 2Wbt

t `40B2 logp4|F |{δ̃q`8B2 logp2{δ̃q

with probability at least 1 ´ δ̃. Thus,

2

3
¨Wbt

t ´ 11B2 logp4|F |{δ̃q ď

t´1
ÿ

ℓ“1

bℓ ¨ σ2
ℓ ď 2Wbt

t ` 48B2 logp4|F |{δ̃q

with probability at least 1 ´ δ̃.

Corollary 4.3. Let δ1 P p0, 1q, txℓ, aℓ, rℓu
8
ℓ“1 be a sequence of context-action and rewards triplets

such that rℓ “ f‹pxℓ, aℓq ` ξℓ where f‹ P F and the ξℓ are conditionally zero mean. Let tbℓu
t´1
ℓ“1be

a filtering process of Bernoulli random variables bℓ P t0, 1u such that bℓ is Σpx1, a1, b1, r1, ¨ ¨ ¨ ,

xℓ´1, aℓ´1, bℓ´1, rℓ´1, xℓ, aℓq-measurable and fbt
t “ argminfPF

řt´1
ℓ“1 bℓ ¨ pfpxℓ, aℓq ´ rℓq

2 be the
“filtered” least squares estimator. If Assumption 2.2 holds there exists a universal constant C ą 0 such
that the cumulative variance estimator Wbt

t “
řt´1

ℓ“1 bℓ ¨ prℓ ´ fbt
t pxℓ, aℓqq2 satisfies,

2

3
¨Wbt

t ´ C ¨B2 logpt|F |{δ1q ď ĎWbt
t ď 2Wbt

t ` C ¨B2 logpt|F |{δ1q

with probability at least 1 ´ δ1 for all t P N.

Proof. Applying Lemma 4.1 with δ̃ “ δ1

2t2 and applying a union bound over all t P N yields the
inequality,

2

3
¨Wbt

t ´ 11B2 logp8t2|F |{δ1q ď ĎWbt
t ď 2Wbt

t ` 48B2 logp8t2|F |{δ̃q

finally, 48 logp8t2|F |{δ1q “ Θ pt|F |{δ1q yields the desired result.

E.2 PROOFS OF SECTION 4.2

Theorem 4.6. Let δ P p0, 1q. If δ{2 is the input to Algorithm 1 and pσ2
t estimators are computed by

setting δ1 “ δ{2. If σt “ σ for all t P N the regret of Algorithm 1 with modified confidence set sizes
satisfies,

RegretpT q ď O
´

σ
a

deluderpF , B{T q logpT |F |{δqT `BdeluderpF , B{T q log2pT q logpT |F |{δq

¯

.

for all T P N with probability at least 1 ´ δ.

Proof. The analysis of the regret of Algorithm 1 follows the typical analysis for optimistic algorithms.
When Ē holds optimism implies,

RegretpT q ď

T
ÿ

t“1

ωpxt, at,Gtq

In order to bound the right hand side of the inequality above, we split it in rlogpT qs epochs Tj such
that Tj “ r2j´1 ` 1, ¨ ¨ ¨ ,minp2j , T qs.

T
ÿ

t“1

ωpxt, at,Gtq ď

rlogpT qs
ÿ

j“1

ÿ

tPTj

ωpxt, at,Gtq
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We proceed to bound the sums
ř

tPTj
ωpxt, at,Gtq for all epochs Ti. When Ē holds, and t P Tj for

some j P rlogpT qs, it follows that if f, f 1 P Gt then for each threshold level i P t0u Y rqts,

ÿ

ℓPTjXrt´1s

`

fpxℓ, aℓq ´ f 1pxℓ, aℓq
˘2

1pωpxℓ, aℓ,Gℓq ď τiq ď

t´1
ÿ

ℓ“1

`

fpxℓ, aℓq ´ f 1pxℓ, aℓq
˘2

1pωpxℓ, aℓ,Gℓq ď τiq

ď βt

ˆ

τi,
δ

2pi` 1q2
, pσ2

t

˙

ď βt

ˆ

τi,
δ

2pi` 1q2
, pσ2

minpTjq

˙

“ p4minpτiB,B
2q ` 16pσ2

minpTjqq logpt|F |{δ̃q

ď O

˜

minpτiB,B
2q ` σ2 `

B2 logpt|F |{δq ¨ logpt|F |{δ̃q

t

¸

where the last inequality follows from noting that equation 5 implies pσ2
minpTjq

“

O
´

σ2 `
B2 logpt|F |{δq

t

¯

.

Thus the same argument as in the proof of Lemma 3.3 implies that when Ē holds, for τ ě τmaxpTjq,

ÿ

tPTj

1pωpxt, at,Gtq ą τq ď O
ˆ

deluderpF , τq

ˆ

B logpT |F |{δq

τ
`
σ2 logpT |F |{δq

τ2
`
B2 log2pT |F |{δq

τ2 maxpTjq
` 1

˙˙

.

in particular, for each t P Tj ,

t
ÿ

ℓ“minpTjq

1pωpxℓ, aℓ,Gℓq ą τq ď O
ˆ

deluderpF , τq

ˆ

B logpT |F |{δq

τ
`
σ2 logpT |F |{δq

τ2
`

B2 log2pT |F |{δq

τ2pt´ minpTjq ` 1q

˙˙

(22)

For the remainder of the argument we will mimic the proof of Lemma 3.4. We’ll use the notation
d “ deluderpF , BT q and ωt “ ωpxt, at,Gtq. We will first order the sequence twtu

