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Not All Inputs Are Valid: Towards Open-Set Video Moment
Retrieval Using Language

Anonymous Authors

ABSTRACT
As a significant yet challenging multimedia task, Video Moment
Retrieval (VMR) targets to retrieve the specific moment correspond-
ing to a sentence query from an untrimmed video. Although re-
cent respectable works have made remarkable progress in this
task, they implicitly are rooted in the closed-set assumption that
all the given queries as video-relevant1. Given a video-irrelevant
OOD query in open-set scenarios, they still utilize it for wrong
retrieval, which might lead to irrecoverable losses in high-risk sce-
narios, e.g., criminal activity detection. To this end, we creatively
explore a brand-new VMR setting termed Open-Set Video Moment
Retrieval (OS-VMR), where we should not only retrieve the pre-
cise moments based on ID query, but also reject OOD queries. In
this paper, we make the first attempt to step toward OS-VMR and
propose a novel model OpenVMR, which first distinguishes ID
and OOD queries based on the normalizing flow technology, and
then conducts moment retrieval based on ID queries. Specifically,
we first learn the ID distribution by constructing a normalizing
flow, and assume the ID query distribution obeys the multi-variate
Gaussian distribution. Then, we introduce an uncertainty score to
search the ID-OOD separating boundary. After that, we refine the
ID-OOD boundary by pulling together ID query features. Besides,
video-query matching and frame-query matching are designed for
coarse-grained and fine-grained cross-modal interaction, respec-
tively. Finally, a positive-unlabeled learning module is introduced
for moment retrieval. Experimental results on three challenging
datasets demonstrate the effectiveness of our OpenVMR. Codes will
be released upon acceptance.

CCS CONCEPTS
• Information systems→ Video search.

KEYWORDS
Open-set Video Moment Retrieval, ID Query, OOD Query

1 INTRODUCTION
Video Moment Retrieval (VMR) is a challenging yet crucial task in
multi-modal retrieval [8, 34, 66, 71, 82], which has attracted signifi-
cant attention in recent years due to its vast potential applications
1In this paper, we treat “video-relevant query” as “in-distribution (ID) query” and
“video-irrelevant query” as “out-of-distribution (OOD) query”.
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Query: He is holding a bowl of noodles and broth.

(a) Example of video moment retrieval (VMR).

The person gets 

out a plate.

The person gets 

out a plate.

Reject OOD query

Previous VMR methods

Wrong localization

(2.53s, 8.94s)

Our open-set VMR method

The man cleans again 

with soap and water the 

car for the second time.

Ground Truth 1.76s 8.58s

OOD query OOD query ID query

Right ID localization

(12.47s, 19.24s)

(b) Comparison between previous methods and our method.

Figure 1: (a) Example of the video moment retrieval (VMR) task.
(b) Comparison between previous VMR models and our open-set
VMR model. Given a video and a query, previous methods directly
conduct retrieval, regardless of whether the query is video-relevant
(ID) or video-irrelevant (OOD). Our model can reject OOD queries
and recognize ID queries for moment retrieval.

in areas such as human activity retrieval [21, 54, 77, 84]. As illus-
trated in Fig. 1(a), its main objective is to identify and retrieve the
relevant video moment corresponding to a given sentence query.
Obviously, most of the video content is query-irrelevant, and only a
very short video segment matches the query. It is substantially more
challenging since a well-designed model should not only model
the complex multi-modal interaction between videos and queries,
but also capture complicated context information for cross-modal
semantics alignment. The target model requires recognizing ob-
jects/activities and identifying which visual content is sufficient
to retrieve the accurate moment expressed in free-form natural
language, accounting for the fact that the accurate moment may
occupy only a tiny portion of the entire video. To achieve this,
both videos and queries must be deeply integrated to distinguish
the subtle details of adjacent frames, thereby enabling accurate
determination of moment boundaries.

Most existing VMR works [5, 15, 35, 72, 73, 76, 79] are under
fully-supervised setting, where each frame is manually labeled
as the query-relevant or query-irrelevant frame. Instead of using
such dense frame annotations, some recent works try to explore
a weakly-supervised setting [6, 33, 40, 55, 83] with only the video-
query correspondence to alleviate the reliance on a certain extent.
However, their performance is less satisfactory. Although the above
VMR methods have made exciting headway, they refer to the close-
set assumption that we can obtain a moment in the untrimmed
video for any given query. In the real-world open-set environment,
we often input a random or irrelevant query for moment retrieval.
As shown in Fig. 1(b), given an irrelevant query, previous methods
still retrieve a wrong moment as the model output, which will lead
to irrecoverable losses in high-risk scenarios, e.g., criminal activity

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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detection. It is unacceptable for our society to classify normal activ-
ity as criminal and to treat criminal activity as normal. In real-world
multimedia applications, we have a small-scale set of video-query
pairs, and many unannotated videos and many video-irrelevant
queries. Since labeling video-query annotation is very expensive
and time-consuming, it is unrealistic to manually annotate all the
queries as video-relevant (i.e., ID) or video-irrelevant (i.e., OOD).

Therefore, we explore a novel and challenging task: open-set
VMR (OS-VMR). Given an untrimmed video, our OS-VMR task aims
to not only temporally retrieve the specific moment semantically
corresponding to the ID query, but also reject the OOD query shown
in Fig. 1(b). Different from previous closed-set settings that only
align video and query representations for moment retrieval, our
OS-VMR task suffers from three major challenges: 1) how to accu-
rately learn the distribution of ID queries? 2) how to precisely reason
the separating boundary of ID and OOD queries? 3) how to fully
interact with video and ID queries? In this paper, we propose a novel
OpenVMR framework for the challenging OS-VMR task. Specifi-
cally, we first design a multi-layer coupling block to construct the
normalizing flow for learning ID query distribution based on the
multi-variate Gaussian distribution assumption. Besides, we reason
the ID-OOD separating boundary by a well-designed uncertainty
score and the log-likelihood distribution of each query. Moreover,
we pull ID query features together to refine the ID-OOD boundary
based on a triplet loss for OOD query detection. After that, for
the video and ID query, we conduct the cross-modal interaction
for video-query matching and frame-query matching. Finally, we
design a simple yet effective positive-unlabeled learning module
with pre-defined proposals to retrieve the target moment.

Our main contributions are summarized as follows:

• To the best of our knowledge, we make the first attempt at
the open-set Video Moment Retrieval (OS-VMR) task, which
is fundamentally more challenging but highly valuable in
open-set settings. In this setting, we should not only retrieve
the video moment for ID queries, but also reject OOD queries.

