
Under review as a conference paper at ICLR 2024

A EXPERIMENTS

A.1 IMPLEMENTATION DETAILS

Standard CNN. Our code is based on Acar et al. (2021) and we extend it to include the Tiny-
ImageNet dataset, the latest proposed FedDecorr (Shi et al., 2022) and FedExP (Jhunjhunwala et al.,
2022) algorithms. We use Stochastic Gradient Descent (SGD) optimizer and a cross entropy loss
function, with a learning rate of 0.1 and weight decay of 0.001. We use a batch size of 50 and
perform horizontal flipping for training data augmentation on all datasets, while adding cropping
augmentation on CIFAR-10 and CIFAR-100 (Acar et al., 2021). For the training epochs, we run 300,
500, and 100 global rounds (communication rounds) with 10, 5, and 5 local epochs in CIFAR-10,
CIFAR-100, and Tiny-ImageNet, respectively, as suggested in Acar et al. (2021) and shi2022towards.
In the CIFAR-10 and CIFAR-100 (Tiny-ImageNet) datasets, we consider 100 (10) participants with
client participation rates of 1% and 10% (10% and 30%) at each global round, respectively (Acar
et al., 2021). 1% client participation rate means that each client had a 1% chance of being selected to
join in a global round.

ResNet. For the ResNet architecture, we focus on CIFAR-100 and Tiny-ImageNet datasets. We
conducted 100 global rounds with 5 local epochs on CIFAR-100 and 3 local epochs on Tiny-
ImageNet (Acar et al., 2021; Shi et al., 2022). In both datasets, we work with 10 participants with
a 10% client participation rate. Notably, ResNet-18 and ResNet-34 can be treated as having either
four modules each, or eight and sixteen residual blocks, respectively. To test the applicability of
FedBug, we consider two strategies: (1) unfreezing one ResNet module at a time, or (2) unfreezing
one residual block at a time. The first strategy corresponds to a scenario where M = 4, while the
second corresponds to M = 8 for ResNet-18 and M = 16 for ResNet-34.

Hyperparameters. Our use of hyperparameters is similar to (Acar et al., 2021), where µ = 0.0001
for FedProx (Li et al., 2020), alpha = 0.01 for FedDyn (Acar et al., 2021). We use � = 0.01 for
FedDecorr (Shi et al., 2022), while FedExp (Jhunjhunwala et al., 2022) does not require additional
hyperparameters.

A.2 EXPERIMENTAL RESULTS

Improved Performance in CIFAR-10. Similar to experiments on CIFAR-100 and Tiny-ImageNet
datasets, FedBug consistently augments baseline algorithms over various client participation rates
and levels of heterogeneity.

Figure 7: Experiments on CIFAR-10 of 10 clients with standard CNN. We conduct experiments
with different client participation rates (1% and 10%), levels of heterogeneity (↵ 2 {0.3,1}), and
combinations of FL algorithms.

Ablation Study: Number of Clients. To compare the impact of different numbers of clients, we
conducted an ablation study using a consistent client participation rate of 10% for each setting. We

12

Under review as a conference paper at ICLR 2024

Method

CIFAR-100 (ResNet-18; client participation rate: 10%)

IID label distribution (↵ =1) Non-IID label distribution (↵ = 0.3)

Clients # Clients
10 50 500 10 50 500

Vanilla 52.55 42.40 19.45 49.05 40.65 19.32
FedBug 53.59 44.44 21.79 49.93 41.32 19.56

Table 3: Experiments on CIFAR-100 with varying number of clients on ResNet-18.

utilized the CIFAR-100 dataset with ResNet-18 and employed the ResNet Module-wise unfreezing
strategy. We utilize FedBug (50%) for this ablation study. The experimental results were averaged
over four random seeds. The results are summarized in Table 3, revealing that even with a large
number of clients, the FedBug framework consistently improves testing accuracy.

B GENERALIZATION OF THEORETICAL ANALYSIS

Generalization to Multiple Clients. Here, we outline how our analysis framework can be extended
to accommodate multiple clients and the consideration of more layers.