T
t“1 in descending

order, as wi1 , ¨ ¨ ¨ , wiT . We have,

maxpTjq
ÿ

t“minpTjq

ωt “

maxpTjq
ÿ

t“minpTjq

ωit “

maxpTjq
ÿ

t“minpTjq

wit1pwit ą
B

T
q `

maxpTjq
ÿ

t“minpTjq

wit1pwit ď
B

T
q

ď
B|Tj |

T
`

maxpTjq
ÿ

t“minpTjq

ωit1pwit ą
B

T
q

Applying inequality 22 setting τ “ ωit ą B
T we have that,

t´ minpTjq ` 1 ď

t
ÿ

ℓ“minpTjq

1pωpxℓ, aℓ,Gℓq ą ωitq

ď O
ˆ

deluderpF , τq

ˆ

B logpT |F |{δq

ωit

`
σ2 logpT |F |{δq

ω2
it

`
B2 log2pT |F |{δq

ω2
it
t´ minpTjq ` 1q

˙˙

Therefore,

t´ minpTjq ` 1 ď O

˜

deluderpF , B{T q logpT |F |{δq ¨ max

˜

B

ωit

,
σ2

ω2
it

,
B

a

deluderpF , B{T qωit

¸¸

ď O
ˆ

deluderpF , B{T q logpT |F |{δq ¨ max

ˆ

B

ωit

,
σ2

ω2
it

˙˙

.
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Thus, for all t P Tj it follows that,

ωit ď O

˜

deluderpF , B{T q logpT |F |{δq ¨
B

t´ minpTjq ` 1
` σ

d

deluderpF , B{T q logpT |F |{δq

t´ minpTjq ` 1

¸

Finally, we can use this formula to sum over all t P Tj for any given j,

ÿ

tPTj

ωt ď O
ˆ

BdeluderpF , B{T q logp|Tj |q logpT |F |{δq ` σ
b

deluderpF , B{T q logpT |F |{δq|Tj |

˙

finally, summing over all j P rlogpT qs we conclude,

T
ÿ

t“1

ωt ď O

¨

˝

rlogpT qs
ÿ

j“1

BdeluderpF , B{T q logp|Tj |q logpT |F |{δq ` σ
b

deluderpF , B{T q logpT |F |{δq|Tj |

˛

‚

ď O
´

BdeluderpF , B{T q log2pT q logpT |F |{δq ` σ
a

deluderpF , B{T q logpT |F |{δqT
¯

E.3 PROOFS OF SECTION 4.3

Proposition 4.7. Let δ̃ P p0, 1q and τ ą 0. Let trE 1
ℓu

8
ℓ“1 be a sequence of events such that rE 1

1 Ě rE 1
2 ¨ ¨ ¨

and rE 1
t Ď E 1

t. Let f pτ,2τs

t be result of solving the uncertainty-filtered least-squares objective from equa-
tion 6. Additionally letWbτ

t
t be the filtered estimator of the cumulative variances defined by equation 4

when setting bτℓ “ 1 pωpxℓ, aℓ,G1
ℓq P pτ, 2τ sq and ĎW

bτ
t

t :“
řt´1

ℓ“1 σ
2
ℓ ¨ 1 pωpxℓ, aℓ,G1

ℓq P pτ, 2τ sq.
There exist universal constants C,C 1 ą 0 such that the events Wtpτq defined for any t as

t´1
ÿ

ℓ“1

´

f
pτ,2τs

t pxℓ, aℓq ´ f‹pxℓ, aℓq
¯2

1pωpxℓ, aℓ,Gℓq P pτ, 2τ sq

ď C 1τ

c

W
bτ

t
t log

´

t|F |{δ̃
¯

` C 1τB log
´

t|F |{δ̃
¯

and

C 1τ

c

W
bτ
t

t log
´

t|F |{δ̃
¯

` C 1τB log
´

t|F |{δ̃
¯

ď C
2

τ

c

ĎW
bτ
t

t log
´

t|F |{δ̃
¯

` C
2

τB log
´

t|F |{δ̃
¯

satisfy the bound PprE 1
t X pWtpτqq

c
q ď δ̃

2t2 .

Proof. Given f P F we consider a martingale difference sequence Zf
ℓ for ℓ P N defined as,

Zf
ℓ “ pfpxℓ, aℓq ´ f‹pxℓ, aℓqq ¨ 1pωpxℓ, aℓ,G1

ℓq P pτ, 2τ sq ¨ 1pf P G1
ℓq ¨ ξℓ

First let’s see that
|Zf

ℓ | ď minp2τB,B2q @ℓ P N.
To see this we recognize two cases, first when f R G1

ℓ in which case Zτ
ℓ “ 0. When f P G1

ℓ, we
also recognize two cases. When 1pωpxℓ, aℓ,G1

ℓq P pτ, 2τ sq “ 0 the random variable Zf
ℓ “ 0. When

f P G1
ℓ, and ωpxℓ, aℓ,G1

ℓq ď 2τ , it follows that |fpxℓ, aℓq ´ f‹pxℓ, aℓq| ď 2τ . Finally since |ξℓ| ď B

we conclude |Zf
ℓ | ď minp2τB,B2q.