• To address our challenging OS-VMR task, we propose a gen-
eral OpenVMR framework that first distinguishes ID and
OOD queries by the normalizing flow technology, and then
utilizes ID queries for moment retrieval.

• We conduct extensive experiments on three popular VMR
datasets (ActivityNet Captions, Charades-STA and TACoS).
Experimental results on both open-set and closed-set settings
show that our proposed model outperforms other state-of-
the-art approaches by a large margin.

2 RELATEDWORK
Video moment retrieval. The goal of Video Moment Retrieval
(VMR) is to recognize and temporally localize all the action in-
stances in an untrimmed video [5, 43, 79]. Most of the existing
VMR methods [3, 12, 47, 72, 81, 82] refer to the fully-supervised
setting where all video-query pairs are annotated in detail, includ-
ing corresponding moment boundaries. The above methods heavily
rely on datasets that require numerous manually labeled anno-
tations for training. To ease the human labeling efforts, several
recent works [6, 33, 55, 83] consider a weakly-supervised setting
that only accesses the information of matched video-query pairs

without accurate moment boundaries. However, their performance
is significantly worse than fully-supervised methods.
Open-set recognition. Open-set Recognition (OSR) aims to clas-
sify in-distribution (ID) samples and reject out-of-distribution (OOD)
samples. Previous OSR methods [18, 28, 32, 36, 39, 41, 56, 60, 69,
70, 74] can be divided into four types: classification-based meth-
ods [17, 27, 29, 32], density-based methods [23, 52], distance-based
methods [28, 57] and reconstruction-based methods [67, 86]. 1)
Early OSR works refer to a classification framework, which utilizes
the maximum softmax probability to determine the ID/OOD sam-
ples. 2) To more explicitly model ID, density-based OSRmethods are
proposed to leverage the probabilistic models for OSR. These meth-
ods are under an operating assumption that OOD samples have low
likelihoods whereas ID samples have high likelihoods under the
estimated density model. 3) The distance-based OSR methods are
based on an intuitive idea that OOD samples should be relatively far
away from the centroids of ID samples. 4) The reconstruction-based
methods often leverage the encoder-decoder framework, which is
trained on only ID samples and generates different outcomes for
OSR. Inspired by OSR, we step further toward the OS-VMR problem
in this paper. Please note that existing OSR methods focus on open-
set object detection [9, 19, 20, 38, 45, 49, 61] in the image datasets.
These OSR methods cannot effectively understand video and query
in our VMR task. However, it is the uniqueness of the moment
retrieval in an open-set setting that makes the OS-VMR problem
even more challenging and valuable in practice.

3 OUR PROPOSED OPENVMR
Setup. Given an untrimmed video 𝑉 and corresponding language
query 𝑄 , the traditional Video Moment Retrieval (VMR) task aims
to retrieve the query-described activity moment from the video.
However, existing VMRmethods refer to a closed-set setting, which
lacks their understanding of video-irrelevant queries, limiting their
real-world information retrieval applications.

To this end, we investigate a more practical but challenging
setting, called open-set VMR (OS-VMR), which not only conducts
video grounding by the video-relevant query but also rejects the
video-irrelevant query. Given an untrimmed video and a sentence
query, the OS-VMR task aims to retrieve the moment location from
the video (if the query is video-relevant, i.e., ID query), or reject the
query (if the query is video-irrelevant, i.e., OOD query). Therefore,
our posed OS-VMR is brand-new and more challenging than VMR.
Fig. 2 illustrates the framework of our proposed method.

3.1 Preparation
Video encoder. Following previous VMR works [79, 81, 82], given
a video with 𝑁𝑣 frames, we first extract its frame-wise features
by a pre-trained C3D network [58], and then employ a multi-head
self-attention [59] module to capture the long-range dependencies
among video frames. We denote the extracted video features as
𝑉 = {𝑣𝑖 }𝑁𝑣

𝑖=1 ∈ R𝑁𝑣×𝑑 , where 𝑑 is feature dimension.
Query encoder. Similarly, given a query with 𝑁𝑤 words, we also
follow previous VMR works [79, 81, 82] to utilize the Glove [48]
embedding to encode each word into dense vector. We further
employ the Bi-GRU [7] layers to extract word-level query feature
𝑊 = {𝑤 𝑗 }𝑁𝑤

𝑗=1 ∈ R𝑁𝑤×𝑑 . To capture the global semantics of the
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Figure 2: Framework of our proposed method for open-set VMR, where module (I) is “ID knowledge acquisition”, module (II) is “uncertainty-
aware OOD boundary reasoning”, module (III) is “ID-OOD boundary refinement”, and module (IV) is “cross-modal interaction”. Firstly, we
employ video and query encoders to extract corresponding features. In module (I), we then design a coupling block based on the normalizing
flow technology to learn ID query feature distribution as ID knowledge. Besides, we define the uncertainty score to reason the ID-OOD boundary
in module (II). In module (III), we further refine the ID-OOD boundary by maximizing the margin between ID and OOD boundaries. Finally, we
utilize the ID query for final moment retrieval by: a) we align video and ID query by video-query matching and frame-query matching, b)
treating query-relevant frames as positive data and query-irrelevant frames as unlabeled data, we introduce positive-unlabeled learning to
predict the coarse-grained moment boundary, and c) a retrieval head is used for fine-grained moment retrieval. Best viewed in color.

whole query, we utilize the Skip-thought parser [24] to extract the
sentence-level query feature 𝑞 ∈ R𝑑 .

3.2 ID Knowledge Acquisition
When it comes to detecting OOD queries, we aim to find an OOD-
independent separating boundary to distinguish ID queries and
OOD queries. Thus, we extract the simplified distribution of ID
query features. We use normalizing flow [10, 11, 26, 46, 68] to learn
the distribution of ID query features. In a VMR dataset, for a video,
we select 𝑁𝑖𝑑 ID queries and 𝑁𝑜𝑜𝑑 OOD queries. We refer to the
sentence-level query features extracted by the query encoder as
input features for normalizing flow. We denote these features as
Q = Q𝑖𝑑 ∪ Q𝑜𝑜𝑑 , where Q𝑖𝑑 = {𝑞𝑖𝑑

𝑖
}𝑁𝑖𝑑

𝑖=1 and Q𝑜𝑜𝑑 = {𝑞𝑜𝑜𝑑
𝑗

}𝑁𝑜𝑜𝑑

𝑗=1
are ID and OOD query features, respectively.