Firstly, we illustrate a meaningful extension from the case of two clients to a scenario involving
multiple clients (m clients), denoted as c1, c2, ..., cm, in an FL regression task. Each client’s unique
regression data Ti = {xi, yi = 1} for i = 1, ...,m, where xi has a 1 in its i-th entry while the other
entries are zeros. In this context, adapting our approach entails employing a one-layer linear network
with m nodes [n1, n2, ..., nm] in the layer and a single node [v] as the bias term.

To enable this extension, we extend the definition of Client Discrepancy (initially presented in Section
4.3) as follows: “Definition R.1: Client discrepancy di is the L1 distance between the server model
parameters at the i-th global round: di =

P
j 6=k |ni

j � ni
k|." Notably, this adjustment maintains the

compatibility of our existing assumptions, thereby ensuring the preservation of the same theorems
with minimal alterations. Consequently, our proposed generalization transcends the boundaries of the
two-client scenario and holds relevance across broader FL contexts.

Discussion on Multi-Layered Model. As for extension to models with more linear layers, we note
that our utilization of a one-layer network readily exhibits an over-parameterized scenario, enabling
the exploration of the gradual unfreezing benefit. Since a network with multiple layers remains
within an overparameterized setting, it may not provide additional theoretical insights. However, we
recognize that such extensions involving multiple layers are valuable and may uncover additional
effects. The pursuit of such a more complex version of theoretical support to the FL strategy would
be among our future directions.

Discussion on Orthogonal Task Setup. We provide a direct generalization of the orthogonal task
setup, where we use T1 = {x1 = e1, y1 = 1} and T2 = {x2 = e2, y2 = 1} as datasets. Here, e1 and
e2 are orthogonal vectors, and we can define the model function as f(x) = x>(ae1 + be2) + v.

13

Under review as a conference paper at ICLR 2024

C COMPARISON BETWEEN FEDAVG AND FEDBUG

We provide self-contained outlines of the FedAvg and FedBug algorithms in Algorithm 2 and
Algorithm 3, respectively. The key difference, highlighted in red and blue, is that while FedAvg
updates all M modules at each local iteration, FedBug unfreezes and updates one module at the
beginning, progressively training an additional module every PK

M local iterations. As FedBug
does not require extra information like gradients, momentum, or regularization, it can be easily
incorporated into other FL algorithms.

Algorithm 2 FedAvg

Notation:
✓1:m: the first m modules of model ✓
R: number of global rounds
K: number of local iterations

1: Input: global model ✓ with M modules
2: for r = 1, . . . , R do
3: Sample clients S ✓ {1, ..., N}
4: for each client i 2 S in parallel do
5: Initialize local model ✓i ✓
6: for k = 1, . . . ,K do
7: ✓1:Mi ✓1:Mi �⌘lrFi(✓

1:M
i)

8: end for
9: �i ✓i � ✓

10: end for
11: ✓ ✓ + ⌘g

|S|
P

i2S �i

12: end for

Algorithm 3 FedBug

Notation:
✓1:m: the first m modules of model ✓
R: number of global rounds
K: number of local iterations
P : gradual unfreezing stage percentage

1: Input: global model ✓ with M modules
2: for r = 1, . . . , R do
3: Sample clients S ✓ {1, ..., N}
4: for each client i 2 S in parallel do
5: Initialize local model ✓i ✓
6: for k = 1, . . . ,K do
7: m min{M, d kMPK e}
8: ✓1:mi ✓1:mi � ⌘lrFi(✓

1:m
i)

9: end for
10: �i ✓i � ✓
11: end for
12: ✓ ✓ + ⌘g

|S|
P

i2S �i

13: end for

14

	Introduction
	Literature Review
	Method
	Theoretical Analysis
	Task Setting and Model Architecture
	Preliminary: FedAvg and FedBug
	The Convergence Rate of FedAvg and FedBug

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	Experiments
	Implementation Details
	Experimental Results

	Generalization of Theoretical Analysis
	Comparison Between FedAvg and FedBug