The conditional variance of the martingale difference sequence tZf
ℓ uℓ is upper bounded as

VarℓpZ
f
ℓ q “ EℓrpZ

f
ℓ q2s

“ σ2
ℓ pfpxℓ, aℓq ´ f‹pxℓ, aℓqq2 ¨ 1pωpxℓ, aℓ,G1

ℓq P pτ, 2τ sq ¨ 1pf P G1
ℓq

piq
ď 4τ2σ2

ℓ1pωpxℓ, aℓ,G1
ℓq P pτ, 2τ sq ¨ 1pf P G1

ℓq
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where inequality piq holds because pfpxℓ, aℓq ´ f‹pxℓ, aℓqq2 ¨ 1pωpxℓ, aℓ,G1
ℓq P pτ, 2τ sq ¨ 1pf P

G1
ℓq ď 4τ2. Let δ̃t “ δ̃

4t2 . We now invoke Lemma A.4 applied to the martingale difference sequence
tZf

ℓ u. We conclude that,

t1
´1
ÿ

ℓ“1

Zf
ℓ ď 8τ

g

f

f

e

t1´1
ÿ

ℓ“1

σ2
ℓ ¨ 1 pωpxℓ, aℓ,G1

ℓq P rτ, 2τqq ¨ 1pf P G1
ℓq ¨ ln

12|F | ln 2t1

δ̃t
`12τB ln

12|F | ln 2t1

δ̃

(23)
with probability at least 1 ´

rδt
|F |

for all t1 P N. A union bound implies the same inequality holds

for t1 “ t and for all f P F simultaneously with probability at least 1 ´ rδt. Let’s call this event
Bt so that P pBtq ě 1 ´ δ̃. We have just shown that PpBtq ě 1 ´ δ̃t. In particular when Bt holds,
inequality 23 is also satisfied for t1 “ t and f “ f

pτ,2τs

t . When E 1
t holds we have f pτ,2τs

t P G1
t´1 then

1pf
pτ,2τs

t P G1
ℓq “ 1 for all5 ℓ ď t´ 1 and therefore,

t´1
ÿ

ℓ“1

Z
f

pτ,2τs
t

ℓ “

t´1
ÿ

ℓ“1

´

f
pτ,2τs

t pxℓ, aℓq ´ f‹pxℓ, aℓq
¯

¨ ξℓ ¨ 1pωpxℓ, aℓ,G1
ℓq P pτ, 2τ sq. (24)

We proceed by subtituting the definition of rℓ “ f‹pxℓ, aℓq ` ξℓ in equation 1 and noting that when
rE 1
t holds f‹ P G1

t´1, so that f pτ,2τs

t , the minimizer of the uncertainty-filtered empirical least squares
loss satisfies,

t´1
ÿ

ℓ“1

´

f
pτ,2τs

t pxℓ, aℓq ´ f‹pxℓ, aℓq ´ ξℓ

¯2

1pωpxℓ, aℓ,G1
ℓq P pτ, 2τ sq ď

t´1
ÿ

ℓ“1

ξ2ℓ1pωpxℓ, aℓ,G1
ℓq P pτ, 2τ sq

expanding the left hand side of the inequality above and rearranging terms yields,

t´1
ÿ

ℓ“1

´

f
pτ,2τs

t pxℓ, aℓq ´ f‹pxℓ, aℓq
¯2

1pωpxℓ, aℓ,G1
ℓq P pτ, 2τ sq

ď 2
t´1
ÿ

ℓ“1

´

f
pτ,2τs

t pxℓ, aℓq ´ f‹pxℓ, aℓq
¯

¨ ξℓ ¨ 1pωpxℓ, aℓ,G1
ℓq P pτ, 2τ sq (25)

To bound the right hand side of the inequality above we plug inequality 23 (setting t1 “ t) into
equation 25 to conclude that when Bt X rE 1

t holds,

t´1
ÿ

ℓ“1

´

f
pτ,2τs

t pxℓ, aℓq ´ f‹pxℓ, aℓq

¯2

1pωpxℓ, aℓ,G1
ℓq P pτ, 2τ sq ď 2

t´1
ÿ

ℓ“1

´

f
pτ,2τs

t pxℓ, aℓq ´ f‹pxℓ, aℓq

¯

¨ ξℓ ¨ 1pωpxℓ, aℓ,G1
ℓq P pτ, 2τ sq

ď 16τ

g

f

f

e

t´1
ÿ

ℓ“1

σ2
ℓ ¨ 1 pωpxℓ, aℓ,G1

ℓq P pτ, 2τ sq ¨ ln
12|F | ln 2t

δ̃t
`

24τB ln
12|F | ln 2t

δ̃t

We will call Corollary 4.3 setting δ1 “ δ̃t and the filtering indicator variables equal to bτℓ “

1 pωpxℓ, aℓ,G1
ℓq P pτ, 2τ sq. Let’s call Ct denote the event that

2

3
¨W

bτ
t1

t1 ´C¨B2 logpt1|F |{δ̃tq ď ĎW
bτ

t1

t1 :“
t1

´1
ÿ

ℓ“1

σ2
ℓ ¨1

`

ωpxℓ, aℓ,G1
ℓq P pτ, 2τ s

˘

ď 2W
bτ

t1

t1 `C¨B2 logpt1|F |{δ̃tq

(26)

5This is where the definition of Gt as an intersection of all confidence sets becomes important. The intersection
ensures that for any τ the minimizer of the filtered least squares is achieved at an fτ

t for which the inidicator
1pf P Gℓq “ 1 is true for all ℓ ď t ´ 1.
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for all t1 P N (and in particular true for t1 “ t) so that P pCtq ě 1 ´ δ̃t. We conclude that for any
t P N when Bt X Ct X rE 1

t,

t´1
ÿ

ℓ“1

pfτt pxℓ, aℓq ´ f‹pxℓ, aℓqq
2
1pωpxℓ, aℓ,G1

ℓq P pτ, 2τ sq ď 16τ

d

´

2W
bτ

t
t ` C ¨B2 logpt|F |{δ̃q

¯

¨ ln
12|F | ln 2t

δ̃t
`

24τB ln
12|F | ln 2t

δ̃t

“ O
ˆ

τ

c

W
bτ

t
t log

´

t|F |{δ̃
¯

` τB log
´

t|F |{δ̃t

¯

˙

“ C 1τ

c

W
bτ

t
t log

´

t|F |{δ̃
¯

` C 1τB log
´

t|F |{δ̃t

¯

for some universal constant C 1 ą 0 (independent of t). Similarly, as a consequence of the LHS of
equation 26, for all t when Bt X Ct X rE 1