3.2.1 Normalizing Flow Construction. Firstly, we denote Φ𝜔 : Q ∈
R𝑑 → X ∈ R𝑑 as our normalizing flow, where 𝜔 is a learnable
parameter and X denotes the latent space. Especially, a coupling
block with multiple coupling layers [10] is leveraged such that
Φ𝜔 = Φ𝐶 ◦ · · · ◦ Φ2 ◦ Φ1, where 𝐶 is the total layer number.

Defining𝑑-dimensional input and output features of normalizing
flow as 𝑘0 = 𝑞 ∈ Q and 𝑘𝐶 = 𝑥 ∈ X, the output of the 𝑐-th latent
layer is 𝑘𝑐 = Φ𝑐 (𝑘𝑐−1), where {𝑘𝑐 }𝐶−1

𝑐=1 are the intermediate outputs.
By the change of variables formula, the input distribution estimated
by model 𝑝𝜔 (𝑞) can be formulated as:

log𝑝𝜔 (𝑞) =
∑︁𝐶

𝑐=1
log

��det𝐽Φ𝑐 (𝑘𝑐−1 ) �� + log𝑝X (Φ𝜔 (𝑞) ), (1)

where 𝐽Φ𝑐
(𝑘𝑐−1) = 𝜕Φ𝑐 (𝑘𝑐−1)/𝜕𝑘𝑐−1 is the Jacobian matrix of Φ𝑐

at 𝑘𝑐−1, and det means determinant. Besides, we can approximate
the feature distribution 𝑝Q with 𝑝𝜔 (𝑞) by the normalizing flow.

By optimizing the log-likelihoods across the training distribution
𝑝Q , we can obtain the set of parameters 𝜔 as follows:

𝜔∗ = argmin
𝜔
E𝑞∼𝑝Q [−log𝑝𝜔 (𝑞) ] . (2)

3.2.2 Learning ID Query Feature Distribution. Then, by maximum
likelihood optimization, we leverage the normalizing flow to learn
ID query feature distribution. In general, the latent variable dis-
tribution 𝑝X (𝑥), 𝑥 ∈ R𝑑 can be assumed to obey the following
multi-variate Gaussian distribution [16]:

𝑝X (𝑥 ) = (2𝜋 )−
𝑑
2 det(𝜎− 1

2 )exp[− 1
2
(𝑥 − 𝜇 )⊤𝜎−1 (𝑥 − 𝜇 ) ], (3)

where 𝜇 and 𝜎 are the mean and the covariance, respectively. For
simplicity, we assume the latent variables for the ID query feature
to obey the standard normal distribution during training. By re-
placing 𝑝X (𝑥) = (2𝜋)−

𝑑
2 exp(− 1

2𝑥
𝑇 𝑥) in Eq. (1), we rewrite the

optimization objective in Eq. (2) as follows:

𝜔∗ = argmin
𝜔
E𝑞∼𝑝Q

[ 1
2
Φ𝜔 (𝑞)⊤Φ𝜔 (𝑞) −

∑︁𝐶

𝑐=1
log

��det𝐽Φ𝑐 (𝑘𝑐−1 ) |] . (4)

Since 𝑑/2log(2𝜋) is constant, we remove it in Eq. (4). To learn the
ID query feature distribution, we define the maximum likelihood
loss function as follows:

L1 = E𝑞∈Q𝑖𝑑

[ 1
2
Φ𝜔 (𝑞)𝑇Φ𝜔 (𝑞) −

∑︁𝐶

𝑐=1
log

��det𝐽Φ𝑐 (𝑘𝑐−1 ) |] . (5)
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3.3 OOD Boundary Reasoning
Based on the learned ID query feature distribution, we can search
an explicit and compact separating boundary between ID and OOD
query. To reduce the computational cost from high-dimensional
query features, we consider searching the boundary based on the
uncertainty score. Since the log-likelihoods generated by the nor-
malizing flow can be equivalently converted to uncertainty scores,
we select the boundary on the log-likelihood distribution.

3.3.1 Uncertainty Score. By the normalizing flow, we can estimate
the exact log-likelihood log𝑝 (𝑞) for each query feature 𝑞:

log𝑝 (𝑞) =
∑︁𝐶

𝑐=1
log

��det𝐽Φ𝑐 (𝑘𝑐−1 ) | − 1
2
Φ𝜔 (𝑞)𝑇Φ𝜔 (𝑞) . (6)

With the estimated log-likelihood log𝑝 (𝑞), we utilize the exponen-
tial function to convert it to likelihood. Since we aim to maximize
log-likelihoods for normal features in Eq. (5), the likelihood can
directly measure the uncertainty. Thus, we can obtain the following
uncertainty score:𝑢 (𝑞) = max𝑞′∈Q (exp(log𝑝 (𝑞′)))−exp(log𝑝 (𝑞)),
where 𝑢 (𝑞) is the uncertainty score of query 𝑞. The log-likelihood
can be equivalently converted to the uncertainty score since the
exponential function is monotonic. Therefore, the boundary in un-
certainty score distribution is equivalent to the separating boundary
in log-likelihood distribution.

3.3.2 Reasoning ID-OODSeparating Boundary. With log-likelihood
distribution, we can search the separating boundary as follows:
1) Firstly, we search the ID log-likelihood distribution by ID log-
likelihoods P𝑖𝑑 = {log𝑝𝑖 }𝑁𝑖𝑑

𝑖=1 based on the log-likelihood estima-
tion formulation in Eq. (6). 2) Then, we can approximate the log-
likelihood distribution of all ID queries by P𝑖𝑑 . 3) After that, we
introduce a position hyper-parameter 𝛼 to determine the boundary.
Specially, we set the 𝛼-th percentile (e.g., 𝛼 = 5) of sorted ID log-
likelihood distribution as the ID boundary 𝑏𝑖𝑑 , which also serves as
the upper bound of the ID false positive rate is 𝛼%. 4) To enhance the
robustness of our model, we employ the margin hyper-parameter
Δ and define an OOD boundary as 𝑏𝑜𝑜𝑑 = 𝑏𝑖𝑑 − Δ.

3.4 ID-OOD Boundary Refinement
With the explicit ID-OOD boundary, we design an ID-OOD bound-
ary refinement module for discriminative feature learning. Then,
we use the boundary 𝑏𝑖𝑑 as the contrastive target. Specially, we
push OOD query features whose log-likelihoods are larger than
𝑏𝑜𝑜𝑑 apart from 𝑏𝑖𝑑 at least beyond the margin Δ, while pulling
together ID query features whose log-likelihoods are smaller than
𝑏𝑖𝑑 . Thus, we introduce the following triplet loss:

L2=
∑︁𝑁𝑖𝑑

𝑖=1
|min( (log𝑝𝑖 −𝑏𝑖𝑑),0) | +

∑︁𝑁𝑜𝑜𝑑

𝑗=1
|max( (log𝑝 𝑗 −𝑏𝑖𝑑 +Δ),0) | . (7)

Since any log-likelihood log𝑝𝑖 fallen into themargin region (𝑏𝑜𝑜𝑑 , 𝑏𝑖𝑑 )
will increase the value of L2, we can encourage the sparse log-
likelihood distribution in the margin region (𝑏𝑜𝑜𝑑 , 𝑏𝑖𝑑 ). The log-
likelihoods can range from a large region (−∞, 0], which makes it
difficult to select the satisfactory hyper-parameter Δ. To normalize
the log-likelihoods to the small range (e.g., [−1, 0]), we introduce
a large enough normalizer ℎ𝑖𝑑 (e.g., ℎ𝑖𝑑 = 100). Since these log-
likelihoods can be easily divided into OOD queries, the extremely
small log-likelihoods (less than −1) can be excluded outside the loss
in Eq. (7). Thus, minimizing the loss in Eq. (7) will encourage all
log-likelihoods P to distribute in the regions [−1, 𝑏𝑜𝑜𝑑 ] or [𝑏𝑖𝑑 , 0].

Given a query, if its log-likelihood falls into [𝑏𝑖𝑑 , 0], we treat it
as ID. Otherwise, it is OOD.

3.5 Cross-modal Interaction and Training
3.5.1 Video-query Matching. The frame-level video and word-level
query representations are denoted as 𝑉 ∈ R𝑁𝑣×𝑑 and𝑊 ∈ R𝑁𝑤×𝑑 ,
respectively. Specially, we first extract the global representation by
an attentive pooling: 𝑣 ′ =

∑𝑁𝑣

𝑖=1 𝑓
𝑣
𝑖
𝑣 ′𝑖 , 𝑓 𝑣 = 𝜉𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑉𝑀𝑣), 𝑞′ =∑𝑁𝑤

𝑗=1 𝑓
𝑞

𝑗
𝑞′𝑖 , 𝑓

𝑞 = 𝜉𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑀𝑞), where 𝑀𝑣 ∈ R𝑑×1 and 𝑀𝑞 ∈
R𝑑×1 are learnable matrices; 𝑣 ′ and 𝑞′ are global video and query
representations, respectively. To evaluate the video-query matching
score, we introduce the following cosine similarity:

𝑆𝑖𝑚 (𝑣′, 𝑞′ ) = 𝑣′⊤ · 𝑞′
∥𝑣′ ∥2 ∥𝑞′ ∥2

, (8)

where ∥ · ∥2 denotes the L2-norm of a vector.
In a training batch with 𝑁𝑏 video-query pairs {𝑉𝑖 , 𝑄𝑖 }𝑁𝑏

𝑖=1, we
adopt the multi-modal features {𝑣 ′𝑖 , 𝑞′𝑖 }

𝑁𝑏

𝑖=1 for cross-modal se-
mantic alignment. For positive and negative video-query pairs, we
utilize the video-query matching score 𝑆𝑖𝑚(𝑣 ′, 𝑞′) for the following
alignment loss:

L3 = − 1
|𝑁𝑏 |

∑︁𝑁𝑏

𝑖=1
log

exp(𝑆𝑖𝑚 (𝑣′𝑖 , 𝑞′𝑖 )/𝜂 )∑
𝑖≠𝑗 exp(𝑆𝑖𝑚 (𝑣′𝑖 , 𝑞′ 𝑗 )/𝜂 )

, (9)

where 𝜂 is a temperature parameter.

3.5.2 Frame-query Matching. To further better understand the
given video𝑉 and ID query𝑄𝑖𝑑 , we design a Frame-QueryMatching
(FQM) module to estimate the matching videos and queries based
on the likelihood of each frame about queries.

Specially, the FQMmodule includes two linear layers followed by
two functions (sigmoid and tanh), which is defined as: FQM(𝑓 𝑣

𝑖
, 𝑞′) =

𝜉𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝜉𝑡𝑎𝑛ℎ (𝑓 𝑣𝑖 𝑀1)𝑞′𝑀2), where 𝜉𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (·) and 𝜉𝑡𝑎𝑛ℎ (·) denote
sigmoid and tanh functions, respectively; 𝑓 𝑣

𝑖
denotes the 𝑖-th frame

feature in video 𝑉 ;𝑀1 ∈ R𝑑×1 and𝑀2 ∈ R𝑑×1 are learnable matri-
ces. We denote the likelihood of each frame about 𝑞′ as 𝑃 (𝑓 𝑣

𝑖
| 𝑞′).

Also, we can obtain the probability: 𝑃 (𝑓 𝑣
𝑖

| 𝑞′) = FQM(𝑓 𝑣
𝑖
, 𝑞′).

Then, we calculate the frame-aware attention scores 𝑎 by the soft-
max function as: 𝑎 = 𝜉𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑝1, 𝑝2, ..., 𝑝𝑁𝑣

), where 𝜉𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (·)
denotes the softmax function. Based on 𝑎, we can enhance the
frame-level feature 𝑓 𝑣

𝑖
: 𝑓 𝑣

𝑖
= 𝑎 ⊙ 𝑓 𝑣

𝑖
, where ⊙ denotes an element-

wise product and 𝑓 𝑣
𝑖
is the enhanced frame features. After obtain-

ing 𝑓 𝑣
𝑖
, we further integrate it with multi-level query features as:

𝑓
𝑓 𝑢𝑠𝑒

𝑖
= 𝑀3 𝑓 𝑣𝑖 +𝑀4

∑𝑁𝑤

𝑗=1𝑤 𝑗 +𝑀5𝑞′, where 𝑓
𝑓 𝑢𝑠𝑒

𝑖
is the fused fea-

ture, and𝑀3,𝑀4 and𝑀5 are learnable weight matrices.

3.5.3 Positive-unlabeled Learning. Since most of the video content
is background, it is significant to predict the foreground frames that
are relevant to the ID query. We can treat query-relevant frames as
positive data, whereas query-irrelevant frames are unlabeled data.
We can transfer the VMR problem to a semi-supervised learning
problem, positive-unlabeled learning (PUL) [1]. Thus, we design a
simple yet effective PUL module to predict the target moment.