t holds,

C 1τ

c

W
bτ

t
t log

´

t|F |{δ̃
¯

`C 1τB log
´

t|F |{δ̃
¯

ď C
2

τ

c

ĎW
bτ

t
t log

´

t|F |{δ̃
¯

`C
2

τB log
´

t|F |{δ̃
¯

for some universal constant C
2

ą 0 (independent of t). We finalize the result by noting that
Bt X Ct X rE 1

t Ď Wtpτq X rE 1
t and that PpBt X Ct X rE 1

tq ě PprE 1
tq ´ 2rδt “ PprE 1

tq ´ δ̃
2t2 and therefore

that PpWtpτq X rE 1
tq ě PpBt X Ct X rE 1

tq ě PprE 1
tq ´ 2rδt “ PprE 1

tq ´ δ̃
2t2 . Finally, this implies

PprE 1
t X pWtpτqq

c
q ď δ̃

2t2 .

Lemma 4.8. Let δ P p0, 1q. When the confidence sets G1
t Ď F are defined as in Algorithm 2, then

f‹ P G1
t so that maxaPA f‹pxt, aq ď Utpxt, atq (optimism holds), and for all i P rqts,

G1
tpτiq Ď

!

f P F s.t.
t´1
ÿ

ℓ“1

´

f
pτi,2τis

t pxℓ, aℓq ´ fpxℓ, aℓq
¯2

1pωpxℓ, aℓ,Gℓq P pτi, 2τisq ď

C
2

τi

b

ĎW
b

τi
t

t log p2pi` 1q2t|F |{δq ` C
2

τiB log
`

2i2t|F |{δ
˘

)

.

(7)

with probability at least 1 ´ δ for all t P N. Where C
2

ą 0 is the same universal constant as in
Proposition 4.7.

Proof. Applying Proposition 4.7 with rE 1
t “ Et, τ “ τi and δ̃ “ δ

2i2 we conclude that for any i P rqts,
the event Wtpτiq satisfies PppWtpτiqq

c
X E 1

tq ď δ
4i2t2 . A union bound over all i P rqts, we conclude

that events tWtpτiquiPrqts satisfy,

P
``

XiPrqtsWtpτiq
˘c

X E 1
t

˘

ď
ÿ

iPrqts

P
`

pWtpτiqq
c

X E 1
t

˘

ď
δ

2t2
(27)

Notice that when Wtpτiq XE 1
t holds, f‹ P G1

tpτiq for i P rqts. And therefore when
`

XiPrqtsWtpτiq
˘

X

E 1
t holds, f‹ P G1

t. Thus,
`

XiPrqtsWtpτiq
˘

X E 1
t Ď E 1

t`1.

Define a sequence of events Vt as V0 “ Ω (the whole sample space such that PpV0q “ 1), Vt “

Xt
ℓ“1

`

XiPrqtsWℓpτiq
˘

. Notice that by definition V1 Ě V2 Ě ¨ ¨ ¨ .

Notice that f‹ P G1
0 “ F so that P pE 1

1q “ 1 . This combined with
`

XiPrqtsWtpτiq
˘

X E 1
t Ď E 1

t`1

implies Xt
ℓ“1

`

XiPrqtsWℓpτiq
˘

Ď E 1
t`1 so that Vt Ď Et`1 for all t.

Applying Proposition 4.7 with rE 1
t “ Vt´1, τ “ τi and δ̃ “ δ

2i2 we conclude that for any i P rqts, the
event Wtpτiq satisfies PppWtpτiqq

c
X Vt´1q ď δ

4i2t2 . A union bound over all i P rqts, we conclude
that events tWtpτiquiPrqts satisfy,
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P
``

XiPrqtsWtpτiq
˘c

X Vt´1

˘

ď
ÿ

iPrqts

P ppWtpτiqq
c

X Vt´1q ď
δ

2t2
(28)

Since V 1
t “

“`

XiPrqtsWtpτiq
˘

X Vt´1

‰

Y
“`

XiPrqtsWtpτiq
˘c

X Vt´1

‰

we conclude that

P pVtq ě P
``

XiPrqtsWtpτiq
˘

X Vt´1

˘

“ PpVt´1q´P
``

XiPrqtsWtpτiq
˘c

X Vt´1

˘

ě PpVt´1q´
δ

2t2
.

(29)

Since PpV0q “ 1, unrolling inequality 29 implies that for any m P N,

P pVmq “ P pXm1ďmVm1 q ě 1 ´

m
ÿ

ℓ“1

δ

2ℓ2
.

Thus, taking the limit we conclude that X8
t“1Vt holds with probability at least

limtÑ8

´

1 ´
řt

ℓ“1
δ

2ℓ2

¯

ě 1 ´ δ.

Since X8
t“1E 1

t Ě X8
t“1Vt, we also conclude that X8

t“1E 1
t holds with probability at least 1 ´ δ (when

X8
t“1Vt holds).