Specifically, we follow previous VMR works [82] to retrieve the
target moment with pre-defined moment proposals based on 𝑓

𝑓 𝑢𝑠𝑒

𝑖
,

where we sample 𝑡 proposals for each frame. Then, we utilize Eq.
(8) to obtain the similarity score 𝑠𝑖 ∈ [0, 1] between the ID query
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and the 𝑖-th proposal. In a training batch S = {𝑠𝑖 }, we can divide
these proposals into two sets: positive set P = {𝑠𝑖 |𝑠𝑖 ≥ 0.5} and
the unlabeled background set U = {𝑠𝑖 |𝑠𝑖 < 0.5}. Therefore, we
ascendingly sort U and select top-𝑁𝑠 samples to form the most
likely negative set N = {𝑠𝑖 |𝑠𝑖 ∈ 𝑠𝑜𝑟𝑡 (U)1,...,𝑁𝑠

}. Since |U| ≫ |P|
in most batches, we set 𝑁𝑠 = |N | := min( |P|, |U|) for smooth
training. Finally, we employ the binary cross-entropy loss based on
the positive set P and the negative set N :

LBCE = − 1
| P |

∑︁
𝑠𝑖 ∈P

log 𝑠𝑖 −
1

|N |

∑︁
𝑠𝑖 ∈N

log(1 − 𝑠𝑖 ) . (10)

By Eq. (10), we can push the probably pure background proposals
far away from positive proposals. Although the PUL method is
simple, the learned similarity scores are enough for distinguishing
the foreground and background proposals.

As the boundaries of pre-defined proposals are coarse, we employ
a retrieval regression loss for calibrating the retrieval. We calculate
the regression loss for every positive sample:

Lreg =
1
| P |

∑︁
L𝑠𝑚𝑜𝑜𝑡ℎ (𝑡𝑠 , 𝑡 ′𝑠 ) + L𝑠𝑚𝑜𝑜𝑡ℎ (𝑡𝑒 , 𝑡 ′𝑒 ), (11)

where L𝑠𝑚𝑜𝑜𝑡ℎ is the smooth 𝐿1 loss; 𝑡𝑠 , 𝑡𝑒 are the ground-truth
start and end timestamps; 𝑡 ′𝑠 , 𝑡 ′𝑒 are the predicted timestamps.

For convenience, we set L4 = LBCE + Lreg. Therefore, we can
obtain the following overall loss:

L = L1 + 𝜆1L2 + 𝜆2L3 + 𝜆3L4, (12)

where 𝜆1, 𝜆2 and 𝜆3 are the balanced weight hyper-parameters.
Inference. Given a video and a sentence query, we first feed them
into our model to detect if the query is ID or OOD. If the query is ID,
we can obtain the fused cross-modal feature 𝑓 𝑓 𝑢𝑠𝑒

𝑖
. Then, we predict

the moment boundary (𝑡 ′𝑠 , 𝑡 ′𝑒 ) in Eq. (11). “Top-n (R@n)” moment
candidates will be selected with non-maximum suppression [44].

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
Datasets. We experiment on four VMR datasets with various char-
acteristics: Charades-STA [12], Activitynet-Captions [25]and TACoS
[50]. In this paper, we conduct experiments under two settings:
closed-set and open-set, whose split principle is illustrated in Table
1. In the closed-set setting, for each dataset, we utilize its queries
and its videos for both training and testing. In the open-set setting,
we train each dataset based on its queries and videos, while we
conduct testing on its videos and queries from all three datasets.
ActivityNet Captions. ActivityNet Captions is introduced by [25],
which contains about 20k untrimmed videos and 100k descriptions
with diverse open-domain activities. Following the split principle
in [81], in the closed setting, we utilize 37,417 video-query pairs for
training, and 34,536 pairs for testing, respectively.
Charades-STA. It is built on Charades [53] by [12], including 9,848
videos of indoor scenarios. In the closed setting, we use 12,408 and
3,720 video-sentence pairs for training and testing, respectively.
TACoS. TACoS is a challenging dataset collected from the MPII
Cooking Composite Activities [51], which contains 127 long videos
of cooking scenarios. In the closed setting, we follow the standard
split used in [12] and obtain 10,146, and 8,672 video-sentence pairs
as training and testing dataset, respectively.

Table 1: Closed-set datasets and open-set datasets during training
and testing, where “ANC” denotes “ActivityNet Captions”, “CS” de-
notes “Charades-STA”, and “All” denotes all three datasets.

Dataset Closed-set train Closed-set test Open-set train Open-set test
Video Query Video Query Video Query Video Query

ANC ANC ANC ANC ANC ANC ANC ANC All
CS CS CS CS CS CS CS CS All

TACoS TACoS TACoS TACoS TACoS TACoS TACoS TACoS All

Evaluation metrics. There are two challenges in our method: ID
query for moment retrieval and OOD query detection. Thus, we use
two types of metrics for comprehensive performance evaluation:

1) ID query for moment retrieval. Following [12, 79], we adopt
“R@n, IoU=m” as the evaluation metric, which denotes the per-
centage of language queries having at least one result whose In-
tersection over Union (IoU) with ground truth is larger than m in
top-n retrieved moment. In our experiments, we use 𝑛 ∈ {1, 5} for
all datasets, 𝑚 ∈ {0.5, 0.7} for Charades-STA, 𝑚 ∈ {0.3, 0.5} for
ActivityNet Captions and TACoS.

2) OOD query detection. To evaluate open-set performance, we
introduce two popular metrics to evaluate the performance of de-
tecting ID and OOD queries for a given video: the Area Under the
Receiver Operating Characteristic (AUROC) curve and the Area
Under the Precision-Recall (AUPR) [37].

For all the metrics, the larger value denotes better performance.
Implementation details. For the video encoder, we apply C3D [58]
to encode the videos onActivityNet Caption and I3D [2] onCharades-
STA and TACoS. Since some videos are overlong, we set the length
of frame sequences𝑀 to 64, 64 and 200 for Charades-STA, Activi-
tyNet Captions and TACoS, respectively. For the query encoder, we
utilize GloVe 840B 300d [48] to embed each word as word features.
We sample 800 moment proposals for TACoS and 384 for Charades-
STA and ActivityNet Captions similar with [82]. We train our model
for 200 epochs with a batch size of 128 and an early stopping strat-
egy. Parameter optimization is performed by Adam [22] optimizer
with a learning rate of 0.0008. We conduct our experiments on a
single Nvidia TITAN XP GPU.

4.2 Comparison with State-of-the-Arts
4.2.1 Compared Methods. We conduct performance comparison
on all three datasets under both closed-set and open-set settings.
To evaluate efficiency, we only choose the open-source compared
methods that are grouped into two categories: (i) Fully-supervised
(FS) setting [12–14, 30, 31, 34, 64, 72, 75, 80–82]; (ii) Weakly-
supervised (WS) setting [4, 62, 63, 65, 83, 85]. For convenience,
we denote our proposed “open-set setting” as “OS”. Following
[42, 78], we directly cite the results of compared methods from cor-
responding works. Note that no weakly-supervised method reports
its results on TACoS. The best results are bold.

4.2.2 Closed-set Evaluation. The quantitative comparison results
of our model and compared methods on ActivityNet Captions,
Charades-STA, and TACoS Captions are reported in Table 2, 3
and 4, respectively.

Based on these experimental results, we list several notable ob-
servations as follows: 1) Compared with other state-of-the-art meth-
ods, our proposed model achieves the highest performance over
all metrics on three datasets, which demonstrates the superiority
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Table 2: Effectiveness comparison for closed-set VMR on Activi-
tyNet Captions dataset under official train/test splits.

Method Type R@1, R@1, R@5, R@5,
IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

CTRL [12] FS - 29.01 - 59.17
2D-TAN [81] FS 59.45 44.51 85.53 77.13
DRN [75] FS - 45.45 - 77.97
RaNet [13] FS - 45.59 - 75.93
MIGCN [80] FS - 48.02 - 78.02
MMN [64] FS 65.05 48.59 87.25 79.50
G2L [30] FS - 51.68 - 81.32
ICVC [4] WS 46.62 29.52 80.92 66.61
LCNet [65] WS 48.49 26.33 82.51 62.66
VCA [63] WS 50.45 31.00 71.79 53.83

WSTAN [62] WS 52.45 30.01 79.38 63.42
CNM [85] WS 55.68 33.33 - -
Ours OS 69.85 56.47 94.38 86.54

Table 3: Performance comparison for closed-set VMR on Charades-
STA dataset under official train/test splits.

Method Type R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

CTRL [12] FS 23.62 8.89 58.92 29.52
MMN [64] FS 47.31 27.28 83.74 58.41

2D-TAN [81] FS 39.81 23.25 79.33 52.15
RaNet [13] FS 43.87 26.83 86.67 54.22
DRN [75] FS 45.40 26.40 88.01 55.38
G2L [30] FS 47.91 28.42 84.80 59.33

MomentDiff [31] FS 53.79 30.18 - -
WSTAN [62] WS 29.35 12.28 76.13 41.53
ICVC [4] WS 31.02 16.53 77.53 41.91
CNM [85] WS 35.15 14.95 - -
VCA [63] WS 38.13 19.57 78.75 37.75
LCNet [65] WS 39.19 18.17 80.56 45.24

Ours OS 58.38 33.53 93.62 62.35
Table 4: Performance comparison for closed-set VMR on TACoS
dataset under official train/test splits.

Method Type R@1, R@1, R@5, R@5,
IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

CTRL [12] FS 18.32 13.30 36.69 25.42
ACRN [34] FS 19.52 14.62 34.97 24.88
CMIN [82] FS 24.64 18.05 38.46 27.02
SCDM [72] FS 26.11 21.17 40.16 32.18
DRN [75] FS - 23.17 - 33.36

2D-TAN [81] FS 37.29 25.32 57.81 45.04
MMN [64] FS 39.24 26.17 62.03 47.39
FVMR [14] FS 41.48 29.12 64.53 50.00
G2L [30] FS 42.74 30.95 65.83 49.86
RaNet [13] FS 43.34 33.54 67.33 55.09

MomentDiff [31] FS 44.78 33.68 - -
Ours OS 55.44 42.72 73.48 64.48

of our proposed model. 2) On the ActivityNet Captions dataset,
our model outperforms all the compared methods over all metrics.
Particularly, our model beats the best compared fully-supervised
method G2L by 5.22% in terms of “R@5, IoU=0.5”. As for the best
compared weakly-supervised method CNM, our model outperforms
it by 14.17% over “R@1, IoU=0.3”. It shows that our model has excel-
lent generalization ability in more complex and diverse real-world
scenarios by frame-query matching and video-query matching. 3)
On the Charades-STA dataset, based on the reported settings of

Table 5: Effectiveness comparison for open-set VMR on ActivityNet
Captions under official train/test splits, where Ours(a), Ours(b) and
Ours(c) are our three ablation models, Ours(full) is our full model.

Method Type R@1, R@1, AUROC AUPRIoU=0.3 IoU=0.5
CTRL [12] FS 22.16 13.42 - -

2D-TAN [81] FS 30.88 22.95 - -
DRN [75] FS 31.75 26.34 - -
RaNet [13] FS 30.96 28.43 - -
MIGCN [80] FS 32.40 29.57 - -

MomentDiff [31] FS 29.59 30.17 - -
MMN [64] FS 35.17 29.92 - -
ICVC [4] WS 18.43 10.76 - -
LCNet [65] WS 20.48 11.69 - -
VCA [63] WS 21.50 10.36 - -

WSTAN [62] WS 24.76 12.38 - -
CNM [85] WS 28.44 15.74 - -
Ours(a) OS 42.15 30.03 33.20 38.87
Ours(b) OS 45.02 31.72 32.48 37.39
Ours(c) OS 48.68 36.84 38.16 41.80

Ours(full) OS 50.96 38.75 39.24 43.68

Table 6: Performance comparison for open-set VMR on Charades-
STAunder official train/test splits, where Ours(a), Ours(b) andOurs(c)
are our three ablation models, Ours(full) is our full model.

Method Type R@1, R@1, AUROC AUPRIoU=0.5 IoU=0.7
CTRL [12] FS 9.16 2.35 - -
MMN [64] FS 21.85 10.43 - -

2D-TAN [81] FS 16.46 8.13 - -
MomentDiff [31] FS 12.68 7.26 - -

RaNet [13] FS 18.50 9.77 - -
DRN [75] FS 20.13 8.10 - -

WSTAN [62] WS 8.15 3.92 - -
ICVC [4] WS 10.40 2.97 - -
CNM [85] WS 11.43 6.28 - -
VCA [63] WS 14.72 5.71 - -
LCNet [65] WS 13.52 7.39 - -
Ours(a) OS 28.40 16.77 32.02 35.63
Ours(b) OS 30.27 15.29 33.82 34.95
Ours(c) OS 33.18 19.05 36.75 39.86

Ours(full) OS 34.62 19.58 38.76 40.29

previous methods, our proposed method reaches the new state-of-
the-art on all the metrics. In terms of “R@1, IoU=0.3”, our model
outperforms the best compared fully-supervised method Moment-
Diff by 4.59%, and the best compared weakly-supervised method
LCNet by 19.19%. 4) On the TACoS dataset, our model surpasses
other state-of-the-art methods by a large margin. Compared with
best compared method, our model improves the performance by
10.66% and 9.04% in terms of “R@1, IoU=0.3” and “R@1, IoU=0.5”,
which may stem from the inherent characteristics of this dataset.