Thus we conclude that for all i P rqts,

C 1τi

b

W
b

τi
t

t log p2i2t|F |{δq ` C 1τiB log
`

2i2t|F |{δ
˘

ď C
2

τi

b

ĎW
b

τi
t

t log p2i2t|F |{δq ` C
2

τiB log
`

2i2t|F |{δ
˘

. (30)

and f‹ P G1
t is satisfied for all t P N simultaneously with probability at least 1 ´ δ. Optimism

holds because when f‹ P G1
t, f‹pxt, aq ď maxfPG1

t
fpxt, aq ď Utpxt, atq for all a P A and therefore

maxaPA f‹pxt, aq ď Utpxt, atq. Moreover when inequality 30 is satisfied,

G1
tpτiq “

!

f P F s.t.
t´1
ÿ

ℓ“1

´

f
rτi,2τiq

t pxℓ, aℓq ´ fpxℓ, aℓq
¯2

1pωpxℓ, aℓ,Gℓq P pτi, 2τisq ď

C 1τi

b

W
b

τi
t

t log p2i2t|F |{δq ` C 1τiB log
`

2i2t|F |{δ
˘

)

Ď

!

f P F s.t.
t´1
ÿ

ℓ“1

´

f
pτi,2τis

t pxℓ, aℓq ´ fpxℓ, aℓq
¯2

1pωpxℓ, aℓ,Gℓq P pτi, 2τisq ď

C
2

τi

b

ĎW
b

τi
t

t log p2i2t|F |{δq ` C
2

τiB log
`

2i2t|F |{δ
˘

)

.

This finalizes the proof.

Theorem 4.10. Let T P N, δ P p0, 1q and q “ logpT q. The regret of Algorithm 2 satisfies,

RegretpT q

ď O

¨

˝deluder

ˆ

F ,
B

T

˙

g

f

f

e

˜

T
ÿ

t“1

σ2
t

¸

logpT q log pT |F |{δq ` Bdeluder

ˆ

F ,
B

T

˙

logpT q logpT |F |{δq

˛

‚

simultaneously for all T P N with probability at least 1 ´ δ.

Proof. Let’s condition on E 1. When this event holds, optimism ensures the pseudo-regret can be
upper bounded by the sum of the widths,

RegretpT q ď

T
ÿ

t“1

ωpxt, at,G1
tq.
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This is the same argument as in the proof of Theorem 3.5.

Recall that τi “ B
2i . In order to bound the RHS of this inequality, we use the fact that ωpxt, at,Fq ď

B for all t P N,

T
ÿ

t“1

ωpxt, at,G1
tq ď

T ¨B

2q
`

q
ÿ

i“1

˜

T
ÿ

t“1

1

ˆ

ωpxt, at,G1
tq P

ˆ

B

2i
,
B

2i´1

ȷ˙

¨
B

2i´1

¸

“
T ¨B

2q
`

q
ÿ

i“1

˜

T
ÿ

t“1

1
`

ωpxt, at,G1
tq P pτi, 2τis

˘

¨ 2τi

¸

“
T ¨B

2q
` 2

q
ÿ

i“1

τi ¨

˜

T
ÿ

t“1

1
`

ωpxt, at,G1
tq P pτi, 2τis

˘

¸

Lemma 4.9 implies that when E 1 holds,

T
ÿ

t“1

ωpxt, at,G1
tq ď

T ¨B

2q
` 2

q
ÿ

i“1

τi ¨

˜

T
ÿ

t“1

1
`

ωpxt, at,G1
tq P pτi, 2τis

˘

¸

ď
T ¨B

2q
` 2

q
ÿ

i“1

τi ¨

´

rC ¨ deluderpF , τiq
τi

b

ĎW
b

τi
T

T log ppi` 1qT |F |{δq`

rC ¨B ¨ deluderpF , τiq
τi

log ppi` 1qT |F |{δq ` rC ¨ deluderpF , τiq
¯

“
T ¨B

2q
` 2 rC

q
ÿ

i“1

´

deluderpF , τiq
b

ĎW
b

τi
T

T log ppi` 1qT |F |{δq`

B ¨ deluderpF , τiq log ppi` 1qT |F |{δq ` τideluderpF , τiq
¯

ď
T ¨B

2q
` 2 rCdeluder

ˆ

F , B
2q

˙

”

q
ÿ

i“1

b

ĎW
b

τi
T

T log ppq ` 1qT |F |{δq`

B log ppq ` 1qT |F |{δq ` τi

ı

(31)

Notice that,

q
ÿ

i“1

b

ĎW
b

τi
T

T log ppq ` 1qT |F |{δq “
a

log ppq ` 1qT |F |{δq

˜

q
ÿ

i“1

b

ĎW
b

τi
T

T

¸

piq
ď

a

q log ppq ` 1qT |F |{δq

g

f

f

e

q
ÿ

i“1

ĎW
b

τi
T

T

ď

g

f

f

e

˜

T
ÿ

t“1

σ2
t

¸

q log ppq ` 1qT |F |{δq (32)

where inequality piq holds because
řq

i“1

?
zi ď

a

q
řq

i“1 zi for z1, ¨ ¨ ¨ , zq ě 0. Plugging inequal-
ity 32 into 31 and using the fact that q “ logpT q we conclude that
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T
ÿ

t“1

ωpxt, at,G1
tq ď B ` 2 rCdeluder

ˆ

F , B
T

˙

g

f

f

e

˜

T
ÿ

t“1

σ2
t

¸

logpT q log pplogpT q ` 1qT |F |{δq`

2 rCBdeluder

ˆ

F , B
T

˙

logpT q logpplogpT q ` 1qT |F |{δq ` 2 rCBdeluder

ˆ

F , B
T

˙

“ O

¨

˝deluder

ˆ

F , B
T

˙

g

f

f

e

˜

T
ÿ

t“1

σ2
t

¸

logpT q log pT |F |{δq `Bdeluder

ˆ

F , B
T

˙

logpT q logpT |F |{δq

˛

‚

Using the fact that PpE 1q ě 1 ´ δ finalizes the proof.

F ELUDER LEMMAS

In this section we have compiled all Lemmas that deal with eluder dimension arguments.

Lemma 4.9. If tG1
tu

8
t“1 is the sequence of confidence sets produced by Algorithm 1, there exists a

universal constant rC ą 0 such that when E 1 is satisfied,

T
ÿ

t“1

1pωpxt, at,G1
tq P pτi, 2τisq ď

rC ¨ deluderpF , τiq

τi

b

ĎW
b
τi
T

T log piT |F |{δq `
rC ¨ B ¨ deluderpF , τiq

τi
log piT |F |{δq ` rC ¨ deluderpF , τiq

for all T P N and i P rqT s.

Proof. For simplicity we’ll use the notation d “ deluderpF , τiq .

Define Ipτi,2τis

T “ tℓ ď T s.t. ωpxℓ, aℓ,Gℓq P pτi, 2τisu. And in order to refer to each of its compo-

nent indices let’s write Ipτi,2τis

T “

!

ℓ1, ¨ ¨ ¨ , ℓ
|Ipτi,2τis

T |

)

with ℓ1 ă ℓ2 ¨ ¨ ¨ ă ℓ
|Ipτi,2τis

T |
.

Let N P NY t0u. We’ll start by showing that if |Ipτi,2τis

T | ą dpN `1q then there exists an index m P
”

|Ipτi,2τis

T |

ı

and a pair of functions f p1q

ℓm
, f

p2q

ℓm
P Gℓm such that f p1q

ℓm
pxℓm , aℓmq ´ f

p2q

ℓm
pxℓm , aℓmq P

pτi, 2τis and N ` 1 non-empty disjoint subsets rS1, ¨ ¨ ¨ , rSN`1 Ď tℓjujďm´1 such that,

}f
p1q

ℓm
´ f

p2q

ℓm
}2
rSj

:“
ÿ

ℓP rSj

´

f
p1q

ℓm
pxℓ, aℓq ´ f

p2q

ℓm
pxℓ, aℓq

¯2

ą τ2i .

To prove this result, let’s start building the sequence rS1, ¨ ¨ ¨ , rSN`1 by setting rSj “ ℓj for all j “

1, ¨ ¨ ¨ , N`1. Let’s look atm “ N`2, ¨ ¨ ¨ , |Ipτi,2τis

T |. Consider a pair of functions f p1q

ℓm
, f

p2q

ℓm
P Gℓm

such that f p1q

ℓm
pxm, amq ´ f

p2q

ℓm
pxℓm , aℓmq ą τi. If }f

p1q

ℓm
´ f

p2q

ℓm
}2
rSj

ą τ2i for all j “ 1, ¨ ¨ ¨ , N ` 1

the result follows. Otherwise there exists at least one j such that }f
p1q

ℓm
´ f

p2q

ℓm
}2
rSj

ď τ2i . Thus, we can

add ℓm to rSj .

Finally, by construction, the rSj sets satisfy the definition of eluder τi-independence and therefore
they must satisfy |rSj | ď d for all j.

This means the process of expanding the sets trSju
N`1
j“1 must ‘fail’ at most after all rSj have d elements.

Thus |Ipτi,2τis

T | ą dpN ` 1q guarantees this will occur.
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As we have shown, if |Ipτi,2τis

T | ą dpN ` 1q, there exists an index m P r|Ipτi,2τis

T |s, disjoint subsets
rS1, ¨ ¨ ¨ , rSN`1 Ď tℓjujďm´1 and f p1q

ℓm
, f

p2q

ℓm
P Gℓm such that,

pN ` 1qτ2i ă
ÿ

jPrN`1s

}f
p1q

ℓm
´ f

p2q

ℓm
}2
rSj

ď }f
p1q

ℓm
´ f

p2q

ℓm
}2

tℓju
m´1
j“1

. (33)

On the other hand, since f p1q

ℓm
, f

p2q

ℓm
P G1

ℓm
Ď G1

ℓm
pτiq, we have that if E 1 holds Lemma 4.8 implies,

}f
pjq

ℓm
´ f

pτi,2τis

ℓm
}2

tℓju
m´1
j“1

“

ℓm´1
ÿ

ℓ“1

´

f
rτi,2τiq

ℓm
pxℓ, aℓq ´ f

pjq

ℓm
pxℓ, aℓq

¯2

1pωpxℓ, aℓ,G1
ℓq P rτi, 2τiqq

ď C
2

τi

c

ĎW
b

τi
ℓm

ℓm
log p2i2ℓm|F |{δq ` C

2

τiB log
`

2i2ℓm|F |{δ
˘

piq
ď C

2

τi

b

ĎW
b

τi
T

T log p2i2T |F |{δq ` C
2

τiB log
`

2i2T |F |{δ
˘

for j P t1, 2u. Where inequality piq holds because ℓm ď T and because ĎW
b
τi
t

t is monotonic w.r.t.

t for all i P t0u Y rqs (recall ĎWb
τi
t

t :“
řt´1

ℓ“1 σ
2
ℓ ¨ 1 pωpxℓ, aℓ,G1

ℓq P rτi, 2τiqq). Therefore when E 1

holds,

}f
p1q

ℓm
´ f

p2q

ℓm
}2

tℓju
m´1
j“1

ď 2}f
p1q

ℓi
´ f‹}2

tℓju
m´1
j“1

` 2}f‹ ´ f
p2q

ℓi
}2

tℓju
m´1
j“1

ď 4 ¨

ˆ

C
2

τi

b

ĎW
b

τi
T

T log p2i2T |F |{δq ` C
2

τiB log
`

2i2T |F |{δ
˘

˙

(34)

For simplicity within the context of this proof let’s use the notation

rβT pτi, δq :“ C
2

τi

b

ĎW
b

τi
T

T log p2i2T |F |{δq ` C
2

τiB log
`

2i2T |F |{δ
˘

.