4.2.3 Open-set Evaluation. Similarly, we conduct open-set experi-
ments on all three datasets. Table 5, 6 and 7 illustrate the open-set
VMR performance on ActivityNet Captions, Charades-STA, and
TACoS, respectively. Obviously, our model achieves the best per-
formance on three datasets over all the metrics.
Open-set results on ActivityNet Captions: We report its open-
set comparison in Table 5. Particularly, ourmodel beats the best com-
pared fully-supervised method MMN by 15.79% in terms of “R@1,
IoU=0.5”. As for the best compared weakly-supervised method
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Ground Truth

MMN

1.76s 8.58s

1.01s 6.15s
WSTAN 8.14s 9.76s

Video-relevant query (ID query): He is holding a bowl of noodles and broth.

Ours 1.62s 8.41s

Ground Truth

MMN 2.40s 9.31s
WSTAN 1.54s 2.63s

Video-irrelevant query (OOD query): Person sneezing on a mirror.

Ours

×

×
Figure 3: Visualization results on ActivityNet Captions (top: closed-
set, bottom: open-set), where “×” means “reject the query”.

Table 7: Performance comparison for open-set VMR on TACoS
under official train/test splits, where Ours(a), Ours(b) and Ours(c) are
our three ablation models, Ours(full) is our full model.

Method Type R@1, R@1, AUROC AUPRIoU=0.3 IoU=0.5
CTRL [12] FS 11.95 6.42 - -
ACRN [34] FS 14.28 9.55 - -
CMIN [82] FS 13.84 10.16 - -
SCDM [72] FS 14.48 10.67 - -
DRN [75] FS 15.73 11.05 - -

2D-TAN [81] FS 14.80 11.13 - -
MMN [64] FS 17.64 11.52 - -
FVMR [14] FS 14.83 10.10 - -

MomentDiff [31] FS 16.28 12.34 - -
RaNet [13] FS 13.72 9.45 - -
MIGCN [80] FS 14.13 11.39 - -
Ours(a) OS 33.81 19.76 38.63 34.82
Ours(b) OS 35.48 20.87 37.31 35.29
Ours(c) OS 36.54 22.47 40.82 35.96

Ours(full) OS 38.27 23.60 41.95 37.80

CNM, our model outperforms it by 23.01% over “R@1, IoU=0.3”.
The main reason is that compared methods cannot distinguish ID
and OOD queries, and directly utilize OOD queries for VMR, which
significantly reduces their performance under the realistic open-set
setting. For the challenging open-set VMR task, we can correctly
recognize OOD queries and precisely retrieve the target moment
by ID queries, which illustrates the effectiveness of our method.
Open-set results on Charades-STA: In Table 6, we further evalu-
ate our open-set performance on the Charades-STA dataset. Our
method achieves the best results in all the cases. For example, our
model outperforms the best compared fully-supervised method
DRN by 14.49% and 11.48% in terms of “R@1, IoU=0.3” and “R@1,
IoU=0.5”, respectively. Besides, ourmodel surpasses the best weakly-
supervised LCNet by 21.10% and 12.19% over “R@1, IoU=0.3” and
“R@1, IoU=0.5”, respectively. This is because the Charades-STA
dataset is under the indoor scenarios, which are irrelevant to out-
door queries in other two datasets. Previous methods directly re-
trieve outdoor moments based on outdoor queries, leading to un-
reasonable retrieval results for the open-set VMR task.
Open-set results on TACoS: As shown in Table 7, we also evalu-
ate the open-set performance of our model on the TACoS dataset.

Table 8: Efficiency comparison for closed-set VMR on TACoS.
Method Run-Time Model Size R@1, IoU=0.5

ACRN [34] 5.96s 128M 14.62
CTRL [12] 3.58s 22M 13.30
TGN [3] 0.89s 166M 18.90

2D-TAN [81] 0.71s 232M 25.32
DRN [75] 0.22s 214M 23.17

MomentDiff [31] 1.85s 248M 33.68
Ours 0.08s 92M 39.72

Particularly, our model outperforms the best compared method
MomentDiff by 24.14% and 12.21% over “R@1, IoU=0.3” and “R@1,
IoU=0.5”, respectively. The main reason for the significant perfor-
mance improvement is that all the videos on TACoS are cooking-
related, which only corresponds to cooking-related queries. Given
some cooking-irrelevant OOD queries from other two datasets, pre-
vious methods mistakenly utilize these OOD queries for wrong
moment retrieval, which severely limits their performance.

4.2.4 Efficiency Comparison. In Table 8, we evaluate the efficiency
of our proposed model, by fairly comparing its running time and
model size in the inference phase with existing open-source meth-
ods on TACoS. Obviously, we achievemuch faster processing speeds
with relatively fewer learnable parameters. This attributes to: 1)
Proposal-based methods (ACRN, CTRL, TGN, 2D-TAN, DRN) suffer
from the time-consuming proposal-matching process. Unlike them,
our retrieval module utilizes the positive-unlabeled learning mod-
ule, which is much more efficient. 2) Different from them, our model
only learns an effective and efficient retrieval backbone without
introducing additional parameters during inference.

4.2.5 Visualization. Fig. 3 depicts the retrieval visualizations on
ActivityNet Captions under both closed-set and open-set settings.
In the closed-set setting, our model achieves better retrieval perfor-
mance than previous state-of-the-art methods (MMN and WSTAN).
This is because our model can fully conduct cross-modal inter-
action by both video-query matching and frame-query matching.
For the challenging open-set setting, our model can reason the
right ID-OOD boundary for OOD query recognition, thus rejecting
video-irrelevant queries.