Thus combining inequalities 33 and 34 we conclude that if N ě max
´

4rβT pτi,δq

τ2
i

´ 1, 0
¯

then

τ2i pN ` 1q ě 4rβT pτi, δq and therefore we would incur in a contradiction because

4rβT pτi, δq ď pN ` 1qτ2 ă }f
p1q

ℓi
´ f

p2q

ℓi
}2

tℓju
m´1
j“1

ď 4rβT pτi, δq.

This implies

|Ipτi,2τis

T | ď d

˜

max

˜

4rβT pτi, δq

τ2i
, 0

¸

` 1

¸

ď d

˜

4rβT pτi, δq

τ2i
` 1

¸

“
4dC

2

τi

b

ĎW
b

τi
T

T log p2i2T |F |{δq `
4dC

2

B

τi
log

`

2i2T |F |{δ
˘

` d

“ O
ˆ

deluderpF , τiq
τi

b

ĎW
b

τi
T

T log piT |F |{δq `
B ¨ deluderpF , τiq

τi
log piT |F |{δq ` deluderpF , τiq

˙

Since we have shown this result for an arbitrary T P N and to prove the result we have only used that
T P N the result follows.

Lemma 3.3. If Algorithm 1 is run with input variance upper bound σ ą 0, E is satisfied and tGtu
8
t“1

is the sequence of confidence sets produced by Algorithm 1 then for all T P N and τ ě τqT ,

T
ÿ

t“1

1pωpxt, at,Gtq ą τq ď 3 ¨ deluderpF , τq

ˆ

64B logpT |F |{δq

τ
`

64σ2 logpT |F |{δq

τ2
` 1

˙
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Proof. For simplicity we’ll use the notation d “ deluderpF , τq. We’ll start by showing the following
bound,

T
ÿ

t“1

1pωpxt, at,Gtq P pτ, 2τ sq ď d

ˆ

64CB logpT |F |{δq

τ
`

64Cσ2 logpT |F |{δq

τ2
` 1

˙

Define Ipτ,2τs

T “ tℓ ď T s.t. ωpxℓ, aℓ,Gℓq P pτ, 2τ su. And in order to refer to each of its component

indices let’s write Ipτ,2τs

T “

!

ℓ1, ¨ ¨ ¨ , ℓ
|Ipτ,2τs

T |

)

with ℓ1 ă ℓ2 ¨ ¨ ¨ ă ℓ
|Ipτ,2τs

T |
.

Let N P N Y t0u. We’ll start by showing that if |Ipτ,2τs

T | ą dpN ` 1q then there exists an index i P
”

|Ipτ,2τs

T |

ı

and a pair of functions f p1q

ℓi
, f

p2q

ℓi
P Gℓi such that f p1q

ℓi
pxℓi , aℓiq ´ f

p2q

ℓi
pxℓi , aℓiq P pτ, 2τ s

and N ` 1 non-empty disjoint subsets rS1, ¨ ¨ ¨ , rSN`1 Ď tℓjujďi´1 such that,

}f
p1q

ℓi
´ f

p2q

ℓi
}2
rSj

:“
ÿ

ℓP rSj

´

f
p1q

ℓi
pxℓ, aℓq ´ f

p2q

ℓi
pxℓ, aℓq

¯2

ą τ2.

To prove this result, let’s start building the sequence rS1, ¨ ¨ ¨ , rSN`1 by setting rSj “ ℓj for all j “

1, ¨ ¨ ¨ , N ` 1. Let’s look at m “ N ` 2, ¨ ¨ ¨ , |Ipτ,2τs

T |. Consider a pair of functions f p1q

ℓm
, f

p2q

ℓm
P Gℓm

such that f p1q

ℓm
pxm, amq ´ f

p2q

ℓm
pxℓm , aℓmq ą τ . If }f

p1q

ℓm
´ f

p2q

ℓm
}2
rSj

ą τ2 for all j “ 1, ¨ ¨ ¨ , N ` 1

the result follows. Otherwise there exists at least one j such that }f
p1q

ℓm
´ f

p2q

ℓm
}2
rSj

ď τ2. Thus, we can

add ℓm to rSj .

Finally, by construction, the rSj sets satisfy the definition of eluder τ -independence and therefore they
must satisfy |rSj | ď d for all j.

This means the process of expanding the sets trSju
N`1
j“1 must ‘fail’ at most after all rSj have d elements.

Thus when |Ipτ,2τs

T | ą dpN ` 1q guarantees this will occur. Letpi “ argmintj s.t. τj ě 2τu be the
smallest index in the input thresholds for Algorithm 1 such that τ

pi ě 2τ . Notice that 4τ ě τ
pi.

As we have shown, if |Ipτ,2τs

T | ą dpN ` 1q, there exists an index i P r|Ipτ,2τs

T |s and f p1q

ℓi
, f

p2q

ℓi
P Gℓi

such that,
pN ` 1qτ2 ă

ÿ

jPrN`1s

}f
p1q

ℓi
´ f

p2q

ℓi
}2
rSj

ď }f
p1q

ℓi
´ f

p2q

ℓi
}2
Ipτ,2τs

T Xtℓju
i´1
j“1

. (35)

On the other hand, since f p1q

ℓi
, f

p2q

ℓi
P Gℓi Ď Gℓipτpiq, we have that

Ipτ
piq

T “
␣

ℓ ď T s.t. ωpxℓ, aℓ,Gℓq ď τ
pi

(

satisfies Ipτ,2τs

T Ď Ipτ
piq

T and therefore,

}f
p1q

ℓi
´ f

p2q

ℓi
}2
Ipτ,2τs

T Xtℓju
i´1
j“1

ď }f
p1q

ℓi
´ f

p2q

ℓi
}2

I
pτ

pi
q

T Xtℓju
i´1
j“1

(36)