4.3 Ablation Study and Analysis
Main ablation studies. To demonstrate the effectiveness of each
component in our model, we conduct ablation studies regarding the
components (i.e., ID knowledge acquisition module, uncertainty-
aware OOD boundary reasoning module and ID-OOD boundary
refinement module). In particular, we remove each key individual
module to investigate its contribution. For convenience, we design
three ablation models: 1) Ours(a). We remove the ID knowledge ac-
quisition module while keeping the other two modules. 2) Ours(b).
We remove the uncertainty-aware OOD boundary reasoning mod-
ule while keeping the other two modules. 3) Ours(c). We remove the
ID-OOD boundary refinement module while keeping the other two
modules. Besides, we use our full model as the baseline: Ours(full).
Since we focus on the open-set setting, we conduct correspond-
ing experiments in Table 5, 6 and 7. Based on these tables, we can
observe that all three modules contribute a lot to the final perfor-
mances on all three datasets, demonstrating their effectiveness in
the open-set VMR task. As the core module for detecting OOD
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Figure 4: Training performance of each ablation module for open-
set VMR on ActivityNet Captions (left) and Charades-STA (right).

Table 9: Effect of ID Knowledge Acquisition (IKA), Uncertainty-
aware OOD Boundary Reasoning (UOBR) and ID-OOD Boundary
Refinement (IBR) for open-set VMR on Charades-STA, where “DD”
means “Dirichlet Distribution”, “MGD” means “Multi-variate Gauss-
ian Distribution” and “MD” means “Multinomial Distribution”.

Module Changes R@1, R@1, AUROC AUPRIoU=0.5 IoU=0.7

IKA

C=5 33.87 19.21 38.08 39.22
C=6 34.62 19.58 38.76 40.29
C=7 34.18 19.04 38.96 40.23
DD 33.14 16.38 35.71 38.55
MGD 34.62 19.58 38.76 40.29
MD 31.42 15.80 34.33 39.12

UOBR
𝛼 = 4 34.24 18.52 38.01 40.10
𝛼 = 5 34.62 19.58 38.76 40.29
𝛼 = 6 33.73 19.41 37.95 40.20

IBR
Δ = 0.03 34.23 18.02 37.15 39.86
Δ = 0.04 34.62 19.58 38.76 40.29
Δ = 0.05 34.34 18.60 38.12 39.39

queries, the ID knowledge acquisition module brings the greatest
improvement, illustrating that it provides ID distribution informa-
tion for ID boundary reasoning. Also, the uncertainty-aware OOD
boundary reasoning module achieves significant performance im-
provement, which illustrates the effectiveness of our uncertainty
score and OOD boundary reasoning. Besides, the ID-OOD boundary
refinement module improves performance in all metrics.
Training process of different ablation models. Following [33],
we analyze the training process and retrieval performance of dif-
ferent ablation models in Fig. 4. We can obtain the following repre-
sentative observations: (i) During training, Our(full) outperforms
other ablation models, which further demonstrates the effective-
ness of each module. (ii) Our(full) converges faster than ablation
models, which shows that our full model is more efficient on time-
consuming. For instance, Our(full) converges within 120 epochs on
both ActivityNet Captions and Charades-STA, while Our(c) con-
verges after 160 epochs. Thus, our full model can process these
challenging datasets more efficiently.
Effect of ID knowledge acquisition. In the ID knowledge acqui-
sition (IKA) module, we design a multi-layer coupling block and
utilize the multi-variate Gaussian distribution (MGD). We imple-
ment different variants of the IKA module in Table 9. Obviously,
we can achieve the best performance when we utilize the five-layer
coupling block and MGD to learn ID distribution. It demonstrates
that the five-layer coupling block can sufficiently construct the
normalizing flow and learn ID query feature distribution based on
multi-variate Gaussian distribution assumption.
Analysis on uncertainty-aware OOD boundary reasoning.
Similarly, we conduct ablation on the uncertainty-aware OOD

Table 10: Ablations on cross-modal interaction for open-set VMR
on ActivityNet Captions, where “VQM” means “video-query match-
ing”, “FQM”means “frame-query matching”, “PUL” means “positive-
unlabeled learning”.

Ablation R@1, R@1, AUROC AUPRIoU=0.5 IoU=0.7
w/o VQM 47.93 35.40 35.92 41.25
w/o FQM 48.50 37.02 37.06 42.54
w/o PUL 48.17 36.64 36.56 41.86
Ours(full) 50.96 38.75 39.24 43.68

Table 11: Parameter analysis on ActivityNet Captions.

Parameter Changes R@1, R@1, AUROC AUPRIoU=0.5 IoU=0.7

𝜆1

0.5 50.28 38.12 38.06 42.39
0.6 50.96 38.75 39.24 43.68
0.7 49.81 38.10 38.94 43.51

𝜆2

0.2 50.26 38.89 38.72 40.13
0.3 50.96 38.75 39.24 43.68
0.4 50.11 38.24 38.50 42.18

𝜆3

0.6 50.16 37.87 38.25 42.75
0.7 50.96 38.75 39.24 43.68
0.8 51.29 38.86 38.95 42.94

𝜂

0.1 50.36 38.28 38.77 43.92
0.2 50.96 38.75 39.24 43.68
0.3 50.29 38.15 38.76 43.10

boundary reasoning (UOBR) module. As shown in Table 9, we
change the value of 𝛼 to search the best results. Thus, we set 𝛼 = 5
in all the experiments.
Influence of ID-OOD boundary refinement. Also, we conduct
ablation study on the ID-OOD Boundary Refinement module. Ta-
ble 9 illustrates the ablation results on the Charades-STA dataset.
Obviously, when Δ = 0.04, we can obtain the best performance.
Analysis on cross-modal interaction. As shown in Table 10, we
further evaluate the importance of three components in the cross-
modal interaction module: video-query matching, frame-query
matching and positive-unlabeled learning. We find that the video-
query matching component achieves the largest improvement,
which is because wrong video-query matching will directly lead
to retrieval failure. Moreover, positive-unlabeled learning brings
significant improvement since it can recognize the proper moment
proposals by the binary cross-entropy loss. In addition, frame-query
matching provides fine-grained vision-language alignment for more
precise retrieval. Thus, all three components in our cross-modal
interaction module are significant.
Parameter analysis. As shown in Table 11, we conduct exper-
iments on the ActivityNet Captions dataset under the open-set
setting, and present the ablation study on the hyper-parameters
(𝜆1, 𝜆2, 𝜆3, 𝜂). We can find that, their performance only varies in
a small range, indicating that our model is insensitive to these
parameters. Finally, we choose 𝜆1 = 0.6, 𝜆2 = 0.3, 𝜆3 = 0.7, 𝜂 = 0.2.

5 CONCLUSION
In this paper, we pose a brand-new and challenging task: open-set
video moment retrieval (OS-VMR). Given a video and a query, the
OS-VMR task aims to conduct retrieval if the query is video-relevant,
otherwise reject the query. To address it, we propose a novel method
for this special task. Experiments on three challenging benchmarks
demonstrate the effectiveness of our method.
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