Proposition 3.1 implies

}f
p1q

ℓi
´ f

p2q

ℓi
}2

I
pτ

pi
q

T Xtℓju
i´1
j“1

ď 2}f
p1q

ℓi
´ f

pτîq

t }2

I
pτ

pi
q

T Xtℓju
i´1
j“1

` 2}f
pτîq

t ´ f
p2q

ℓi
}2

I
pτ

pi
q

T Xtℓju
i´1
j“1

ď 4βℓipτpi, δq

ď 4βT pτ
pi, δq

“ 4 ¨ p4minpτ
piB,B

2q ` 16σ2q logpT |F |{δq

ď 4 ¨ p4τ
piB ` 16σ2q logpT |F |{δq

ď 64 ¨ pτB ` σ2q logpT |F |{δq

when E holds.
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Thus combining inequalities 35 and 36 we conclude that if N ě max
´

4βT pτ
pi,δq

τ2 ´ 1, 0
¯

then

τ2pN ` 1q ě 4βT pτ
pi, δq and therefore we would incur in a contradiction because

4βT pτ
pi, δq ď pN ` 1qτ2 ă }f

p1q

ℓi
´ f

p2q

ℓi
}2

I
pτ

pi
q

T Xtℓju
i´1
j“1

ď 4βT pτ
pi, δq.

This implies

|Ipτ,2τs

T | ď d

ˆ

max

ˆ

4βT pτ
pi, δq

τ2
, 0

˙

` 1

˙

ď d

ˆ

4βT pτ
pi, δq

τ2
` 1

˙

ď d

ˆ

64B logpT |F |{δq

τ
`

64σ2 logpT |F |{δq

τ2
` 1

˙

(37)

Recall that τj “ τ0 ¨ 2´j . Observe that Ipτ,τ0s

T ď I
pτ,2τs

T `
ř

pi`1
j“1 I

pτj ,τj´1s

T . We will apply the result

in equation 37 to each of these quantities and focus on bounding
ř

pi`1
j“1 I

pτj ,τj´1s

T . Equation 37 along
with the inequality deluderpF , τjq ď d “ deluderpF , τq for all j ď pi ` 1 implies we can focus on

controlling
ř

pi`1
j“1

1
τj

and
ř

pi`1
j“1

1
τ2
j

. We proceed to bound these terms.

pi`1
ÿ

j“1

1

τj
“

1

τ0

pi`1
ÿ

j“1

2j “
2

τ0

pi
ÿ

j“0

2j “
2

τ0
p2

pi`1 ´ 1q ď
2

τ
pi`1

similarly

pi`1
ÿ

j“1

1

τ2j
“

1

τ20

pi`1
ÿ

j“1

22j “
4

τ20

pi
ÿ

j“0

22j “
4

τ20
¨

˜

22ppi`1q ´ 1

3

¸

ď
4

3τ20
¨ 22ppi`1q ď

2

τ2
pi`1

Finally, since τ ď τ
pi`1, we have 2

τ
pi`1

ď 2
τ and 2

τ2
pi`1

ď 2
τ2 .

Combining these results we conclude that,

ˇ

ˇ

ˇ
Ipτ,τ0s

T

ˇ

ˇ

ˇ
ď 3 ¨ d

ˆ

64B logpT |F |{δq

τ
`

64σ2 logpT |F |{δq

τ2
` 1

˙

the result follows

Lemma 3.4. If E holds, then for all T P N the uncertainty widths of context-action pairs from
Algorithm 1 satisfy,

T
ÿ

t“1

ωpxt, at,Gtq ď O
´

σ
a

deluderpF , B{T q logpT |F |{δqT `BdeluderpF , B{T q logpT q logpT |F |{δq

¯

.

Proof. For simplicity we’ll use the notation d “ deluderpF , BT q and ωt “ ωpxt, at,Gtq. We will first
order the sequence twtu

T
t“1 in descending order, as wi1 , ¨ ¨ ¨ , wiT . We have,

T
ÿ

t“1

ωt “

T
ÿ

t“1

ωit “

T
ÿ

t“1

wit1pwit ą
B

T
q `

T
ÿ

t“1

wit1pwit ď
B

T
q ď B `

T
ÿ

t“1

ωit1pwit ą
B

T
q
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Applying Lemma 3.3 by setting τ “ ωit ą B
T we have that,

t ď

T
ÿ

ℓ“1

1pωpxℓ, aℓ,Gℓq ą ωitq

ď 3 ¨ deluderpF , ωitq

ˆ

64CB logpT |F |{δq

ωit

`
64Cσ2 logpT |F |{δq

ω2
it

` 1

˙

ď 3 ¨ deluderpF , B{T q

ˆ

64CB logpT |F |{δq

ωit

`
64Cσ2 logpT |F |{δq

ω2
it

` 1

˙

piq
ď 6 ¨ deluderpF , B{T q

ˆ

64CB logpT |F |{δq

ωit

`
64Cσ2 logpT |F |{δq

ω2
it

˙

where the removal of the `1 term in step piq follows because ωit ą B{T . Therefore,

t ď 768C ¨ deluderpF , B{T q logpT |F |{δq ¨ max

ˆ

B

ωit

,
σ2

ω2
it

˙

.

This inequality can be used to produce a bound for ωit when ωit ą B{T ,

ωit ď 768C ¨ deluderpF , B{T q logpT |F |{δq ¨
B

t
` σ

c

768C ¨ deluderpF , B{T q logpT |F |{δq

t

Since
řT

t“1
1
t ď 2 logpT q ` 1 and 1?

t
ď 2

?
T we have that

T
ÿ

t“1

ωit1pwit ą
B

T
q ď

1536CBdeluderpF , B{T q logpT q logpT |F |{δq ` σ
a

1536C ¨ deluderpF , B{T q logpT |F |{δqT
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